
OLE for Retail POS

Application Programmer’s Guide

Release 1.4

September 23, 1998

International Standard

Windows 95/98, Windows NT, or

other OLE/ActiveX compliant 32-bit

operating system

OLE for Retail POS Committee

Core Companies
Epson
Fujitsu/ICL
Microsoft
NCR

plus
OPOS-Japan
OPOS-Europe

OLE for Retail POS

Application Programmer’s Guide

Information in this document is subject to change without notice.

© 1995-1998 Fujitsu/ICL. All rights reserved.
© 1995-1998 Microsoft Corporation. All rights reserved.
© 1995-1998 NCR Corporation. All rights reserved.
© 1995-1998 Seiko Epson Corporation. All rights reserved.

Also see the following Web sites for OPOS information:

“OPOS Home Page” – Primary repository of OPOS documentation:

http://www.ncr.com/product/retail/products/software/OposHome.html
Microsoft Retail Industry Page:

http://www.microsoft.com/industry/retail_dist/
Table of Contents

9Introduction
OLE for Retail POS Controls

What Is “OLE for Retail POS?”
9
Who Should Read This Document
10
General OLE for Retail POS Control Model
10
OPOS Definitions
12
How an Application Uses an OPOS Control
13
When Methods and Properties May Be Accessed
14
Status, Result Code, and State Model
16
Status Model
17
Result Code Model
17
State Model
18
Device Sharing Model
20
Exclusive-Use Devices
20
Sharable Devices
20
Events
22
Input Model
24
Output Model
27
Synchronous Output
27
Asynchronous Output
27
Device Power Reporting Model
28
Model
28
Properties
29
Power Reporting Requirements for DeviceEnabled
30
OPOS Control Descriptions
31
Chapter 1
Common Properties, Methods, and Events
33
Summary
33
General Information
35
Properties
36
Methods
56
Events
64
Chapter 2
Bump Bar
69
Summary
69
General Information
72
Properties
77
Methods
84
Events
90
Chapter 3
Cash Changer
93
Summary
93
General Information
96
Properties
99
Methods
107
Events
110
Chapter 4
Cash Drawer
111
Summary
111
General Information
114
Properties
115
Methods
116
Events
118
Chapter 5
CAT - Credit Authorization Terminal
119
Summary
119
General Information
122
Properties
130
Methods
151
Events
160
Chapter 6
Coin Dispenser
163
Summary
163
General Information
165
Properties
166
Methods
168
Events
169
Chapter 7
Fiscal Printer
171
Summary
171
General Information
178
Properties
192
Methods
220
Events
286
Chapter 8
Hard Totals
291
Summary
291
General Information
295
Properties
299
Methods
302
Chapter 9
Keylock
317
Summary
317
General Information
319
Properties
320
Methods
321
Events
322
Chapter 10
Line Display
323
Summary
323
General Information
326
Properties
329
Methods
350
Chapter 11
MICR - Magnetic Ink Character Recognition Reader
363
Summary
363
General Information
366
MICR Character Substitution
369
Properties
370
Methods
375
Events
381
Chapter 12
MSR - Magnetic Stripe Reader
383
Summary
383
General Information
386
Properties
388
Events
401
Chapter 13
PIN Pad
405
Summary
405
General Information
408
Properties
412
Methods
424
Events
430
Chapter 14
POS Keyboard
433
Summary
433
General Information
435
Properties
437
Events
439
Chapter 15
POS Printer
441
Summary
441
General Information
447
Data Characters and Escape Sequences
451
Properties
455
Methods
498
Events
531
Chapter 16
Remote Order Display
533
Summary
533
General Information
537
Properties
544
Methods
557
Events
585
Chapter 17
Scale
589
Summary
589
General Information
592
Properties
594
Methods
601
Events
604
Chapter 18
Scanner (Bar Code Reader)
607
Summary
607
General Information
609
Properties
611
Events
616
Chapter 19
Signature Capture
619
Summary
619
General Information
621
Properties
624
Methods
629
Events
631
Chapter 20
Tone Indicator
633
Summary
633
General Information
636
Properties
640
Methods
645
APPENDIX A
Change History
647
Release 1.01
647
Release 1.1
650
Release 1.2
652
Release 1.3
656
Release 1.4
659
APPENDIX B
OPOS Registry Usage
661
APPENDIX C
OPOS Application Header Files
665
Opos.h : Main OPOS Header File
666
OposBb.h: Bump Bar Header File
669
OposCash.h : Cash Drawer Header File
670
OposCat.h : CAT Header File
671
OposChan.h : Cash Changer Header File
673
OposCoin.h : Coin Dispenser Header File
674
OposDisp.h : Line Display Header File
675
OposFptr.h : Fiscal Printer Header File
677
OposKbd.h : POS Keyboard Header File
680
OposLock.h : Keylock Header File
681
OposMicr.h : MICR Header File
682
OposMsr.h : MSR Header File
683
OposPpad.h : PIN Pad Header File
685
OposPtr.h : POS Printer Header File
687
OposRod.h : Remote Order Display Header File
692
OposScal.h : Scale Header File
695
OposScan.h : Bar Code Scanner Header File
696
OposSig.h : Signature Capture Header File
697
OposTone.h : Tone Indicator Header File
698
OposTot.h : Hard Totals Header File
699
APPENDIX D
Technical Details
701
System Strings (BSTR)
701
End of Application Programmer’s Guide
706

Introduction
OLE for Retail POS Controls

What Is “OLE for Retail POS?”

OLE for Retail POS provides an open device driver architecture that allows Point-of-Sale (“POS”)
 hardware to be easily integrated into POS systems based on Microsoft Windows-95 and Microsoft Windows-NT.

The goals of OLE for Retail POS (or “OPOS”) include:

· Defining an architecture for Win32-based POS device access.

· Defining a set of POS device interfaces sufficient to support a range of POS solutions.

Deliverables in this release of OPOS are:

· Application Programmer’s Guide – this document: For application developers and hardware providers.

· Control Programmer’s Guide: For hardware providers.

· Header files with OPOS constants.

· No complete software components: Hardware providers or third-party providers develop and distribute these components.

Who Should Read This Document

The Application Programmer’s Guide is targeted to an application developer who requires access to POS-specific peripheral devices. It is also targeted for the system developer who will write an OPOS Control.

This guide assumes that the reader is familiar with the following:

· General characteristics of POS peripheral devices.

· OLE Control and OLE Automation terminology and architecture.

· Familiarity with an OLE Control Container development environment, such as Microsoft Visual Basic or Microsoft Visual C++, will be useful.

General OLE for Retail POS Control Model

OLE for Retail POS Controls adhere to the OLE Control specifications. They expose properties, methods, and events to a containing Application. The controls are invisible at run time, and rely exclusively upon the containing application for requests through methods and sometimes properties. Responses are given to the application through method return values and parameters, properties, and events.

The OLE for Retail POS software is implemented using the layers shown in the following diagram:

[image: image1.wmf]Interface:

OLE

Automation

Application

Events

Control Object

One per Device Class

Device Independent

Operating System & Drivers

Service Object

Device Dependent

Event

Methods

Methods

Properties

Methods

Interface:

OLE

Control

OPOS Control

System

Registry

- Mapping

- Parameters

OPOS Definitions

Device Class

A device class is a category of POS devices that share a consistent set of properties, methods, and events. Examples are Cash Drawer and POS Printer.

Some devices support more than one device class. For example, some POS Printers include a Cash Drawer kickout. Also, some Bar Code Scanners include an integrated Scale.

Control Object or CO

A Control Object exposes a set of properties, methods, and events to an application for its device class. This guide describes these APIs.

A CO is a standard OLE 32-bit Control that is invisible at runtime. The CO interfaces have been designed so that all implementations of a class' Control Object will be compatible. This allows the CO to be developed independently of the SO's for the same class – including development by different companies.

Service Object or SO

A Service Object is called by a Control Object to implement the OPOS-prescribed functionality for a specific device.

An SO is implemented as an OLE Automation server. It exposes a set of methods that are called by a CO. It can also call special methods exposed by the CO to cause events to be delivered to the application.

A Service Object may include multiple sets of methods in order to support devices with multiple device classes.

A Service Object is typically implemented as a local in-proc server (in a DLL). In theory, it may also be implemented as a local out-proc server (in a separate executable process). However, we have found that, in practice, out-proc servers do not work well for OPOS Service Objects, and do not recommend their use.

OPOS Control or Control

An OPOS Control consists of a Control Object for a device class – which provides the application interface, plus a Service Object – which implements the APIs. The Service Object must support a device of the Control Object's class.

Usually, this guide will refer to “Control.” On occasion, we must distinguish between the actions performed by the Control Object and Service Object. Then the explicit layer is specified.

How an Application Uses an OPOS Control

The first action the application must take on the Control is to call its Open method. The parameter of this method selects a device name to associate with the Control. The Open method performs the following steps:

· Establishes a link to the device name.

· Initializes the properties Claimed, DeviceEnabled, DataEventEnabled, FreezeEvents, AutoDisable, DataCount, and BinaryConversion, as well as descriptions and version numbers of the OPOS Control layers. Additional class-specific properties may also be initialized.

Several applications may have an OPOS Control open at the same time. Therefore, after the device is opened, the application will often need to call the Claim method to gain exclusive access to the device. Many devices must be Claimed before the Control allows access to its methods and properties. Claiming the device ensures that other applications do not interfere with the use of the device. The application may Release the device when the device can be shared by other applications – for instance, at the end of a transaction.

Before using the device, the application must set the DeviceEnabled property to TRUE. This value brings the device to an operational state, while FALSE disables the device. For example, if a scanner Control is disabled, then the device will be physically disabled (when possible). Whether physically disabled or not, any input from the device will be discarded until the device is enabled.

After the application has finished using the device, the Close method should be called to release the device and associated resources. If the DeviceEnabled property is TRUE, then Close disables the device. If the Claimed property is TRUE, then Close releases the lock. Before exiting, an application should close all open OPOS Controls.

In summary, the application follows this general sequence:

· Open method: Call to link the Control Object to the Service Object.

· Claim method: Call to gain exclusive access to the device. Required for exclusive-use devices; optional for some sharable devices. (See “Device Sharing Model”, page 20 for more information).

· DeviceEnabled property: Set to TRUE to make the device operational. (For sharable devices, the device may be enabled without first Claiming it.)

· Use the device.
· DeviceEnabled property: Set to FALSE to disable the device.

· Release method: Call to release exclusive access to the device.

· Close method: Call to release the Service Object from the Control Object.

When Methods and Properties May Be Accessed

Methods

Before a successful Open, no other methods may be invoked. Doing so will do nothing but return a status of OPOS_E_CLOSED.

Exclusive-use devices require the application to call the Claim method and to set the DeviceEnabled property to TRUE before most other methods may be called.

Sharable devices require the application to set the DeviceEnabled property to TRUE before most other methods may be called.

The “Summary” section of each device class’ chapter should be consulted for the specific prerequisites for each method.

Properties

Before a successful Open, the values of most properties are not initialized. An attempt to set writable properties will be ignored.

The following properties are always initialized:

Property
Value

State
OPOS_S_CLOSED

ResultCode
OPOS_E_CLOSED

ControlObjectDescription
Control Object dependent string.

ControlObjectVersion
Control Object dependent number.

Capability properties are initialized after the Open is successfully called.

Exclusive use devices require the application to call the Claim method and to set the DeviceEnabled property to TRUE before some other properties are initialized or may be written.

Sharable devices require the application to set the DeviceEnabled property to TRUE before some other properties are initialized or may be written.

To determine when a property is initialized or writable, refer to the Summary section of each device class plus the property’s Remarks section.

Setting writable properties before the prerequisites are met will cause the write to be ignored, and will set the ResultCode property to either OPOS_E_NOTCLAIMED or OPOS_E_DISABLED.

Reading an uninitialized property returns the following values, unless otherwise specified in the device class documentation:

Property Type
Value

Boolean
FALSE

Long
0

String
“[Error]” – include the brackets.

After properties have been initialized, subsequent claims and enables do not reinitialize the properties. They remain initialized until the Close method is called.

Status, Result Code, and State Model

The status, result code, and state models are built around several common properties, events, and methods, described in the following table, and are supported by additional class-specific components.

Name
Meaning

State
A property containing the current state of the Control:
OPOS_S_CLOSED
OPOS_S_IDLE
OPOS_S_BUSY
OPOS_S_ERROR

ResultCode
A property containing the status of the most recent method or the most recently changed writable property:
OPOS_SUCCESS
OPOS_E_CLOSED
OPOS_E_CLAIMED
OPOS_E_NOTCLAIMED
OPOS_E_NOSERVICE
OPOS_E_DISABLED
OPOS_E_ILLEGAL
OPOS_E_NOHARDWARE
OPOS_E_OFFLINE
OPOS_E_NOEXIST
OPOS_E_EXISTS
OPOS_E_FAILURE
OPOS_E_TIMEOUT
OPOS_E_BUSY
OPOS_E_EXTENDED

ResultCodeExtended
A property containing the extended status of the most recent method or the most recently changed writable property. Value varies by ResultCode and by device class.

StatusUpdateEvent
An event fired when some class-specific state or status variable has changed.
Release 1.3 and later: All devices may be able to report device power state. See “Device Power Reporting Model” on page 28.
ErrorEvent
An event fired when the State is changed to Error.

Status Model

The rules of the status model are as follows:

· The only aspect of the status model that is common to all device classes is the means of alerting the application, which is through the firing of the StatusUpdateEvent.

· Each device class specifies the status changes that cause it to fire the event. Examples of device class-specific status changes are:

· A change in the cash drawer position (for example, a transition from open to closed).

· A change in a POS printer sensor (for example, activation of a “form present” sensor, indicating that a slip has been inserted).

Result Code Model

The rules of the result code model are as follows:

· Every method returns a result code. This code is also placed into ResultCode.

· Setting a writable property causes a result code to be placed into ResultCode.

· The ResultCode OPOS_SUCCESS is assigned the value of zero. Non-zero values indicate an error or warning.

· The Control must select one of the result codes listed on page 51. If the Control sets ResultCode to OPOS_E_EXTENDED, then it must set ResultCodeExtended to one of the values specified in the device class documentation. (That is, when this ResultCode value is selected, then ResultCodeExtended may only contain one of the values listed in this document for the device class, in the appropriate method or property section.)

If the Control sets ResultCode to a value other than OPOS_E_EXTENDED, then the Service Object may set the ResultCodeExtended property to any SO-specific value. If an application uses these values, it will, of course, need to add Service Object-specific code. (If the application needs to add such code, then the ServiceObjectDescription, DeviceDescription, or DeviceName property may be interrogated to determine the Service Object with which it is dealing.)

State Model

The rules of the state model are as follows:

· The Control’s State is initially OPOS_S_CLOSED.

· The State is changed to OPOS_S_IDLE when the Open method is called and its result is OPOS_SUCCESS.

· The State is set to OPOS_S_BUSY when OPOS is processing output. The State is restored to OPOS_S_IDLE when these complete successfully.

· The State is changed to OPOS_S_ERROR when:

· An asynchronous output encounters an error condition.

· An error is encountered during the gathering or processing of event-driven input.

After OPOS changes the State property to OPOS_S_ERROR, it invokes ErrorEvent. The parameters to this event are the result code and extended result code, the locus of the error, and a pointer to the application’s response to the error. The locus can indicate one of three error locations:

· Output – The error occurred while processing previously queued output.

· InputWithData – The error occurred while gathering or processing event-driven input. Some previously gathered input data is available for the application. When this error locus is given, then the application can continue to process input until a second ErrorEvent is received with the InputNoData locus, or it can clear the input.

· InputNoData – The error occurred while gathering or processing event-driven input, and either all previously gathered input data has been processed or there is no input data available.

When the application returns from the ErrorEvent, it may change the response parameter. The response values are:

· Retry – If the locus is Output: Retry the asynchronous output and exit the error state. If an error occurs while retrying, then another ErrorEvent will be generated.
If the locus is Input: Some devices support retrying the input, if retry can be controlled by the Service Object.
“Retry” is the default response when the locus is “Output.”

· Clear – Clear the asynchronous output or buffered input data and exit the error state.
“Clear” is the default response when the locus is “InputNoData.”

· Continue – Use only if the locus is InputWithData. This response acknowledges the error and directs the Control to continue processing. The Control remains in the error state, and will deliver additional data events as directed by the DataEventEnabled property. When all input has been delivered and the DataEventEnabled property is again set to TRUE, then another ErrorEvent is delivered with locus “InputNoData.”
“Continue” is the default response when the locus is “InputNoData.”

The Control ensures that while the application is processing an ErrorEvent, it will not deliver any other ErrorEvents.

Device Sharing Model

The OLE for Retail POS device sharing model supports devices that are to be used exclusively by one application
 at a time, as well as devices that may be partially or fully shared by multiple applications. (See “When Methods and Properties May Be Accessed”, page 14, for other details.) All OPOS Controls may be opened by more than one application at a given time. Some or many of the activities that an application can perform with the Control, however, may be restricted to an application that claims access to the device.

Exclusive-Use Devices

The most common device type is called an “exclusive-use device.” An example is the POS printer. Due to physical or operational characteristics, this device can only be used by one application at a time. The application must call the Claim method to gain exclusive access to the device before most methods, properties, or events are legal. Until the device is claimed, calling methods or setting properties cause an OPOS_E_NOTCLAIMED error, and events are not fired to the application.

Should two closely cooperating applications want to treat an exclusive-use device in a shared manner, then one application may claim the device for a short sequence of operations, then release it so that the other application may use it.

When the Claim method is called again, settable device characteristics are restored to their condition at Release. Examples of restored characteristics are the line display’s brightness, the MSR’s tracks to read, and the printer’s characters per line. State characteristics are not restored, such as the printer’s sensor properties. Instead, these are updated to their current values.

Sharable Devices

Some devices are “sharable devices.” An example is the keylock. A sharable device allows multiple applications to call its methods and access its properties. Also, it may fire its events to all applications that have opened it. A sharable device may still limit access to some methods or properties to an application that has Claimed it, or may fire some events only to this application.

Note

One might argue that all devices should be defined as sharable to allow maximum flexibility to applications. In practical use, this flexibility is unlikely to be useful. The downside is an implementation that may be significantly more complex and less likely to be accurate.

In the interest of a specification that is both sufficiently robust for application development, plus implementable by hardware manufacturers, this document defines most devices as exclusive-use, and defines as sharable only those devices that have a significant potential for simultaneous use by multiple applications.

Events

OLE for Retail POS uses events to inform an application of various activities or changes with the OPOS Control. The five event types follow. Subsequent sections will clarify their definitions.

· DataEvent: Input data has been placed into device class-specific properties.

· ErrorEvent: An error has occurred during event-driven input or asynchronous output.

· StatusUpdateEvent: Reports a change in the device’s status.

· OutputCompleteEvent: An asynchronous output has successfully completed.

· DirectIOEvent: This event may be defined by a Service Object provider for purposes not covered by the specification.

The Service Object enqueues events as they occur. Often these events will be enqueued by worker threads, rather than the application’s thread. Enqueued events are delivered to the application when conditions are correct. Conditions which delay the delivery of events include:

· The application thread is busy processing other messages.
OPOS Controls are to follow the OLE Apartment Threading model. According to OLE Apartment Threading rules, events are to be delivered on the thread that created the COM object, which will usually be the application’s main thread. If the application is processing another message, then event delivery must wait until this processing has finished.

· The application has set the property FreezeEvents to TRUE. (See page 47.)

· The event type is DataEvent or ErrorEvent but the property DataEventEnabled is FALSE. (See “Input Model” on page 24.)

If the oldest enqueued event is blocked for one of these reasons, then all newer events may also be blocked. That is, the delivery of enqueued events is typically in a strict first in, first out order. Priority is not given to any event types on the queue.

Note – Terminology

The following event terminology is used rather consistently in this document. Some implementations may vary from the model described here, but the net effect is similar:

· Enqueue: When the Service Object determines that an event needs to be fired to the Application, it enqueues the event on an internal event queue. Event queuing typically occurs from one or more internal Service Object worker threads.

· Deliver: When the event queue is non-empty and all conditions are met for the top event on the queue, this event is removed from the queue and delivered to the Application. Event delivery is typically managed by a dedicated internal Service Object worker thread. This thread ensures that events are delivered in the context of the thread that created the Control, in order to adhere to the Apartment Threading model.

· Fire: The combination of enqueuing and delivering an event.
Sometimes, the term is used more loosely and may only refer to one of these steps. The reader should differentiate these cases by context.

Rules on the management of the queue of events are:

· The Control may only enqueue new events while the device is enabled.

· The Control may deliver enqueued events until the application calls the Release method (for exclusive-use devices) or the Close method (for any device), at which time any remaining events are deleted.

· For input devices, the ClearInput method clears data and error events.

While within an event handler, the application may access properties and call methods. However, the application must not call the Release or Close methods from an event handler, since Release may shut down event handling (possibly including a thread that caused the event to be delivered) and Close must shut down event handling before returning.

Input Model

The OLE for Retail POS input model supports event-driven input. Event-driven input allows input data to be received after DeviceEnabled is set to TRUE. Received data is enqueued as a DataEvent, which is delivered to the application when preconditions are correct. If the AutoDisable property is TRUE when data is received, then the control will automatically disable itself, setting DeviceEnabled to FALSE. This will inhibit the Control from enqueuing further input and, when possible, physically disable the device.

When the application is ready to receive input from the device, it sets the DataEventEnabled property to TRUE. Then, when input is received (usually as a result of a hardware interrupt), the Control enqueues and delivers a DataEvent. (If input has already been enqueued, the DataEvent will be delivered.) This event may include input status information through a numeric parameter. The Control places the input data plus other information as needed into device specific-specific properties just before the event is fired.

Just before delivering this event, the Control disables further data events by setting the DataEventEnabled property to FALSE. This causes subsequent input data to be enqueued by the Control while the application processes the current input and associated properties. When the application has finished the current input and is ready for more data, it reenables events by setting DataEventEnabled to TRUE.

If the input device is an exclusive-use device, the application must both claim and enable the device before the device begins reading input.

For sharable input devices, one or more applications must open and enable the device before the device begins reading input. An application must call the Claim method to request exclusive access to the device before the Control will send data to it using the DataEvent. If event-driven input is received, but no application has claimed the device, then the input is buffered until an application Claims the device (and the DataEventEnabled property is TRUE). This behavior allows orderly sharing of the device between multiple applications, effectively passing the input focus between them.

If the Control encounters an error while gathering or processing event-driven input, then the Control changes its state to Error, and enqueues one or two ErrorEvents to alert the application of the error condition. This event (or events) is not delivered until the DataEventEnabled property is TRUE, so that orderly application sequencing occurs. Error events are delivered with the following loci:

· InputWithData (OPOS_EL_INPUT_DATA) – Only enqueued if the error occurred while one or more DataEvents are enqueued. It is enqueued ahead of all other DataEvents. (A typical implementation would place it at the head of the event queue.) This event gives the application the ability to immediately clear the input, or to optionally alert the user to the error and process the buffered input.

The latter case may be useful with a Scanner Control: The user can be immediately alerted to the error so that no further items are scanned until the error is resolved. Any previously scanned items can then be successfully processed before error recovery is performed.

· InputNoData (OPOS_EL_INPUT) – Delivered when an error has occurred and there is no data available. (A typical implementation would place it at the tail of the event queue.) If some input data was already enqueued when the error occurred, then an ErrorEvent with the locus “InputWithData” was enqueued and delivered first, and then this error event is delivered after all DataEvents have been fired. (If an “InputWithData” event was delivered and the application event handler responded with a “Clear”, then this “InputNoData” event is not delivered.)

The Control exits the Error state when one of the following occurs:

· The application returns from the InputNoData ErrorEvent.

· The application calls the ClearInput method.

For some Controls, the Application must call a method to begin event driven input. After the input is received by the Control, then typically no additional input will be received until the method is called again to reinitiate input. Examples are the MICR and Signature Capture devices. This variation of event driven input is sometimes called “asynchronous input.”

The DataCount property may be read to obtain the number of DataEvents enqueued by the Control.

All input enqueued by a Control may be deleted by calling the ClearInput method. ClearInput may be called after Open for sharable devices and after Claim for exclusive-use devices.

The general event-driven input model does not specifically rule out the definition of device classes containing methods or properties that return input data directly. Some device classes will define such methods and properties in order to operate in a more intuitive or flexible manner. An example is the Keylock device. This type of input is sometimes called “synchronous input.”

Output Model

The OLE for Retail POS output model consists of two output types: synchronous and asynchronous. A device class may support one or both types, or neither type.

Synchronous Output

This type of output is preferred when device output can be performed quickly. Its merit is simplicity.

The application calls a class-specific method to perform output. The Control does not return until the output is completed.

Asynchronous Output

This type of output is preferred when device output requires slow hardware interactions. Its merit is perceived responsiveness, since the application can perform other work while the device is performing the output.

The application calls a class-specific method to start the output. The Control buffers the request, sets the OutputID property to an identifier for this request, and returns as soon as possible. When the device completes the request successfully, OPOS fires an OutputCompleteEvent. A parameter of this event contains the OutputID of the completed request.

If an error occurs while performing an asynchronous request, an ErrorEvent is fired. The application’s event handler can either retry the outstanding output or clear it. The Control is in the Error state while the ErrorEvent is in progress. (Note that if the condition causing the error was not corrected, then the Control may immediately reenter the Error state and fire another ErrorEvent.)

Asynchronous output is performed on a first-in first-out basis.

All output buffered by the Control may be deleted by calling the ClearOutput method. OutputCompleteEvents will not be fired for cleared output. This method also stops any output that may be in progress (when possible).

Device Power Reporting Model

Added in OPOS Release 1.3.

Applications frequently need to know the power state of the devices they use. Earlier versions of OPOS had no consistent method for reporting this information. Note: This model is not intended to report PC or POS Terminal power conditions (such as “on battery” and “battery low”). Reporting of these conditions is left to PC power management standards and APIs.

Model

OPOS segments device power into three states:

· ONLINE: The device is powered on and ready for use. This is the “operational” state.

· OFF: The device is powered off or detached from the terminal. This is a “non-operational” state.

· OFFLINE: The device is powered on but is either not ready or not able to respond to requests. It may need to be placed online by pressing a button, or it may not be responding to terminal requests. This is a “non-operational” state.

In addition, one combination state is defined:

· OFF_OFFLINE: The device is either off or offline, and the Service Object cannot distinguish these states.

Power reporting only occurs while the device is Open, Claimed (if the device is exclusive-use), and Enabled.

Note – Enabled/Disabled vs. Power States

These states are different and usually independent. OPOS defines “disabled” / “enabled” as a logical state, whereas the power state is a physical state. A device may be logically “enabled” but physically “offline”. It may also be logically “disabled” but physically “online”. Regardless of the physical power state, OPOS only reports the state while the device is enabled. (This restriction is necessary because a Service Object typically can only communicate with the device while enabled.)

If a device is “offline”, then a Service Object may choose to fail an attempt to “enable” the device. However, once enabled, the Service Object may not disable a device based on its power state.

Properties

The OPOS device power reporting model adds the following common elements across all device classes:

· CapPowerReporting property: Identifies the reporting capabilities of the device. This property may be one of:

· OPOS_PR_NONE: The Service Object cannot determine the state of the device. Therefore, no power reporting is possible.

· OPOS_PR_STANDARD: The Service Object can determine and report two of the power states – OFF_OFFLINE (that is, off or offline) and ONLINE.

· OPOS_PR_ADVANCED: The Service Object can determine and report all three power states – ONLINE, OFFLINE, and OFF.

· PowerState property: Maintained by the Service Object at the current power condition, if it can be determined. This property may be one of:

· OPOS_PS_UNKNOWN

· OPOS_PS_ONLINE

· OPOS_PS_OFF

· OPOS_PS_OFFLINE

· OPOS_PS_OFF_OFFLINE

· PowerNotify property: The Application may set this property to enable power reporting via StatusUpdateEvents and the PowerState property. This property may only be set before the device is enabled (that is, before DeviceEnabled is set to TRUE). This restriction allows simpler implementation of power notification with no adverse effects on the application. The application is either prepared to receive notifications or doesn’t want them, and has no need to switch between these cases. This property may be one of:

· OPOS_PN_DISABLED

· OPOS_PN_ENABLED

Power Reporting Requirements for DeviceEnabled

The following semantics are added to DeviceEnabled when

CapPowerReporting is not OPOS_PR_NONE, and

PowerNotify is OPOS_PN_ENABLED:

· When the Control changes from DeviceEnabled FALSE to TRUE, then begin monitoring the power state:

· If the device is ONLINE, then:

· PowerState is set to OPOS_PS_ONLINE.

· A StatusUpdateEvent is fired with Status parameter set to OPOS_SUE_POWER_ONLINE.

· If the device power state is OFF, OFFLINE, or OFF_OFFLINE, then the Control may choose to fail the enable, setting ResultCode to OPOS_E_NOHARDWARE or OPOS_E_OFFLINE.

However, if there are no other conditions that cause the enable to fail, and the Control chooses to return success for the enable, then:

· PowerState is set to OPOS_PS_OFF, OPOS_PS_OFFLINE, or OPOS_PS_OFF_OFFLINE.

· A StatusUpdateEvent is fired with Status parameter set to OPOS_SUE_POWER_OFF, OPOS_SUE_POWER_OFFLINE, or OPOS_SUE_POWER_OFF_OFFLINE.

· When the Control changes from DeviceEnabled TRUE to FALSE, then OPOS assumes that the Control is no longer monitoring the power state. Therefore:

PowerState is set to OPOS_PS_UNKNOWN.

OPOS Control Descriptions

Chapter 1 provides interface descriptions for the common properties, events, and methods.

The following chapters provide interface descriptions for the following OLE for Retail POS OLE Controls:

· Bump Bar
Added in Release 1.3
· Cash Changer
Added in Release 1.2
· Cash Drawer

· Credit Authorization Terminal (CAT)
Added in Release 1.4
· Coin Dispenser (Largely superseded by the Cash Changer in Release 1.2)

· Fiscal Printer
Added in Release 1.3
· Line Display

· Hard Totals

· Keylock

· Magnetic Ink Character Recognition (MICR) Reader

· Magnetic Stripe Reader (MSR)

· PIN Pad
Added in Release 1.3
· POS Keyboard
Added in Release 1.1
· POS Printer

· Remote Order Display
Added in Release 1.3
· Scale

· Scanner – Bar Code Reader

· Signature Capture

· Tone Indicator
Added in Release 1.2
The parameter and return types specified in the descriptions are as follows:

Type
Meaning

BOOL
An integer with the legal values TRUE (non-zero) and FALSE (zero).

BSTR
A character string. Consists of a length component followed by the string and a terminating NUL (0) character. See “System Strings (BSTR)” (page 701) for more information.

BSTR*
A pointer to a character string.

LONG
An integer with a size of 32 bits.

LONG*
A pointer to a 32-bit integer.

CURRENCY
Release 1.3 and later
A monetary value. An integer with a size of 64 bits. The value assumes four decimal places. For example, if the integer is “1234567”, then the value is “123.4567”.

CURRENCY*
Release 1.3 and later
A pointer to a CURRENCY value.

Appendix A provides a history of changes to this document.
Appendix B details the OPOS use of the system registry.
Appendix C contains the OPOS application header files.
Appendix D gives miscellaneous additional technical information.

Chapter 1
Common Properties, Methods, and Events

Summary

Properties

Name

Type
Access

AutoDisable
1.2
Boolean
R/W

BinaryConversion
1.2
Long
R/W

CapPowerReporting
1.3
Long
R

CheckHealthText
1.0
String
R

Claimed
1.0
Boolean
R

DataCount
1.2
Long
R

DataEventEnabled
1.0
Boolean
R/W

DeviceEnabled
1.0
Boolean
R/W

FreezeEvents
1.0
Boolean
R/W

OutputID
1.0
Long
R

PowerNotify
1.3
Long
R/W

PowerState
1.3
Long
R

ResultCode
1.0
Long
R

ResultCodeExtended
1.0
Long
R

State
1.0
Long
R

ControlObjectDescription
1.0
String
R

ControlObjectVersion
1.0
Long
R

ServiceObjectDescription
1.0
String
R

ServiceObjectVersion
1.0
Long
R

DeviceDescription
1.0
String
R

DeviceName
1.0
String
R

Methods

Name

Open
1.0

Close
1.0

Claim
1.0

Release
1.0

CheckHealth
1.0

ClearInput
1.0

ClearOutput
1.0

DirectIO
1.0

Events

Name

DataEvent
1.0

DirectIOEvent
1.0

ErrorEvent
1.0

OutputCompleteEvent
1.0

StatusUpdateEvent
1.0

General Information

This section lists properties, events, and methods that are common to many of the subsequent device categories.

The summary section of each device class marks those common properties, events, and methods that do not apply to that class as “Not Supported.” These are not present in the class’ controls.

Properties

AutoDisable Property R/W
Added in Release 1.2
Syntax
BOOL AutoDisable;
Remarks
This property applies to event-driven input devices. It provides the application with an additional option for controlling the receipt of input data. If an application wants to receive and process only one input, or only one input at a time, then this property may be set to TRUE.

When TRUE, then as soon as the Service Object receives and enqueues data to be fired as a DataEvent, then it sets DeviceEnabled = FALSE. Before any additional input can be received, the application must set DeviceEnabled = TRUE.

When FALSE, the Service Object does not automatically disable the device when data is received. This is the behavior of OPOS controls prior to Release 1.2.

This property is initialized to FALSE by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

See Also
“Input Model”

BinaryConversion Property R/W
Added in Release 1.2
Syntax
LONG BinaryConversion;
Remarks
OPOS passes multicharacter input and output using BStrings. BStrings may be safely used for text data. As the BStrings are passed between the application and the OPOS Control, OLE may perform language-specific translations to or from Unicode.

When BStrings are used to pass binary data, then these translations may alter the data such that the data byte in a BString character at the application does not match the corresponding byte at the Control. This mismatch is more likely when BString pointers are used, since the Unicode characters are presented to the application and/or Control, and a language difference between them may cause misinterpretation. (This was first reported with Japanese, which uses the MBCS Code Page 932, but can occur with other languages, also.)

Characters between 0x00 and 0x7F may be sent without fear of language-specific translation. Only characters between 0x80 and 0xFF sometimes cause incorrect translations.

This document specifies those properties and method parameters that are affected by BinaryConversion in the individual property and method descriptions. The following line is added to their description:

The format of this data depends upon the value of the BinaryConversion property. See page 37.

The binary conversion values are:

Value
Meaning

OPOS_BC_NONE
Data is placed one byte per BString character, with no conversion.
(This is the default, and is the behavior of OPOS Service Objects prior to 1.2.)

OPOS_BC_NIBBLE
Each byte is converted into two characters.
(This option provides for the fastest conversion between binary and ASCII characters.)

Each data byte is converted as follows:
 First character = 0x30 + bits 7-4 of the data byte.
 Second character = 0x30 + bits 3-0 of the data byte.

Example: Byte value 154 = 0x9A is converted into the characters 0x39 0x3A (= the string "9:"). Note that this conversion is not the more common hexadecimal ASCII, which would have converted 154 to 0x39 0x41 (= the string "9A").

OPOS_BC_DECIMAL
Each byte is converted into three characters.
(This option provides for the easiest conversion between binary and ASCII characters for Visual Basic and similar languages.)

VAL(string) may be used on each 3 characters to convert from ASCII to binary.
RIGHT("^^"+STR(byte), 3) may be used to produce 3 ASCII characters from each byte, where '^' represents the space character.

Example 1: Byte value 154 = 0x9A becomes the characters 0x31 0x35 0x34 (= the string "154").

Example 2: Byte value 8 becomes the characters 0x30 0x30 0x38 (= the string "008").

Requirements for a Service Object are:

(1) When the Service Object converts from ASCII to binary, it must allow either leading spaces or ASCII zeroes, since STR(byte) produces a leading space. (For example, the application may pass "^^8^27", where '^' represents the space character, which will be interpreted as the two bytes 8 (0x08) and 27 (0x1B).)

(2) When the Service Object converts from binary to ASCII, is must always convert each byte into exactly three ASCII decimal characters (range 0x30 to 0x39).

When BinaryConversion is on (that is, not OPOS_BC_NONE) and the property or method parameter description specifies that BinaryConversion applies, then the application has the following responsibilities:

· Before setting the property or passing the method parameter, convert the string data into the format specified by the BinaryConversion value.

· After getting the property or receiving the method parameter, convert the string data from the format specified by the BinaryConversion value.

This property is initialized to OPOS_BC_NONE by the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An illegal value was specified.

CapPowerReporting Property
Added in Release 1.3
Syntax
LONG CapPowerReporting;
Remarks
Identifies the reporting capabilities of the device.

The power reporting values are:

Value
Meaning

OPOS_PR_NONE
The Service Object cannot determine the state of the device. Therefore, no power reporting is possible.

OPOS_PR_STANDARD
The Service Object can determine and report two of the power states – OFF_OFFLINE (that is, off or offline) and ONLINE.

OPOS_PR_ADVANCED
The Service Object can determine and report all three power states – OFF, OFFLINE, and ONLINE.

This property is initialized by the Open method.

See Also
“Device Power Reporting Model”; PowerState Property, PowerNotify Property

CheckHealthText Property

Syntax
BSTR CheckHealthText;
Remarks
Holds the results of the most recent call to the CheckHealth method. The following examples illustrate some possible diagnoses:

· “Internal HCheck: Successful”

· “External HCheck: Not Responding”

· “Interactive HCheck: Complete”

Before the first CheckHealth method call, its value is uninitialized.

See Also
CheckHealth Method

Claimed Property

Syntax
BOOL Claimed;
Remarks
If TRUE, the device is claimed for exclusive access.
If FALSE, the device is released for sharing with other applications.

Many devices must be claimed before the Control will allow access to many of its methods and properties, and before it will fire events to the application.

The value of Claimed is initialized to FALSE by the Open method.
See Also
“General OLE for Retail POS Control Model”; “Device Sharing Model”; Claim Method; Release Method

ControlObjectDescription Property

Syntax
BSTR ControlObjectDescription;
Remarks
String identifying the Control Object and the company that produced it.

The property identifies the Control Object. A sample returned string is:

“POS Printer OLE Control, (C) 1995 Epson”

This property is always readable.

See Also
ControlObjectVersion Property

ControlObjectVersion Property

Syntax
LONG ControlObjectVersion;
Remarks
Control Object version number.

This property holds the Control Object version number. Three version levels are specified, as follows:

Version Level
Description

Major
The “millions” place.
A change to the OPOS major version level for a device class reflects significant interface enhancements, and may remove support for obsolete interfaces from previous major version levels.

Minor
The “thousands” place.
A change to the OPOS minor version level for a device class reflects minor interface enhancements, and must provide a superset of previous interfaces at this major version level.

Build
The “units” place.
Internal level provided by the Control Object developer. Updated when corrections are made to the CO implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major version 1, minor version 2, build 38 of the Control Object.

This property is always readable.

See Also
ControlObjectDescription Property

Note

A Control Object for a device class will operate with any Service Object for that class, as long as its major version number matches the Service Object’s major version number. If they match, but the Control Object’s minor version number is greater than the Service Object’s minor version number, then the Control Object may support some new methods or properties that are not supported by the Service Object’s release.

The following rules apply to APIs supported by the Control Object’s release but not supported by the Service Object’s older release:

· Reading an unsupported property: The Control Object returns the property’s uninitialized value. (See page 14 for uninitialized property default values.)

· Writing an unsupported property: The Control Object returns, but must remember that an unsupported property write or method call occurred. Then, if the application reads the ResultCode property, the Control Object must return a value of OPOS_E_NOSERVICE (rather than reading the current ResultCode from the Service Object). It must do this until the next property write or method call, at which time ResultCode is set by that API.

· Calling an unsupported method: The Control Object returns a value of OPOS_E_NOSERVICE , and must remember that an unsupported property write or method call occurred. Then, if the application reads the ResultCode property, the Control Object must return a value of OPOS_E_NOSERVICE (rather than reading the current ResultCode from the Service Object). It must do this until the next property write or method call, at which time ResultCode is set by that API.

DataCount Property
Added in Release 1.2
Syntax
LONG DataCount;
Remarks
Holds the number of enqueued DataEvents at the control.

The application may interrogate DataCount to determine whether additional input is enqueued from a device, but has not yet been delivered because of other application processing, freezing of events, or other causes.

This property is initialized to zero by the Open method.

See Also
“Input Model”; DataEvent
DataEventEnabled Property R/W

Syntax
BOOL DataEventEnabled;
Remarks
When TRUE, a DataEvent will be delivered as soon as input data is enqueued. If changed to TRUE and some input data is already queued, then a DataEvent is delivered immediately. (Note that other, less likely, conditions may delay “immediate” delivery: If FreezeEvents is TRUE or another event is already being processed at the application, the DataEvent will remain enqueued at the Service Object until the condition is corrected.)

When FALSE, input data is queued for later delivery to the application. Also, if an input error occurs, the ErrorEvent is not delivered while DataEventEnabled is FALSE.

This property is initialized to FALSE by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

See Also
“Input Model”; DataEvent
DeviceDescription Property

Syntax
BSTR DeviceDescription;
Remarks
String identifying the device.

The property identifies the device and any pertinent information about it. A sample returned string is:

“NCR 7192-0184 Printer, Japanese Version”

This property is initialized by the Open method.

See Also
DeviceName Property

DeviceEnabled Property R/W

Syntax
BOOL DeviceEnabled;
Remarks
When TRUE, the device has been placed in an operational state. If changed to TRUE, then the device is brought to an operational state.

When FALSE, the device has been disabled. If changed to FALSE, then the device is physically disabled when possible, any subsequent input will be discarded, and output operations are disallowed.

Changing this property usually does not physically affect output devices. For consistency, however, the application must set this property to TRUE before using output devices.

Release 1.3 and later: The device’s power state may be reported while DeviceEnabled is TRUE. See “Device Power Reporting Model” for details.

This property is initialized to FALSE by the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_NOTCLAIMED
An exclusive use device must be claimed before the device may be enabled.

Other Values
See ResultCode.

See Also
“General OLE for Retail POS Control Model”

DeviceName Property

Syntax
BSTR DeviceName;
Remarks
Short string identifying the device.

The property identifies the device and any pertinent information about it. This is a short version of DeviceDescription and should be limited to 30 characters.

DeviceName will typically be used to identify the device in an application message box, where the full description is too verbose. A sample returned string is:

“NCR 7192 Printer, Japanese”

This property is initialized by the Open method.

See Also
DeviceDescription Property

FreezeEvents Property R/W

Syntax
BOOL FreezeEvents;
Remarks
When TRUE, the application has requested that the Control not deliver events. Events will be held by the Control until events are unfrozen.

When FALSE, the application allows events to be delivered. If some events have been held while events were frozen and all other conditions are correct for delivering the events, then changing FreezeEvents to FALSE will cause these events to be delivered.

An application may choose to freeze events for a specific sequence of code where interruption by an event is not desirable.

This property is initialized to FALSE by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OutputID Property

Syntax
LONG OutputID;
Remarks
Holds the identifier of the most recently started asynchronous output.

When a method successfully initiates an asynchronous output, the Control assigns an identifier to the request. When the output completes, the Control will fire an OutputCompleteEvent passing this output ID as a parameter.

The output ID numbers are assigned by the Control and are guaranteed to be unique among the set of outstanding asynchronous outputs. No other facts about the ID should be assumed.

See Also
“Output Model”; OutputCompleteEvent
PowerNotify Property R/W
Added in Release 1.3
Syntax
LONG PowerNotify;
Remarks
Contains the type power notification selection made by the Application.

The power notification values are:

Value
Meaning

OPOS_PN_DISABLED
The Control will not provide any power notifications to the application. No power notification StatusUpdateEvents will be fired, and PowerState may not be set.

OPOS_PN_ENABLED
The Control will fire power notification StatusUpdateEvents and update PowerState, beginning when DeviceEnabled is set to TRUE. The level of functionality depends upon CapPowerReporting.

PowerNotify may only be set while the device is disabled, that is, while DeviceEnabled is FALSE.

This property is initialized to OPOS_PN_DISABLED by the Open method. This value provides compatibility with earlier releases.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
One of the following occurred:

· The device is already enabled.

· PowerNotify = OPOS_PN_ENABLED but CapPowerReporting = OPOS_PR_NONE.

Other Values
See ResultCode.

See Also
“Device Power Reporting Model”; CapPowerReporting Property, PowerState Property

PowerState Property
Added in Release 1.3
Syntax
LONG PowerState;
Remarks
Contains the current power condition, if it can be determined.

The power reporting values are:

Value
Meaning

OPOS_PS_UNKNOWN
Cannot determine the device's power state, for one of the following reasons:

· CapPowerReporting = OPOS_PR_NONE. Device does not support power reporting.

· PowerNotify = OPOS_PN_DISABLED. Power notifications are disabled.

· DeviceEnabled = FALSE. Power state monitoring does not occur until the device is enabled.

OPOS_PS_ONLINE
The device is powered on and ready for use.
Can be returned if CapPowerReporting = OPOS_PR_STANDARD or OPOS_PR_ADVANCED.

OPOS_PS_OFF
The device is off or detached from the terminal.
Can only be returned if CapPowerReporting = OPOS_PR_ADVANCED.

OPOS_PS_OFFLINE
The device is powered on but is either not ready or not able to respond to requests.
Can only be returned if CapPowerReporting = OPOS_PR_ADVANCED.

OPOS_PS_OFF_OFFLINE
The device is either off or offline.
Can only be returned if CapPowerReporting = OPOS_PR_STANDARD.

This property is initialized to OPOS_PS_UNKNOWN by the Open method. When PowerNotify is set to enabled and DeviceEnabled is TRUE, then this property is updated as the Service Object detects power condition changes.

See Also
“Device Power Reporting Model”; CapPowerReporting Property, PowerNotify Property

ResultCode Property

Syntax
LONG ResultCode;

Remarks
This property is set by each method. It is also set when a writable property is set.

This property is always readable. Before the Open method is called, it returns the value OPOS_E_CLOSED.

The result code values are:

Value
Meaning

OPOS_SUCCESS
Successful operation.

OPOS_E_CLOSED
Attempt was made to access a closed device.

OPOS_E_CLAIMED
Attempt was made to access a device that is claimed by another process. The other process must release the device before this access may be made. For exclusive-use devices, the application will also need to claim the device before the access is legal.

OPOS_E_NOTCLAIMED
Attempt was made to access an exclusive-use device that must be claimed before the method or property set action can be used.
If the device is already claimed by another process, then the status OPOS_E_CLAIMED is returned instead.

OPOS_E_NOSERVICE
The Control cannot communicate with the Service Object. Most likely, a setup or configuration error must be corrected.

OPOS_E_DISABLED
Cannot perform operation while device is disabled.

OPOS_E_ILLEGAL
Attempt was made to perform an illegal or unsupported operation with the device, or an invalid parameter value was used.

OPOS_E_NOHARDWARE
The device is not connected to the system or is not powered on.

OPOS_E_OFFLINE
The device is off-line.

OPOS_E_NOEXIST
The file name (or other specified value) does not exist.

OPOS_E_EXISTS
The file name (or other specified value) already exists.

OPOS_E_FAILURE
The device cannot perform the requested procedure, even though the device is connected to the system, powered on, and on-line.

OPOS_E_TIMEOUT
The Service Object timed out waiting for a response from the device, or the Control timed out waiting for a response from the Service Object.

OPOS_E_BUSY
The current Service Object state does not allow this request. For example, if asynchronous output is in progress, certain methods may not be allowed.

OPOS_E_EXTENDED
A class-specific error condition occurred. The error condition code is available in the ResultCodeExtended property.

See Also
“Status, Result Code, and State Model”

ResultCodeExtended Property

Syntax
LONG ResultCodeExtended;

Remarks
When the ResultCode is set to OPOS_E_EXTENDED, this property is set to a class-specific value, and must match one of the values given in this document under the appropriate device class section.

When the ResultCode is set to any other value, this property may be set by the Service Object to any SO-specific value. These values are only meaningful if the application adds Service Object-specific code to handle them.

See Also
ResultCode Property

ServiceObjectDescription Property

Syntax
BSTR ServiceObjectDescription;

Remarks
String identifying the Service Object supporting the device and the company that produced it.

A sample returned string is:

“TM-U950 Printer OPOS Service Driver, (C) 1995 Epson”

This property is initialized by the Open method.

ServiceObjectVersion Property

Syntax
LONG ServiceObjectVersion;

Remarks
Service object version number.

This property holds the Service Object version number. Three version levels are specified, as follows:

Version Level
Description

Major
The “millions” place.
A change to the OPOS major version level for a device class reflects significant interface enhancements, and may remove support for obsolete interfaces from previous major version levels.

Minor
The “thousands” place.
A change to the OPOS minor version level for a device class reflects minor interface enhancements, and must provide a superset of previous interfaces at this major version level.

Build
The “units” place.
Internal level provided by the Service Object developer. Updated when corrections are made to the SO implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major version 1, minor version 2, build 38 of the Service Object.

This property is initialized by the Open method.

Note

A Service Object for a device class will operate with any Control Object for that class, as long as its major version number matches the Control Object’s major version number. If they match, but the Service Object’s minor version number is greater than the Control Object’s minor version number, then the Service Object may support some methods or properties that cannot be accessed from the Control Object’s release.

If the application requires such features, then it will need to be updated to use a later version of the Control Object.

State Property

Syntax
LONG State;

Remarks
Contains the current state of the Control.

Value
Meaning

OPOS_S_CLOSED
The Control is closed.

OPOS_S_IDLE
The Control is in a good state and is not busy.

OPOS_S_BUSY
The Control is in a good state and is busy performing output.

OPOS_S_ERROR
An error has been reported, and the application must recover the Control to a good state before normal I/O can resume.

This property is always readable.

See Also
“Status, Result Code, and State Model”

Methods

CheckHealth Method

Syntax
LONG CheckHealth (LONG Level);
The Level parameter indicates the type of health check to be performed on the device. The following values may be specified:

Value
Meaning

OPOS_CH_INTERNAL

Perform a health check that does not physically change the device. The device is tested by internal tests to the extent possible.

OPOS_CH_EXTERNAL

Perform a more thorough test that may change the device. For example, a pattern may be printed on the printer.

OPOS_CH_INTERACTIVE

Perform an interactive test of the device. The supporting Service Object will typically display a modal dialog box to present test options and results.

Remarks
Called to test the state of a device.

A text description of the results of this method is placed in the CheckHealthText property.

The CheckHealth method is always synchronous.

Return
One of the following values are returned by the method, and also placed in the ResultCode property.

Value
Meaning

OPOS_SUCCESS
Indicates that the health checking procedure was initiated properly and, when possible to determine, indicates that the device is healthy. However, the health of many devices can only be determined by a visual inspection of the test results.

OPOS_E_ILLEGAL
The specified health check level is not supported by the Service Object.

OPOS_E_BUSY
Cannot perform while output is in progress.

Other Values
See ResultCode.

See Also
“General OLE for Retail POS Control Model”; CheckHealthText Property

Claim Method

Syntax
LONG Claim (LONG Timeout);

The Timeout parameter gives the maximum number of milliseconds to wait for exclusive access to be satisfied.
If zero, the method attempts to claim the device, then returns the appropriate status immediately.
If OPOS_FOREVER (-1), the method waits as long as needed until exclusive access is satisfied.

Remarks
Call this method to request exclusive access to the device. Many devices require an application to claim them before they can be used.

When successful, the Claimed property is changed to TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
Exclusive access has been granted. The Claimed property is now TRUE.
Also returned if this application has already claimed the device.

OPOS_E_ILLEGAL
This device cannot be claimed for exclusive access, or an invalid Timeout parameter was specified.

OPOS_E_TIMEOUT
Another application has exclusive access to the device, and did not relinquish control before Timeout milliseconds expired.

See Also
“Device Sharing Model”; Release Method
ClearInput Method

Syntax
LONG ClearInput ();

Remarks
Called to clear all device input that has been buffered.

Any data events or input error events that were enqueued – usually waiting for DataEventEnabled to be set to TRUE and FreezeEvents to be set to FALSE – are also cleared.

Return
The following value is returned by the method and placed in the ResultCode property.

Value
Meaning

OPOS_SUCCESS
Input has been cleared.

OPOS_E_CLAIMED
The device is claimed by another process.

OPOS_E_NOTCLAIMED
The device must be claimed before this method can be used.

See Also
“Input Model”

ClearOutput Method
Syntax
LONG ClearOutput ();
Remarks
Called to clear all device output that has been buffered. Also, when possible, halts outputs that are in progress.

Any output error events that were enqueued – usually waiting for FreezeEvents to be set to FALSE – are also cleared.

Return
The following value is returned by the method and placed in the ResultCode property.

Value
Meaning

OPOS_SUCCESS
Output has been cleared.

OPOS_E_CLAIMED
The device is claimed by another process.

OPOS_E_NOTCLAIMED
The device must be claimed before this method can be used.

See Also
“Output Model”

Close Method

Syntax
LONG Close ();
Remarks
Called to release the device and its resources.

If the DeviceEnabled property is TRUE, then the device is first disabled.

If the Claimed property is TRUE, then exclusive access to the device is first released.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
Device has been disabled and closed.

Other Values
See ResultCode.

See Also
“General OLE for Retail POS Control Model”; Open Method

DirectIO Method

Syntax
LONG DirectIO (LONG Command, LONG* pData, BSTR* pString);
Parameter
Description

Command
Command number. Specific values assigned by the Service Object.

pData
Pointer to additional numeric data. Specific values vary by Command and Service Object.

pString
Pointer to additional string data. Specific values vary by Command and Service Object.
The format of this data depends upon the value of the BinaryConversion property. See page 37.

Remarks
Call to communicate directly with the Service Object.

This method provides a means for a Service Object to provide functionality to the application that is not otherwise supported by the standard Control Object for its device class. Depending upon the Service Object’s definition of the command, this method may be asynchronous or synchronous.

Use of DirectIO will make an application non-portable. The application may, however, maintain portability by performing DirectIO calls within conditional code. This code may be based upon the value of the ServiceObjectDescription, DeviceDescription, or DeviceName property.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
Direct I/O successful.

Other Values
See ResultCode.

See Also
DirectIOEvent
Open Method

Syntax
LONG Open (BSTR DeviceName);
The DeviceName parameter specifies the device name to open.

Remarks
Call to open a device for subsequent I/O.

The device name specifies which of one or more devices supported by this Control Object should be used. The DeviceName must exist in the system registry for this device class. The relationship between the device name and physical devices is determined by entries within the operating system registry; these entries are maintained by a setup or configuration utility. (See the appendix “APPENDIX B
OPOS Registry Usage”, page 661.)

When the Open method is successful, it sets the properties Claimed, DeviceEnabled, DataEventEnabled, and FreezeEvents, as well as descriptions and version numbers of the OPOS software layers. Additional class-specific properties may also be initialized.

Return
One of the following values is returned by the method:

Value
Meaning

OPOS_SUCCESS
Open successful.

OPOS_E_ILLEGAL
The Control is already open.

OPOS_E_NOEXIST
The specified DeviceName was not found.

OPOS_E_NOSERVICE
Could not establish a connection to the corresponding Service Object.

Other Values
See ResultCode.

Note

The value of the ResultCode property after calling the Open method may not be the same as the Open method return value for the following two cases:

1. The Control was closed and the Open method failed: The ResultCode property will continue to return OPOS_E_CLOSED.

2. The Control was already opened: The Open method will return OPOS_E_ILLEGAL, but the ResultCode property may continue to return the value it held before the Open method.

See Also
“General OLE for Retail POS Control Model”; Close Method

Release Method

Syntax
LONG Release ();

Remarks
Call this method to release exclusive access to the device.

If the DeviceEnabled property is TRUE, and the device is an exclusive-use device, then the device is first disabled. (Release does not change the device enabled state of sharable devices.)

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
Exclusive access has been released. The Claimed property is now FALSE.

OPOS_E_ILLEGAL
The application does not have exclusive access to the device.

See Also
“Device Sharing Model”; Claim Method
Events

DataEvent Event

Syntax
void DataEvent (LONG Status);
The Status parameter contains the input status. Its value is Control-dependent, and may describe the type or qualities of the input.

Remarks
Fired to present input data from the device to the application. The DataEventEnabled property is changed to FALSE, so that no further data events will be generated until the application sets this property back to TRUE. The actual input data is placed in one or more device-specific properties.

If DataEventEnabled is FALSE at the time that data is received, then the data is queued in an internal OPOS buffer, the device-specific input data properties are not updated, and the event is not delivered. (When this property is subsequently changed back to TRUE, the event will be delivered immediately if input data is queued and FreezeEvents is FALSE.)

See Also
“Input Model”; DataEventEnabled Property; FreezeEvents Property

DirectIOEvent Event

Syntax
void DirectIOEvent (LONG EventNumber, LONG* pData, BSTR* pString);
Parameter
Description

EventNumber
Event number. Specific values are assigned by the Service Object.

pData
Pointer to additional numeric data. Specific values vary by EventNumber and the Service Object.

pString
Pointer to additional string data. Specific values vary by EventNumber and the Service Object.
The format of this data depends upon the value of the BinaryConversion property. See page 37.

Remarks
Fired by a Service Object to communicate directly with the application.

This event provides a means for a Service Object to provide events to the application that are not otherwise supported by the Control Object.

See Also
DirectIO Method

ErrorEvent Event

Syntax
void ErrorEvent (LONG ResultCode, LONG ResultCodeExtended,
LONG ErrorLocus, LONG* pErrorResponse);
Parameter
Description

ResultCode
Result code causing the error event. See ResultCode for values.

ResultCodeExtended
Extended result code causing the error event. See ResultCodeExtended for values.

ErrorLocus
Location of the error. See values below.

pErrorResponse
Pointer to the error event response. See values below.

The ErrorLocus parameter may be one of the following:

Value
Meaning

OPOS_EL_OUTPUT
Error occurred while processing asynchronous output.

OPOS_EL_INPUT
Error occurred while gathering or processing event-driven input. No input data is available.

OPOS_EL_INPUT_DATA
Error occurred while gathering or processing event-driven input, and some previously buffered data is available.

The contents at the location pointed to by the pErrorResponse parameter are preset to a default value, based on the ErrorLocus. The application may change them to one of the following:

Value
Meaning

OPOS_ER_RETRY
Typically valid only when locus is OPOS_EL_OUTPUT.
Retry the asynchronous output. The error state is exited.
May be valid when locus is OPOS_EL_INPUT.
Default when locus is OPOS_EL_OUTPUT.

OPOS_ER_CLEAR
Clear the asynchronous output or buffered input data. The error state is exited.
Default when locus is OPOS_EL_INPUT.

OPOS_ER_CONTINUEINPUT
Use only when locus is OPOS_EL_INPUT_DATA. Acknowledges the error and directs the Control to continue processing. The Control remains in the error state and will deliver additional DataEvents as directed by the DataEventEnabled property. When all input has been delivered and the DataEventEnabled property is again set to TRUE, then another ErrorEvent is delivered with locus OPOS_EL_INPUT.
Default when locus is OPOS_EL_INPUT_DATA.

Remarks
Fired when an error is detected and the Control’s State transitions into the error state.

Input error events are not delivered until the DataEventEnabled property is TRUE, so that proper application sequencing occurs.

See Also
“Status, Result Code, and State Model”

OutputCompleteEvent Event

Syntax
void OutputCompleteEvent (LONG OutputID);
The OutputID parameter indicates the ID number of the asynchronous output request that is complete.

Remarks
Fired when a previously started asynchronous output request completes successfully.

See Also
“Output Model”

StatusUpdateEvent Event

Syntax
void StatusUpdateEvent (LONG Status);
The Status parameter is for device class-specific data, describing the type of status change.

Remarks
Fired when a Control needs to alert the application of a device status change.

Examples are a change in the cash drawer position (open vs. closed) or a change in a POS printer sensor (form present vs. absent).

When a device is enabled, then the Control may fire initial StatusUpdateEvents to inform the application of the device state. This behavior, however, is not required.

Release 1.3 and later – Power State Reporting

All device classes may fire StatusUpdateEvents with at least the following Status parameter values, if PowerNotify = OPOS_PN_ENABLED:

Value
Meaning

OPOS_SUE_POWER_ONLINE
The device is powered on and ready for use.
Can be returned if CapPowerReporting = OPOS_PR_STANDARD or OPOS_PR_ADVANCED.

OPOS_SUE_POWER_OFF
The device is off or detached from the terminal.
Can only be returned if CapPowerReporting = OPOS_PR_ADVANCED.

OPOS_SUE_POWER_OFFLINE
The device is powered on but is either not ready or not able to respond to requests.
Can only be returned if CapPowerReporting = OPOS_PR_ADVANCED.

OPOS_SUE_POWER_OFF_OFFLINE
The device is either off or offline.
Can only be returned if CapPowerReporting = OPOS_PR_STANDARD.

The common property PowerState is also maintained at the current power state of the device.

See Also
“Status, Result Code, and State Model”; “Device Power Reporting Model”; CapPowerReporting Property, PowerNotify Property

Chapter 2
Bump Bar

Summary

Properties

Common

Type
Access
Initialized After

AutoDisable
1.3
Boolean
R/W
Not Supported

BinaryConversion
1.3
Long
R/W
Open

CapPowerReporting
1.3
Long
R
Open

CheckHealthText
1.3
String
R
Open

Claimed
1.3
Boolean
R
Open

DataCount
1.3
Long
R
Open

DataEventEnabled
1.3
Boolean
R/W
Open

DeviceEnabled
1.3
Boolean
R/W
Open; Claim

FreezeEvents
1.3
Boolean
R/W
Open

OutputID
1.3
Long
R
Open

PowerNotify
1.3
Long
R/W
Open

PowerState
1.3
Long
R
Open

ResultCode
1.3
Long
R
--

ResultCodeExtended
1.3
Long
R
Open

State
1.3
Long
R
--

ControlObjectDescription
1.3
String
R
--

ControlObjectVersion
1.3
Long
R
--

ServiceObjectDescription
1.3
String
R
Open

ServiceObjectVersion
1.3
Long
R
Open

DeviceDescription
1.3
String
R
Open

DeviceName
1.3
String
R
Open

Properties (continued)

Specific

Type
Access
Initialized After

AsyncMode
1.3
Boolean
R/W
Open, Claim, & Enable

Timeout
1.3
Long
R/W
Open

UnitsOnline
1.3
Long
R
Open, Claim, & Enable

CurrentUnitID
1.3
Long
R/W
Open, Claim, & Enable

CapTone
1.3
Boolean
R
Open, Claim, & Enable

AutoToneDuration
1.3
Long
R/W
Open, Claim, & Enable

AutoToneFrequency
1.3
Long
R/W
Open, Claim, & Enable

BumpBarDataCount
1.3
Long
R
Open, Claim, & Enable

Keys
1.3
Long
R
Open, Claim, & Enable

ErrorUnits
1.3
Long
R
Open

ErrorString
1.3
String
R
Open

EventUnitID
1.3
Long
R
Open, Claim

EventUnits
1.3
Long
R
Open, Claim

EventString
1.3
String
R
Open, Claim

Methods

Common

Prerequisites

Open
1.3
None

Close
1.3
Open

Claim
1.3
Open

Release
1.3
Open, Claim

CheckHealth
1.3
Open, Claim, & Enable

ClearInput
1.3
Open, Claim

ClearOutput
1.3
Open, Claim

DirectIO
1.3
Open

Specific

BumpBarSound
1.3
Open, Claim, & Enable

SetKeyTranslation
1.3
Open, Claim, & Enable

Events

Name

May Occur After

DataEvent
1.3
Open, Claim, & Enable

DirectIOEvent
1.3
Open, Claim

ErrorEvent
1.3
Open, Claim, & Enable

OutputCompleteEvent
1.3
Open, Claim, & Enable

StatusUpdateEvent
1.3
Open, Claim, & Enable

General Information

The Bump Bar Control’s OLE Programmatic ID is “OPOS.BumpBar”.

This device was added in OPOS Release 1.3.

Capabilities

The Bump Bar Control has the following minimal set of capabilities:

· Broadcast methods that can communicate with one, a range, or all bump bar units online.

· Supports bump bar input (keys 0-255).

The Bump Bar Control may also have the following additional capabilities:

· Supports bump bar enunciator output with frequency and duration.

· Supports tactile feedback via an automatic tone when a bump bar key is pressed.

Model

The general model of a bump bar is:

· The bump bar device class is a subsystem of bump bar units. The initial targeted environment is food service, to control the display of order preparation and fulfillment information. Bump bars typically are used in conjunction with remote order displays.

The subsystem can support up to 32 bump bar units.

One Application on one PC or POS Terminal will typically manage and control the entire subsystem of bump bars. If Applications on the same or other PCs and POS Terminals will need to access the subsystem, then this Application must act as a subsystem server and expose interfaces to other Applications.

· All specific methods are broadcast methods. This means that the method can apply to one unit, a selection of units or all online units. The Units parameter is a LONG, with each bit identifying an individual bump bar unit. (One or more of the constants BB_UID_1 through BB_UID_32 are bitwise ORed to form the bitmask.) The service object will attempt to satisfy the method for all unit(s) indicated in the Units parameter. If an error is received from one or more units, the ErrorUnits property is updated with the appropriate units in error. The ErrorString property is updated with a description of the error or errors received. The method will then return with the corresponding OPOS error. In the case where two or more units encounter different errors, the service object should determine the most severe OPOS error to return.

· The common methods CheckHealth, ClearInput, and ClearOutput are not broadcast methods and use the unit ID indicated in the CurrentUnitID property. (One of the constants BB_UID_1 through BB_UID_32 are selected.) See the description of these common methods to understand how the current unit ID property is used.

· When the current unit ID property is set by the application, all the corresponding properties are updated to reflect the settings for that unit.

If the CurrentUnitID property is set to a unit ID that is not online, the dependent properties will contain non-initialized values.

The CurrentUnitID uniquely represents a single bump bar unit. The definitions range from BB_UID_1 to BB_UID_32. These definitions are also used to create the bitwise parameter, Units, used in the broadcast methods. See the Examples section below for usage.

Input – Bump Bar

The Bump Bar Control follows the general “Input Model” for event-driven input with some differences:

· When input is received by the Control, it enqueues a DataEvent.

· This device does not support the AutoDisable property, so the control will not automatically disable itself when a DataEvent is enqueued.

· An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is TRUE and other event delivery requirements are met. Just before delivering this event, the Control copies the data into properties, and disables further data events by setting the DataEventEnabled property to FALSE. This causes subsequent input data to be enqueued by the Control while the application processes the current input and associated properties. When the application has finished the current input and is ready for more data, it reenables events by setting DataEventEnabled to TRUE.

· An ErrorEvent or events are enqueued if the Control encounters an error while gathering or processing input, and are delivered to the application when the DataEventEnabled property is TRUE and other event delivery requirements are met.

· The BumpBarDataCount property may be read to obtain the number of bump bar DataEvents for a specific unit ID enqueued by the Control. The DataCount property can be read to obtain the total number of data events enqueued by the Control.

· Input enqueued by the Control may be deleted by calling the ClearInput method. See ClearInput method description for more details.

The Bump Bar Control must supply a method for translating its internal key scan codes into user-defined codes which are returned by the data event. Note that this translation must be end-user configurable. The default translated key value is the scan code value.

Output – Tone

The bump bar follows the general “Output Model”, with some enhancements:

· The BumpBarSound method is performed either synchronously or asynchronously, depending on the value of the AsyncMode property. When AsyncMode is FALSE, then this method operates synchronously and returns its completion status to the application.

· When AsyncMode is TRUE, then this method operates as follows:

· The Control buffers the request, sets the OutputID property to an identifier for this request, and returns as soon as possible. When the device completes the request successfully, then the Control updates the EventUnits property and fires an OutputCompleteEvent. A parameter of this event contains the output ID of the completed request.

Asynchronous methods will not return an error status due to a bump bar problem, such as communications failure. These errors will only be reported by an ErrorEvent. An error status is returned only if the bump bar is not claimed and enabled, a parameter is invalid, or the request cannot be enqueued. The first two error cases are due to an application error, while the last is a serious system resource exception.

· If an error occurs while performing an asynchronous request, an ErrorEvent is fired. The EventUnits property is set to the unit or units in error. The EventString property is also set.
Note: ErrorEvent updates EventUnits and EventString. If an error is reported by a broadcast method, then ErrorUnits and ErrorString are set instead.
The event handler may call synchronous bump bar methods (but not asynchronous methods), then can either retry the outstanding output or clear it.

· The Control guarantees that asynchronous output is performed on a first-in first-out basis.

· All output buffered by the Control may be deleted by setting the CurrentUnitID property and calling the ClearOutput method. OutputCompleteEvents will not be fired for cleared output. This method also stops any output that may be in progress (when possible).

Example

Sounds one tone on unit ID 1 and unit ID 4. The frequency is set to 64 Hertz and will sound for 100 milliseconds.

BB.BumpBarSound(BB_UID_1 | BB_UID_4, 64, 100, 1, 0)

Device Sharing

The bump bar is an exclusive-use device. Its device sharing rules are:

· The application must claim the device before enabling it.

· The application must claim and enable the device before accessing many bump bar specific properties.

· The application must claim and enable the device before calling methods that manipulate the device.

· When a Claim method is called again, settable device characteristics are restored to their condition at Release.

· See the “Summary” table for precise usage prerequisites.

Properties

AsyncMode Property R/W

Syntax
BOOL AsyncMode;
Remarks
If TRUE, then the BumpBarSound method will be performed asynchronously.
If FALSE, tones are generated synchronously.

This property is initialized to FALSE by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

See Also
BumpBarSound Method; “Output Model”

AutoToneDuration Property R/W

Syntax
LONG AutoToneDuration;

Remarks
Sets the duration (in milliseconds) of the automatic tone for the bump bar unit specified by the CurrentUnitID property.

This property is initialized to the default value for each online bump bar unit when the device is first enabled following the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An illegal value was specified. The ErrorString property is updated before return.

See Also
CurrentUnitID Property

AutoToneFrequency Property R/W

Syntax
LONG AutoToneFrequency;

Remarks
Sets the frequency (in Hertz) of the automatic tone for the bump bar unit specified by the CurrentUnitID property.

This property is initialized to the default value for each online bump bar unit when the device is first enabled following the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An illegal value was specified. The ErrorString property is updated before return.

See Also
CurrentUnitID Property

BumpBarDataCount Property

Syntax
LONG BumpBarDataCount;

Remarks
Indicates the number of DataEvents enqueued for the bump bar unit specified by the CurrentUnitID property.

The application may interrogate BumpBarDataCount to determine whether additional input is enqueued from a bump bar unit, but has not yet been delivered because of other application processing, freezing of events, or other causes.

This property is initialized to zero by the Open method.

See Also
CurrentUnitID Property; DataEvent Event

CapTone Property

Syntax
BOOL CapTone;

Remarks
If TRUE, the bump bar unit specified by the CurrentUnitID property supports an enunciator; otherwise it is FALSE

This property is initialized when the device is first enabled following the Open method.

See Also
CurrentUnitID Property

CurrentUnitID Property R/W

Syntax
LONG CurrentUnitID;

Remarks
Selects the current bump bar unit ID. Some properties and methods apply only to the selected bump bar unit ID as noted. Up to 32 units are allowed for one bump bar device. The unit ID definitions range from BB_UID_1 to BB_UID_32.

The following properties and methods apply only to the selected bump bar ID:

· Properties: AutoToneDuration, AutoToneFrequency, BumpBarDataCount, CapTone, Keys.
Setting CurrentUnitID will update these properties to the current values for the specified unit.

· Methods: CheckHealth, ClearInput, ClearOutput.
This property is initialized to BB_UID_1 when the device is first enabled following the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An illegal unit ID was specified. The ErrorString property is updated before return.

DataCount Property (Common)

Syntax
LONG DataCount;

Remarks
Indicates the total number of DataEvents enqueued at the control. All units online are included in this value. The number of enqueued events for a specific unit ID is stored in the BumpBarDataCount property.

The application may interrogate DataCount to determine whether additional input is enqueued from a device, but has not yet been delivered because of other application processing, freezing of events, or other causes.

This property is initialized to zero by the Open method.

See Also
BumpBarDataCount Property; DataEvent Event; “Input Model”

ErrorString Property

Syntax
BSTR ErrorString;

Remarks
When an error occurs for any method that acts on a bitwise set of bump bar units, the ErrorString will contain a description of the error which occurred to the unit(s) specified by the ErrorUnits property.

If an error occurs during processing of an asynchronous request, the ErrorEvent updates the property EventString instead.

This property is initialized to an empty string by the Open method.

See Also
ErrorUnits Property

ErrorUnits Property

Syntax
LONG ErrorUnits;

Remarks
When an error occurs for any method that acts on a bitwise set of bump bar units, the ErrorUnits will contain a bitwise mask of the unit(s) that encountered an error.

If an error occurs during processing of an asynchronous request, the ErrorEvent updates the property EventUnits instead.

This property is initialized to zero by the Open method.

See Also
ErrorString Property

EventString Property

Syntax
BSTR EventString;

Remarks
When an ErrorEvent is delivered, this property is set to a description of the error which occurred to the unit(s) specified by the EventUnits property.

This property is initialized to an empty string by the Open method.

See Also
EventUnits Property; ErrorEvent

EventUnitID Property

Syntax
LONG EventUnitID;

Remarks
Just before the Control delivers a DataEvent to the Application, it sets this property to the bump bar unit ID causing the event. The unit ID definitions range from BB_UID_1 to BB_UID_32.

See Also
DataEvent

EventUnits Property

Syntax
LONG EventUnits;

Remarks
When an OutputCompleteEvent, output ErrorEvent, or StatusUpdateEvent is delivered, the EventUnits property will contain a bitwise mask of the unit(s).

This property is initialized to zero by the Open method.

See Also
OutputCompleteEvent, ErrorEvent, StatusUpdateEvent

Keys Property

Syntax
LONG Keys;

Remarks
Indicates the number of keys on the bump bar unit specified by the CurrentUnitID property.

This property is initialized when the device is first enabled following the Open method.

See Also
CurrentUnitID Property

Timeout Property R/W

Syntax
LONG Timeout;

Remarks
Timeout value in milliseconds used by the bump bar device to complete all output methods supported. If the device cannot successfully complete an output method within the timeout value, then the method returns a failure status if AsyncMode is FALSE, or enqueues an ErrorEvent if AsyncMode is TRUE.

This property is initialized to a Service Object dependent timeout following the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An negative timeout value was specified. The ErrorString property is updated before return.

See Also
AsyncMode Property; ErrorString Property ; BumpBarSound Method

UnitsOnline Property

Syntax
LONG UnitsOnline;

Remarks
Bitwise mask indicating the bump bar units online, where zero or more of the unit constants BB_UID_1 (bit 0 on) through BB_UID_32 (bit 31 on) are bitwise ORed. 32 units are supported.

This property is initialized when the device is first enabled following the Open method. This property is updated as changes are detected, such as before a StatusUpdateEvent is fired and during the CheckHealth method.

See Also
CheckHealth Method; StatusUpdateEvent Event; “Model” Discussion Section

Methods

BumpBarSound Method

Syntax
LONG BumpBarSound (LONG Units, LONG Frequency, LONG Duration,
LONG NumberOfCycles, LONG InterSoundWait);
Parameter
Description

Units
Bitwise mask indicating which bump bar unit(s) to operate on.
Frequency
Tone frequency in Hertz.
Duration
Tone duration in milliseconds.

NumberOfCycles
If OPOS_FOREVER, then start bump bar sounding and, repeat continuously. Else perform the specified number of cycles.

InterSoundWait
When NumberOfCycles is not one, then pause for InterSoundWait milliseconds before repeating the tone cycle (before playing the tone again)

Remarks
Sound the bump bar enunciator for the bump bar(s) specified by the Units parameter.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

The duration of a tone cycle is:

Duration parameter +

InterSoundWait parameter (except on the last tone cycle)

After the bump bar has started an asynchronous sound, then the sound may be stopped by using the ClearOutput method. (When an InterSoundWait value of OPOS_FOREVER was used to start the sound, then the application must use ClearOutput to stop the continuous sounding of tones.)

If the CapTone property is FALSE for the selected unit(s), an OPOS_E_ILLEGAL is returned.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· NumberOfCycles is neither a positive, non-zero value nor OPOS_FOREVER.

· NumberOfCycles is OPOS_FOREVER when AsyncMode is FALSE.

· A negative InterSoundWait was specified.

· Units is zero or a non-existent unit was specified.

· A unit in Units does not support the CapTone capability.

The ErrorUnits and ErrorString properties may be updated before return.

OPOS_E_FAILURE
An error occurred while communicating with one of the bump bar units specified by the Units parameter. The ErrorUnits and ErrorString properties are updated before return. (Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
AsyncMode Property; ErrorString Property; ErrorString Property ; CapTone Property; ClearOutput Method

CheckHealth Method (Common)

Syntax
LONG CheckHealth (LONG Level);
The Level parameter indicates the type of health check to be performed on the device. The following values may be specified:

Value
Meaning

OPOS_CH_INTERNAL
Perform a health check that does not physically change the device. The device is tested by internal tests to the extent possible.

OPOS_CH_EXTERNAL
Perform a more thorough test that may change the device.

OPOS_CH_INTERACTIVE
Perform an interactive test of the device. The Service Object will typically display a modal dialog box to present test options and results.

Remarks
When OPOS_CH_INTERNAL or OPOS_CH_EXTERNAL level is requested, the method will check the health of the bump bar unit specified by the CurrentUnitID property. When the current unit ID property is set to a unit that is not currently online, the device will attempt to check the health of the bump bar unit and report a communication error if necessary. The OPOS_CH_INTERACTIVE health check operation is up to the service object designer.

A text description of the results of this method is placed in the CheckHealthText property.

The UnitsOnline property will be updated with any changes before returning to the application.

The CheckHealth method is always synchronous.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
Indicates that the health check procedure was initiated properly, and when possible to determine, indicates that the device is healthy. However, the health of many devices can only be determined by a visual inspection of the test results.

OPOS_E_ILLEGAL
The specified health check level is not supported by the Service Object.

OPOS_E_FAILURE
An error occurred while communicating with the bump bar unit specified by the CurrentUnitID property.

Other Values
See ResultCode.

See Also
CurrentUnitID Property; UnitsOnline Property

ClearInput Method (Common)

Syntax
LONG ClearInput ();
Remarks
Called to clear the device input that has been buffered for the unit specified by the CurrentUnitID property.

Any data events that are enqueued – usually waiting for DataEventEnabled to be set to TRUE and FreezeEvents to be set to FALSE – are also cleared.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_CLAIMED
The device is claimed by another process.

OPOS_E_NOTCLAIMED
The device must be claimed before this method can be used.

See Also
CurrentUnitID Property; “Input Model”

ClearOutput Method (Common)

Syntax
LONG ClearOutput ();
Remarks
Called to clear the tone outputs that have been buffered for the unit specified by the CurrentUnitID property.

Any output complete and output error events that are enqueued – usually waiting for DataEventEnabled to be set to TRUE and FreezeEvents to be set to FALSE – are also cleared.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_CLAIMED
The device is claimed by another process.

OPOS_E_NOTCLAIMED
The device must be claimed before this method can be used.

See Also
CurrentUnitID Property; “Output Model”

SetKeyTranslation Method

Syntax
LONG SetKeyTranslation (LONG Units, LONG ScanCode, LONG LogicalKey);
Parameter
Description

Units
Bitwise mask indicating which bump bar unit(s) to set key translation for.
ScanCode
The bump bar generated key scan code. Valid values 0-255.

LogicalKey
The translated logical key value. Valid values 0-255.

Remarks
This method will assign a logical key value to a device-specific key scan code for the bump bar unit(s) specified by the Units parameter. The logical key value is used during translation during the DataEvent.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· ScanCode or LogicalKey are out of range.

· Units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are updated before return.

Other Values
See ResultCode.

See Also
ErrorUnits Properties; ErrorString Properties; DataEvent Event

Events

DataEvent Event

Syntax
void DataEvent (LONG Status);
The Status parameter is divided into four bytes. Depending on the Event Type, located in the low word, the remaining 2 bytes will contain additional data. The diagram below indicates how the parameter Status is divided:

High Word
Low Word (Event Type)

High Byte
Low Byte

Unused. Always zero.
LogicalKeyCode
BB_DE_KEY

Remarks
Fired to present input data from a bump bar unit to the Application. The low word contains the Event Type. The high word contains additional data depending on the Event Type. When the Event Type is BB_DE_KEY, the low byte of the high word contains the LogicalKeyCode for the key pressed on the bump bar unit. The LogicalKeyCode value is device independent; it has been translated by the Service Object from its original hardware specific value. Valid ranges are 0-255.

The EventUnitID property is updated before delivering the event.

See Also
“Input Model”; EventUnitID Property; DataEventEnabled Property; FreezeEvents Property

OutputCompleteEvent Event

Syntax
void OutputCompleteEvent (LONG OutputID);
The OutputID parameter indicates the ID number of the asynchronous output request that is complete. The EventUnits property is updated before delivering.

Remarks
Fired when a previously started asynchronous output request completes successfully.

See Also
EventUnits Property; “Output Model”

StatusUpdateEvent Event

Syntax
void StatusUpdateEvent (LONG Status);
The Status parameter reports a change in the power state of a bump bar unit.

Remarks
Fired when the bump bar device detects a power state change.

Deviation from the standard StatusUpdateEvent (see page 68):

· Before delivering the event, the EventUnits property is set to the units for which the new power state applies.

· When the bump bar device is enabled, then the Control will fire a StatusUpdateEvent to specify the bitmask of online units.

· While the bump bar device is enabled, a StatusUpdateEvent is fired when the power state of one or more units change. If more than one unit changes state at the same time, the Service Object may choose to either fire multiple events or to coalesce the information into a minimal number of events applying to EventUnits.

See Also
EventUnits Property

ErrorEvent Event

Syntax
void ErrorEvent (LONG ResultCode, LONG ResultCodeExtended,
LONG ErrorLocus, LONG* pErrorResponse);
Parameter
Description

ResultCode
Result code causing the error event. See ResultCode for values.

ResultCodeExtended
Extended result code causing the error event. See ResultCodeExtended for values.

ErrorLocus
Location of the error. See values below.

pErrorResponse
Pointer to the error event response. See values below.

The ErrorLocus parameter may be one of the following:

Value
Meaning

OPOS_EL_OUTPUT
Error occurred while processing asynchronous output.

OPOS_EL_INPUT
Error occurred while gathering or processing event-driven input. No input data is available.

OPOS_EL_INPUT_DATA
Error occurred while gathering or processing event-driven input, and some previously buffered data is available.

The contents at the location pointed to by the pErrorResponse parameter are preset to a default value, based on the ErrorLocus. The application may change the value to one of the following:

Value
Meaning

OPOS_ER_RETRY
Use only when locus is OPOS_EL_OUTPUT.
Retry the asynchronous output. The error state is exited.
Default when locus is OPOS_EL_OUTPUT.

OPOS_ER_CLEAR
Clear the buffered input data. The error state is exited.
Default when locus is OPOS_EL_INPUT.

OPOS_ER_CONTINUEINPUT
Use only when locus is OPOS_EL_INPUT_DATA. Acknowledges the error and directs the Control to continue processing. The Control remains in the error state, and will deliver additional DataEvents as directed by the DataEventEnabled property. When all input has been delivered and the DataEventEnabled property is again set to TRUE, then another ErrorEvent is delivered with locus OPOS_EL_INPUT.
Default when locus is OPOS_EL_INPUT_DATA.

Remarks
Fired when an error is detected while trying to read bump bar data.

Input error events are not delivered until the DataEventEnabled property is TRUE, so that proper application sequencing occurs.

The EventUnits and EventString properties are updated before return.

See Also
 “Status, Result Code, and State Model”; DataEventEnabled Property; EventUnits Property; EventString Property

Chapter 3
Cash Changer

Summary

Properties

Common

Type
Access
Initialized After

AutoDisable
1.2
Boolean
R/W
Not Supported

BinaryConversion
1.2
Long
R/W
Open

CapPowerReporting
1.3
Long
R
Open

CheckHealthText
1.2
String
R
Open

Claimed
1.2
Boolean
R
Open

DataCount
1.2
Long
R
Not Supported

DataEventEnabled
1.2
Boolean
R/W
Not Supported

DeviceEnabled
1.2
Boolean
R/W
Open & Claim

FreezeEvents
1.2
Boolean
R/W
Open

OutputID
1.2
Long
R
Not Supported

PowerNotify
1.3
Long
R/W
Open

PowerState
1.3
Long
R
Open

ResultCode
1.2
Long
R
--

ResultCodeExtended
1.2
Long
R
Open

State
1.2
Long
R
--

ControlObjectDescription
1.2
String
R
--

ControlObjectVersion
1.2
Long
R
--

ServiceObjectDescription
1.2
String
R
Open

ServiceObjectVersion
1.2
Long
R
Open

DeviceDescription
1.2
String
R
Open

DeviceName
1.2
String
R
Open

Specific

Type
Access
Initialized After

CapDiscrepancy
1.2
Boolean
R
Open

CapEmptySensor
1.2
Boolean
R
Open

CapFullSensor
1.2
Boolean
R
Open

CapNearEmptySensor
1.2
Boolean
R
Open

CapNearFullSensor
1.2
Boolean
R
Open

AsyncMode
1.2
Boolean
R/W
Open

AsyncResultCode
1.2
Long
R
Open, Claim, & Enable

AsyncResultCodeExtended
1.2
Long
R
Open, Claim, & Enable

CurrencyCashList
1.2
String
R
Open

CurrencyCode
1.2
String
R/W
Open

CurrencyCodeList
1.2
String
R
Open

CurrentExit
1.2
Long
R/W
Open

DeviceExits
1.2
Long
R
Open

ExitCashList
1.2
String
R
Open

DeviceStatus
1.2
Long
R
Open, Claim, & Enable

FullStatus
1.2
Long
R
Open, Claim, & Enable

Methods

Common

May Use After

Open
1.2
--

Close
1.2
Open

Claim
1.2
Open

Release
1.2
Open & Claim

CheckHealth
1.2
Open, Claim, & Enable

ClearInput
1.2
Not Supported

ClearOutput
1.2
Not Supported

DirectIO
1.2
Open

Specific

DispenseCash
1.2
Open, Claim, & Enable

DispenseChange
1.2
Open, Claim, & Enable

ReadCashCounts
1.2
Open, Claim, & Enable

Events

Name

May Occur After

DataEvent
1.2
Not Supported

DirectIOEvent
1.2
Open , Claim

ErrorEvent
1.2
Not Supported

OutputCompleteEvent
1.2
Not Supported

StatusUpdateEvent
1.2
Open, Claim, & Enable

General Information

The Cash Changer Control’s OLE programmatic ID is “OPOS.CashChanger”.

This device was added in OPOS Release 1.2.

Capabilities

The Cash Changer has the following capabilities:

· Supports reporting the cash units and corresponding unit counts available in the Cash Changer.

· Supports dispensing of a specified amount of cash from the device in either bills, coins, or both into a user-specified exit.

· Supports dispensing of a specified number of cash units from the device in either bills, coins, or both into a user-specified exit.

· Supports reporting of jam conditions within the device.

· Support for more than one currency.

The Cash Changer may also have the following additional capabilities:

· Reporting the fullness levels of the Cash Changer’s cash units. Conditions which may be indicated include empty, near empty, full, and near full states.

· Reporting of a possible (or probable) cash count discrepancy in the data reported by the ReadCashCounts method.

Model

The general model of a Cash Changer is:

· The Cash Changer may support several cash types such as coins, bills, and combinations of coins and bills. The supported cash type for a particular currency is noted by the list of cash units in the CurrencyCashList property.

· A Cash Changer device may consist of any combination of features to aid in the cash processing functions such as a cash entry holding bin, a number of slots or bins which can hold the cash, and cash exits.

· The current model of the Cash Changer device class provides programmatic control only for the dispensing of cash. The accepting of cash by the device (for example, to replenish cash) cannot be controlled by the APIs provided in this model. The application can call the ReadCashCounts method to retrieve the current unit count for each cash unit, but cannot control when or how cash is added to the device.

· A Cash Changer device may have multiple exits. The number of exits is specified in the DeviceExits property. The application chooses a dispensing exit by setting the CurrentExit property. The cash units which may be dispensed to the current exit are indicated by the ExitCashList property. When the CurrentExit value is 1, the exit is considered the “primary exit” which is typically used during normal processing for dispensing cash to a customer following a retail transaction. When CurrentExit is a value greater than 1, the exit is considered an “auxiliary exit”. An “auxiliary exit” typically is used for special purposes such as dispensing quantities or types of cash not targeted for the “primary exit”.

· Dispensing of funds into the exit specified by the CurrentExit property is performed by calling either the DispenseChange or DispenseCash method. With the DispenseChange method, the application specifies a total amount to be dispensed, and it is the responsibility of the Cash Changer device or the Control to dispense the proper amount of cash from the various slots or bins. With the DispenseCash method, the application specifies a count of each cash unit to be dispensed.

· Cash dispensing can be performed either synchronously or asynchronously, depending on the value of the AsyncMode property.

When AsyncMode is FALSE, then the cash dispensing methods are performed synchronously and the dispense method returns the completion status to the application.

When AsyncMode is TRUE and OPOS_SUCCESS is returned by either DispenseChange or DispenseCash, then the method is performed asynchronously and its completion is indicated by a StatusUpdateEvent event containing CHAN_STATUS_ASYNC as its Status value. The method’s completion status is set in the AsyncResultCode and AsyncResultCodeExtended properties.

The values of the AsyncResultCode and AsyncResultCodeExtended properties are same as those returned in the ResultCode and ResultCodeExtended properties when synchronous dispensing is chosen.

Nesting of asynchronous Cash Changer operations is illegal; only one asynchronous method can be processed at a time.

ReadCashCounts may not be performed while an asynchronous method is being performed since doing so could likely report incorrect cash counts.

· The Cash Changer may support more than one currency. The CurrencyCode property may be set to the currency, selecting from a currency in the list CurrencyCodeList. The properties and methods CurrencyCashList, ExitCashList, DispenseCash, DispenseChange, and ReadCashCounts all act upon the current currency only.

· The cash slot (or cash bin) conditions are set in the DeviceStatus property to show empty and near empty status, and in the FullStatus property to show full and near full status. If there are one or more empty cash slots, then DeviceStatus property is CHAN_STATUS_EMPTY, and if there are one or more full cash slots, then FullStatus property is CHAN_STATUS_FULL.

Device Sharing

The Cash Changer is an exclusive-use device. Its device sharing rules are:

· The application must claim the device before enabling it.

· The application must claim and enable the device before accessing some of the properties, dispensing or collecting, or receiving status update events.

· See the “Summary” table for precise usage prerequisites.

Properties

AsyncMode Property R/W

Syntax
BOOL AsyncMode;
Remarks
If TRUE, then the DispenseCash and DispenseChange methods will be performed asynchronously.
If FALSE, these methods will be performed synchronously.

This property is initialized to FALSE by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

See Also
DispenseCash Method; DispenseChange Method; AsyncResultCode Property; AsyncResultCodeExtended Property

AsyncResultCode Property

Syntax
LONG AsyncResultCode;
Remarks
When methods are asynchronously performed, they return their completion status to the application in this property. This property is set by the control before a StatusUpdateEvent event is delivered with a Status value of CHAN_STATUS_ASYNC.

The value of this property is same as the value that would have been in the ResultCode property had the method been performed synchronously.

See Also
DispenseCash Method; DispenseChange Method; AsyncMode Property

AsyncResultCodeExtended Property

Syntax
LONG AsyncResultCodeExtended;

Remarks
When methods are asynchronously performed, they return their extended completion status to the application in this property. This property is set by the control before a StatusUpdateEvent event is delivered with a Status value of CHAN_STATUS_ASYNC. The value of this property is same as the value that would have been in the ResultCodeExtended property had the method been performed synchronously.

See Also
DispenseCash Method; DispenseChange Method; AsyncMode Property

CapDiscrepancy Property

Syntax
BOOL CapDiscrepancy;

Remarks
If TRUE, the ReadCashCounts method can report effective pDiscrepancy value;
otherwise it is FALSE.

This property is initialized by the Open method.

See Also
ReadCashCounts method

CapEmptySensor Property

Syntax
BOOL CapEmptySensor;

Remarks
If TRUE, the Cash Changer can report the condition that some cash slots are empty;
otherwise it is FALSE.

This property is initialized by the Open method.

See Also
DeviceStatus Property; StatusUpdateEvent
CapFullSensor Property

Syntax
BOOL CapFullSensor;

Remarks
If TRUE, the Cash Changer can report the condition that some cash slots are full;
otherwise it is FALSE.

This property is initialized by the Open method.

See Also
FullStatus Property; StatusUpdateEvent
CapNearEmptySensor Property

Syntax
BOOL CapNearEmptySensor;

Remarks
If TRUE, the Cash Changer can report the condition that some cash slots are nearly empty;
otherwise it is FALSE.

This property is initialized by the Open method.

See Also
DeviceStatus Property; StatusUpdateEvent
CapNearFullSensor Property

Syntax
BOOL CapNearFullSensor;

Remarks
If TRUE, the Cash Changer can report the condition that some cash slots are nearly full;
otherwise it is FALSE.

This property is initialized by the Open method.

See Also
FullStatus Property; StatusUpdateEvent
CurrencyCashList Property

Syntax
BSTR CurrencyCashList;

Remarks
A string value denoting the cash units supported in the Cash Changer for the currency represented by the CurrencyCode property.

The string consists of an ASCII numeric comma delimited values which denote the units of coins, then the ASCII semicolon character (“;”) followed by ASCII numeric comma delimited values for the bills that can be used with the Cash Changer. If a semicolon (“;”) is absent, then all units represent coins.

Below are sample CurrencyCashList values in Japan.

· “1,5,10,50,100,500” —
1, 5, 10, 50, 100, 500 yen coin.

· “1,5,10,50,100,500;1000,5000,10000” —
1, 5, 10, 50, 100, 500 yen coin and 1000, 5000, 10000 yen bill.

· “;1000,5000,10000” —
1000, 5000, 10000 yen bill.

This property is initialized by the Open method, and is updated when CurrencyCode is set.

See Also
CurrencyCode Property

CurrencyCode Property R/W

Syntax
BSTR CurrencyCode;

Remarks
Contains the active currency code to be used by Cash Changer operations.

This property is initialized to an appropriate value by the Open method. This value is guaranteed to be one of the set of currencies specified by the CurrencyCodeList property.

Return
When this property is set, one of the following values is placed in the ResultCode property.

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
A value was specified that is not within CurrencyCodeList.
See Also
CurrencyCodeList Property

CurrencyCodeList Property

Syntax
BSTR CurrencyCodeList;

Remarks
A string of currency code indicators.

This property is initialized by the Open method. The string consists of a list of ASCII three-character ISO 4217 currency codes separated by commas.

For example, if the string is “JPY,USD”, then the Cash Changer supports both Japanese and U.S. monetary units.

See Also
CurrencyCode Property

CurrentExit Property R/W

Syntax
LONG CurrentExit;

Remarks
The current cash dispensing exit. The value 1 represents the primary exit (or normal exit), while values greater then 1 are considered auxiliary exits. Legal values range from 1 to DeviceExits.

This property is initialized to 1 by the Open method.

Examples below are samples of typical property value sets in Japan. CurrencyCode is “JPY” and CurrencyCodeList is “JPY”.

· Cash Changer supports coins; only one exit supported :
CurrencyCashList = “1,5,10,50,100,500”
DeviceExits = 1
CurrentExit = 1 : ExitCashList = “1,5,10,50,100,500”

· Cash Changer supports both coins and bills; an auxiliary exit is used for larger quantities of bills :
CurrencyCashList = “1,5,10,50,100,500;1000,5000,10000”
DeviceExits = 2
When CurrentExit = 1 : ExitCashList = “1,5,10,50,100,500;1000,5000”
When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

· Cash Changer supports bills; an auxiliary exit is used for larger quantities of bills :
CurrencyCashList = “;1000,5000,10000”
DeviceExits = 2
When CurrentExit = 1 : ExitCashList = “;1000,5000”
When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”
Return
When this property is set, one of the following values is placed in the ResultCode property.

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An invalid CurrentExit value was specified.

See Also
CurrencyCashList Property; DeviceExits Property; ExitCashList Property

DeviceExits Property

Syntax
LONG DeviceExits;

Remarks
The number of exits for dispensing cash.

This property is initialized by the Open method.

See Also
CurrentExit Property

DeviceStatus Property

Syntax
LONG DeviceStatus;

Remarks
Holds the current status of the Cash Changer. It may be one of the following:

Value
Meaning

CHAN_STATUS_OK
The current condition of the Cash Changer is satisfactory.

CHAN_STATUS_EMPTY
Some cash slots are empty.

CHAN_STATUS_NEAREMPTY
Some cash slots are nearly empty.

CHAN_STATUS_JAM
A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. If more than one condition is present, then the order of precedence starting at the highest is fault, empty, and near empty.

ExitCashList Property

Syntax
BSTR ExitCashList;

Remarks
A string value denoting the cash units which may be dispensed to the exit which is denoted by CurrentExit property. The supported cash units are either the same as CurrencyCashList, or a subset of it. The string format is identical to that of CurrencyCashList.

This property is initialized by the Open method, and is updated when CurrencyCode or CurrentExit is set.

See Also
CurrencyCode Property; CurrencyCashList Property; CurrentExit Property

FullStatus Property

Syntax
LONG FullStatus;

Remarks
Holds the current full status of the cash slots. It may be one of the following:

Value
Meaning

CHAN_STATUS_OK
All cash slots are neither nearly full nor full.

CHAN_STATUS_FULL
Some cash slots are full.

CHAN_STATUS_NEARFULL
Some cash slots are nearly full.

This property is initialized and kept current while the device is enabled.

Methods

DispenseCash Method

Syntax
LONG DispenseCash (BSTR CashCounts);
The CashCounts parameter contains the dispensing cash units and counts, represented by the format of “cash unit:cash counts, ..;.., cash unit:cash counts”. Units before “;” represent coins, and units after “;” represent bills. If “;” is absent, then all units represent coins.

Remarks
Dispenses the cash from the Cash Changer into the exit specified by CurrentExit. The cash dispensed is specified by pairs of cash units and counts.

This Method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

CashCounts examples, using Japanese Yen as the currency, are below.

· “10:5,50:1,100:3,500:1”
Dispense 5 ten yen coins, 1 fifty yen coins, 3 one hundred yen coins, 1 five hundred yen coins.

· “10:5,100:3;1000:10”
Dispense 5 ten yen coins, 3 one hundred yen coins, and 10 one thousand yen bills.

· “;1000:10,10000:5”
Dispense 10 one thousand yen bills and 5 ten thousand yen bills.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The specified cash was dispensed successfully, or DispenseCash method was performed asynchronously.

OPOS_E_BUSY
Cash cannot be dispensed because an asynchronous method is outstanding.

OPOS_E_ILLEGAL
A CashCounts parameter value was illegal for the current exit.

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_ECHAN_OVERDISPENSE :
The specified cash cannot be dispensed because of a cash shortage.

Other Values
See ResultCode.

See Also
AsyncMode Property; CurrentExit Property

DispenseChange Method

Syntax
LONG DispenseChange (LONG Amount);
The Amount parameter contains the amount of change to be dispensed. It is up to the Cash Changer to determine what combination of bills and coins will satisfy the tender requirements from its available supply of cash.

Remarks
Dispenses the specified amount of cash from the Cash Changer into the exit represented by CurrentExit.

This Method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The specified change was dispensed successfully, or DispenseChange method was performed asynchronously.

OPOS_E_BUSY
The specified change cannot be dispensed because an asynchronous method is outstanding.

OPOS_E_ILLEGAL
A negative or zero Amount was specified, or

It is impossible to dispense the Amount based on the values specified in ExitCashList for the current exit.

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_ECHAN_OVERDISPENSE :
The specified change cannot be dispensed because of a cash shortage.

Other Values
See ResultCode.

See Also
AsyncMode Property; CurrentExit Property

ReadCashCounts Method

Syntax
LONG ReadCashCounts (BSTR* pCashCounts, BOOL* pDiscrepancy);
Parameter
Description

pCashCounts
The cash count data is placed into the string pointed to by pCashCounts.

pDiscrepancy
If the integer pointed to by pDiscrepancy is set to TRUE by this method, then there is some cash which was not able to be included in the counts reported in pCashCounts;
otherwise it is FALSE.

Remarks
The format of the string pointed to by pCashCounts is the same as CashCounts in the DispenseCash method. Each unit in pCashCounts matches a unit in the CurrencyCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned at the pCashCounts parameter is set to

1:80,5:77,10:0,50:54,100:0,500:87
as a result of calling the ReadCashCounts method, then there would be 80 one yen coins, 77 five yen coins, 54 fifty yen coins, and 87 five hundred yen coins in the Cash Changer.

If CapDiscrepancy property is FALSE, then pDiscrepancy is always FALSE.

Usually, the cash total calculated by pCashCounts parameter is equal to the cash total in a Cash Changer. But, there are some cases where a discrepancy may occur because of existing uncountable cash in a Cash Changer. An example would be when a cash slot is “overflowing” such that the device has lost its ability to accurately detect and monitor the cash.

Return
One of the following values is returned by this method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
This method was successful.

OPOS_E_BUSY
Cash units and counts cannot be read because an asynchronous method is outstanding.

Other Values
See ResultCode.

See Also
DispenseCash Method; CapDiscrepancy Property; CurrencyCashList Property

 Events

StatusUpdateEvent

Syntax
void StatusUpdateEvent (LONG Status);
The Status parameter contains the Cash Changer status condition:

Value
Meaning

CHAN_STATUS_EMPTY
Some cash slots are empty.

CHAN_STATUS_NEAREMPTY
Some cash slots are nearly empty.

CHAN_STATUS_EMPTYOK
No cash slots are either empty or nearly empty.

CHAN_STATUS_FULL
Some cash slots are full.

CHAN_STATUS_NEARFULL
Some cash slots are nearly full.

CHAN_STATUS_FULLOK
No cash slots are either full or nearly full.

CHAN_STATUS_JAM
A mechanical fault has occurred.

CHAN_STATUS_JAMOK
A mechanical fault has recovered.

CHAN_STATUS_ASYNC
Asynchronously performed method has completed.

Remarks
Fired when the Cash Changer detects a status change.

For changes in the fullness levels, the Cash Changer is only able to fire StatusUpdateEvents when the device has a sensor capable of detecting the full, near full, empty, and/or near empty states and the corresponding capability properties for these states are set.

Jam conditions may be reported whenever this condition occurs; likewise for asynchronous method completion.

The completion statuses of asynchronously performed methods are placed in the AsyncResultCode and AsyncResultCodeExtended properties.

Chapter 4
Cash Drawer

Summary

Properties

Common

Type
Access
Initialized After

AutoDisable
1.2
Boolean
R/W
Not Supported

BinaryConversion
1.2
Long
R/W
Open

CapPowerReporting
1.3
Long
R
Open

CheckHealthText
1.0
String
R
Open

Claimed
1.0
Boolean
R
Open

DataCount
1.2
Long
R
Not Supported

DataEventEnabled
1.0
Boolean
R/W
Not Supported

DeviceEnabled
1.0
Boolean
R/W
Open

FreezeEvents
1.0
Boolean
R/W
Open

OutputID
1.0
Long
R
Not Supported

PowerNotify
1.3
Long
R/W
Open

PowerState
1.3
Long
R
Open

ResultCode
1.0
Long
R
--

ResultCodeExtended
1.0
Long
R
Open

State
1.0
Long
R
--

ControlObjectDescription
1.0
String
R
--

ControlObjectVersion
1.0
Long
R
--

ServiceObjectDescription
1.0
String
R
Open

ServiceObjectVersion
1.0
Long
R
Open

DeviceDescription
1.0
String
R
Open

DeviceName
1.0
String
R
Open

Specific

Type
Access
Initialized After

CapStatus
1.0
Boolean
R
Open

DrawerOpened
1.0
Boolean
R
Open & Enable

Methods

Common

May Use After

Open
1.0
--

Close
1.0
Open

Claim
1.0
Open

Release
1.0
Open & Claim

CheckHealth
1.0
Open & Enable; Note

ClearInput
1.0
Not Supported

ClearOutput
1.0
Not Supported

DirectIO
1.0
Open

Specific

OpenDrawer
1.0
Open & Enable; Note

WaitForDrawerClose
1.0
Open & Enable; Note

Note: Also requires that no other application has claimed the cash drawer.

Events

Name

May Occur After

DataEvent
1.0
Not Supported

DirectIOEvent
1.0
Open

ErrorEvent
1.0
Not Supported

OutputCompleteEvent
1.0
Not Supported

StatusUpdateEvent
1.0
Open & Enable

General Information

The Cash Drawer Control’s OLE programmatic ID is “OPOS.CashDrawer”.

Capabilities

The Cash Drawer Control has the following capability:

· Supports a command to “open” the cash drawer.

The cash drawer may have the following additional capability:

· Drawer status reporting: Can determine whether the drawer is open or closed.

Device Sharing

The cash drawer is a sharable device. Its device sharing rules are:

· After opening and enabling the device, the application may access all properties and methods and will receive status update events.

· If more than one application has opened and enabled the device, all applications may access its properties and methods. Status update events are fired to all of the applications.

· If one application claims the cash drawer, then only that application may call the OpenDrawer and WaitForDrawerClose methods. This feature provides a degree of security, such that these methods may effectively be restricted to the main POS application if that application claims the device at startup.

· See the “Summary” table for precise usage prerequisites.

Properties

CapStatus Property

Syntax
BOOL CapStatus;

Remarks
If TRUE, the drawer can report status.
If FALSE, the drawer is not able to determine whether cash drawer is open or closed.

This property is initialized by the Open method.

DrawerOpened Property

Syntax
BOOL DrawerOpened;

Remarks
If TRUE, the drawer is open.
If FALSE, the drawer is closed.

If the capability CapStatus is FALSE, then the device does not support status reporting, and DrawerOpened is always FALSE.

This property is initialized and kept current while the device is enabled.

Methods

OpenDrawer Method

Syntax
LONG OpenDrawer ()
Remarks
Call to open the drawer.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The drawer was opened successfully.

Other Values
See ResultCode.

WaitForDrawerClose Method

Syntax
LONG WaitForDrawerClose (LONG BeepTimeout, LONG BeepFrequency, LONG BeepDuration, LONG BeepDelay);
Parameter
Description

BeepTimeout
Number of milliseconds to wait before starting an alert beeper.

BeepFrequency
Audio frequency of the alert beeper in hertz.

BeepDuration
Number of milliseconds that the beep tone will be sounded.

BeepDelay
Number of milliseconds between the sounding of beeper tones.

Remarks
Call to wait until the cash drawer is closed. If the drawer is still open after BeepTimeout milliseconds, then the system alert beeper is started.

Unless an error occurs, this method will not return to the application while the drawer is open. When the cashier closes the drawer, the beeper is turned off.

If the capability CapStatus is FALSE, then the device does not support status reporting, and this method will return immediately with a successful status.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The drawer was properly closed.

Other Values
See ResultCode.

Events

StatusUpdateEvent Event

Syntax
void StatusUpdateEvent (LONG Status);
The Status parameter contains the updated drawer status.

Release 1.0 - 1.2

If Status contains a non-zero value, then the drawer is open.
If Status contains a zero value, then the drawer is closed.

Release 1.3 and later

One of the following values may be returned:

Value
Meaning

CASH_SUE_DRAWERCLOSED (= 0)
The drawer is closed.

CASH_SUE_DRAWEROPEN (= 1)
The drawer is open.

Power reporting StatusUpdateEvent values
See StatusUpdateEvent description on page 68.
(Can only be returned if the application sets PowerNotify to OPOS_PN_ENABLED.)

Remarks
Fired when the open status of the drawer changes.

If the capability CapStatus is FALSE, then the device does not support status reporting, and this event will never be fired.

Chapter 5
CAT - Credit Authorization Terminal

Summary

Properties

Common

Type
Access
Initialized After

AutoDisable
1.4
Boolean
R/W
Not Supported

BinaryConversion
1.4
Long
R/W
Open

CapPowerReporting
1.4
Long
R
Open

CheckHealthText
1.4
String
R
Open

Claimed
1.4
Boolean
R
Open

DataCount
1.4
Long
R
Not Supported

DataEventEnabled
1.4
Boolean
R/W
Not Supported

DeviceEnabled
1.4
Boolean
R/W
Open & Claim

FreezeEvents
1.4
Boolean
R/W
Open

OutputID
1.4
Long
R
Open

PowerNotify
1.4
Long
R/W
Open

PowerState
1.4
Long
R
Open

ResultCode
1.4
Long
R
--

ResultCodeExtended
1.4
Long
R
Open

State
1.4
Long
R
--

ControlObjectDescription
1.4
String
R
--

ControlObjectVersion
1.4
Long
R
--

ServiceObjectDescription
1.4
String
R
Open

ServiceObjectVersion
1.4
Long
R
Open

DeviceDescription
1.4
String
R
Open

DeviceName
1.4
String
R
Open

Specific

Type
Access
Initialized After

AccountNumber
1.4
String
R
Open

AdditionalSecurityInformation
1.4
String
R/W
Open

ApprovalCode
1.4
String
R
Open

AsyncMode
1.4
Boolean
R/W
Open

CapAdditionalSecurityInformation
1.4
Boolean
R
Open

CapAuthorizeCompletion
1.4
Boolean
R
Open

CapAuthorizePreSales
1.4
Boolean
R
Open

CapAuthorizeRefund
1.4
Boolean
R
Open

CapAuthorizeVoid
1.4
Boolean
R
Open

CapAuthorizeVoidPreSales
1.4
Boolean
R
Open

CapCenterResultCode
1.4
Boolean
R
Open

CapCheckCard
1.4
Boolean
 R
Open

CapDailyLog
1.4
Long
R
Open

CapInstallments
1.4
Boolean
R
Open

CapPaymentDetail
1.4
Boolean
R
Open

CapTaxOthers
1.4
Boolean
R
Open

CapTransactionNumber
1.4
Boolean
R
Open

CapTrainingMode
1.4
Boolean
R
Open

CardCompanyID
1.4
String
R
Open

CenterResultCode
1.4
String
R
Open

DailyLog
1.4
String
R
Open

PaymentCondition
1.4
Long
R
Open

PaymentDetail
1.4
String
R
Open

SequenceNumber
1.4
Long
R
Open

SlipNumber
1.4
String
R
Open

TrainingMode
1.4
Boolean
R/W
Open

TransactionNumber
1.4
Long
R
Open

TransactionType
1.4
Long
R
Open

Methods
Common

May Use After

Open
1.4
--

Close
1.4
Open

Claim
1.4
Open & Claim

Release
1.4
Open & Claim

CheckHealth
1.4
Open, Claim, & Enable

ClearInput
1.4
Not Supported

ClearOutput
1.4
Open & Claim

DirectIO
1.4
Open & Claim

Specific

AccessDailyLog
1.4
Open, Claim, & Enable

AuthorizeCompletion
1.4
Open, Claim, & Enable

AuthorizePreSales
1.4
Open, Claim, & Enable

AuthorizeRefund
1.4
Open, Claim, & Enable

AuthorizeSales
1.4
Open, Claim, & Enable

AuthorizeVoid
1.4
Open, Claim, & Enable

AuthorizeVoidPreSales
1.4
Open, Claim, & Enable

CheckCard
1.4
Open, Claim, & Enable

Events

Name

May Use After

DataEvent
1.4
Not Supported

DirectIOEvent
1.4
Open & Claim

ErrorEvent
1.4
Open, Claim, & Enable

OutputCompleteEvent
1.4
Open, Claim, & Enable

StatusUpdateEvent
1.4
Open, Claim, & Enable

General Information

The CAT Control’s OLE programmatic ID is “OPOS.CAT”.

This device was added in OPOS Release 1.4.

Description of terms
· Authorization method

Methods defined by this device class that have the Authorize prefix in their name. These methods require communication with an approval agency.

· Authorization operation

The period from the invocation of an authorization method until the authorization is completed. This period differs depending upon whether operating in synchronous or asynchronous mode.
· Credit Authorization Terminal (CAT) Device
A CAT device typically consists of a display, keyboard, magnetic stripe card reader, receipt printing device, and a communications device. CAT devices are predominantly used in Japan where they are required by law. Essentially a CAT device can be considered a device that shields the encryption, message formatting, and communication functions of an electronic funds transfer (EFT) operation from an application.
· Purchase

The transaction that allows credit card payment at the POS. It is independent of payment methods (for example, lump-sum payment, payment in installments, revolving payment, etc.).

· Cancel Purchase

The transaction to request voiding a purchase on the date of purchase.
· Refund Purchase

The transaction to request voiding a purchase after the date of purchase. This differs from cancel purchase in that a cancel purchase operation can often be handled by updating the daily log at the CAT device, while the refund purchase operation typically requires interaction with the approval agency.
· Authorization Completion

The state of a purchase when the response from the approval agency is “suspended”. The purchase is later completed after a voice approval is received from the card company.

· Pre-Authorization

The transaction to reserve an estimated amount in advance of the actual purchase with customer’s credit card presentation and card entry at CAT.

· Cancel Pre-Authorization

The transaction to request canceling pre-authorization.
· Card Check

The transaction to perform a negative card file validation of the card presented by the customer. Typically negative card files contain card numbers that are known to fail approval. Therefore the Card Check operation removes then need for communication to the approval agency in some instances.
· Daily log

The daily log of card transactions that have been approved by the card companies.

· Payment condition

Condition of payment such as lump-sum payment, payment by bonus, payment in installments, revolving payment, and the combination of those payments. See the PaymentCondition and PaymentDetail properties for details.

· Approval agency

The agency to decide whether or not to approve the purchase based on the card information, the amount of purchase, and payment type. The approval agency is generally the card company.
Capabilities
The CAT control is capable of the following general mode of operation:
·
· This standard defines the application interface with the CAT control and does not depend on the CAT device hardware implementation. Therefore, the hardware implementation of a CAT device may be as follows:
· Separate type (POS interlock)

The dedicated CAT device is externally connected to the POS (for instance, via an RS-232 connection).
· Built-in type

The hardware structure is the same as the separate type but is installed within the POS housing.

· The CAT device receives each authorization request containing a purchase amount and tax from CAT control.

· The CAT device generally requests the user to swipe a magnetic card when it receives an authorization request from CAT control.

· Once a magnetic card is swiped at the CAT device, the device sends the purchase amount and tax to the approval agency using the communications device.
· The CAT device returns the result from the approval agency to the CAT control. The returned data will be stored in the authorization properties by the CAT control for access by applications.

·
Model

The general models for the CAT control are shown below:
· The CAT control basically follows the output device model. However, multiple methods cannot be issued for asynchronous output; only 1 outstanding asynchronous request is allowed.
· The CAT control issues requests to the CAT device for different types of authorization by invoking the following methods.

Function
Method name
Corresponding Cap property

Purchase
AuthorizeSales
None

Cancel Purchase
AuthorizeVoid
CapAuthorizeVoid

Refund Purchase
AuthorizeRefund
CapAuthorizeRefund

Authorization Completion
AuthorizeCompletion
CapAuthorizeCompletion

Pre-Authorization
AuthorizePreSales
CapAuthorizePreSales

Cancel Pre-Authorization
AuthorizeVoidPreSales
CapAuthorizeVoidPreSales

· The CAT control issues requests to the CAT device for special processing local to the CAT device by invoking the following methods.

Function
Method name
Corresponding Cap property

Card Check
CheckCard
CapCheckCard

Daily log
AccessDailyLog
CapDailyLog

· The CAT control stores the authorization results in the following properties when an authorization operation sucessfully completes:

Description
Property Name
Corresponding Cap Property

Account number
AccountNumber
None

Additional information
AdditionalSecurityInformation
CapAdditionalSecurityInformation

Approval code
ApprovalCode
None

Card company ID
CardCompanyID
None

Code from the approval agency
CenterResultCode
CapCenterResultCode

Payment condition
PaymentCondition
None

Payment detail
PaymentDetail
CapPaymentDetail

Sequence number
SequenceNumber
None

Slip number
SlipNumber
None

Center transaction number
TransactionNumber
CapTransactionNumber

Transaction type
TransactionType
None

· The AccessDailyLog method sets the following property:
Description
Property Name
Corresponding Cap Property

Daily log
DailyLog
CapDailyLog

· Sequence numbers are used to validate that the properties set at completion of a method are indeed associated with the completed method. An incoming SequenceNumber argument for each method is compared with the resulting SequenceNumber property after the operation associated with the method has completed. If the numbers do not match, or if an application fails to identify the number, there is no guarantee that the values of the properties listed in the two tables correspond to the completed method.

· The AsyncMode property determines if methods are run synchronously or asynchronously.
· When AsyncMode is FALSE, methods will be executed synchronously and their corresponding properties will contain data when the method returns.

· When AsyncMode is TRUE, methods will return immediately to the application. When the operation associated with the method completes, each corresponding property will be updated by the CAT control prior to an OutputCompleteEvent. When AsyncMode is TRUE, methods cannot be issued immediately after issuing a prior method; only one outstanding asynchronous method is allowed at a time. However, ClearOutput is an exception because its purpose is to cancel an outstanding asynchronous method.

· The methods supported and their corresponding properties vary depending on the CAT control implementation. Applications should verify that particular Cap properties are supported before utilizing the capability dependent methods and properties.

· Results of synchronous calls to methods and writable properties will be stored in ResultCode. Results of asynchronous processing will be indicated by an OutputCompleteEvent or returned in the Resultcode argument of an ErrorEvent. If ResultCode or the ResultCode argument is OPOS_E_EXTENDED, detailed device specific information may be stored to ResultCodeExtended in synchronous mode and stored to ErrorEvent argument ResultCodeExtended in asynchronous mode. The result code from the approval agency will be stored in CenterResultCode in either mode.

· Training mode occurs continually when TrainingMode is TRUE. To discontinue training mode, set TrainingMode to FALSE.
· An outstanding

· asynchronous method can be canceled via the ClearOutput method.

· The Daily log can be collected by the AccessDailyLog method. Collection will be run either synchronously or asynchronously according to the value of AsyncMode.

· Following is the general usage sequence of the CAT control.

Synchronous Mode:
- Open
- Claim
- DeviceEnabled=TRUE
- Definition of the argument SequenceNumber
- AuthorizeSales()
- Check ResultCode
- Verify that the SequenceNumber property matches the value of the AuthorizeSales() SequenceNumber argument
- Access the properties set by AuthorizeSales()
- DeviceEnabled=FALSE
- Release
- Close
Asynchronous Mode:
- Open
- Claim
- DeviceEnabled=TRUE
- AsyncMode=TRUE
- Definition of the argument SequenceNumber
- AuthorizeSales()
- Check ResultCode
– Wait for OutputCompleteEvent
- Check the argument ResultCode
- Verify that the SequenceNumber property matches the value of the AuthorizeSales() SequenceNumber argument
- Access the properties set by AuthorizeSales()
- DeviceEnabled=FALSE
- Release
- Close
Device sharing

The CAT is an exclusive-use device, as follows:

· After opening the device, properties are readable.

· The application must claim the device before enabling it.

· The application must claim and enable the device before calling methods that manipulate the device.

· See the“Summary”table for precise usage prerequisites.

Properties

AccountNumber Property R
Syntax
BSTR AccountNumber;
Remarks
This property is initialized to NULL by the Open method and is updated when an authorization operation successfully completes.
AdditionalSecurityInformation Property R/W

Syntax
BSTR AdditionalSecurityInformation;
Remarks
An application can send data to the CAT device by setting this property before issuing an authorization method. Also, data obtained from the CAT device and not stored in any other property as the result of an authorization operation (for example, the account code for a loyalty program) can be provided to an application by storing it in this property. Since the data stored here is device specific, this should not be used for any development that requires portability. The format of this data depends on BinaryConversion property. See BinaryConversion property for more details.

See Also
CapAdditionalSecurityInformation Property; BinaryConversion Property
ApprovalCode Property R
Syntax
BSTR ApprovalCode;
Remarks
This property is initialized to NULL by the Open method and is updated when an authorization operation successfully completes.
AsyncMode Property R/W

Syntax
BOOL AsyncMode;
Remarks
If TRUE, the authorization methods will run asynchronously.

If FALSE, the authorization methods will run synchronously.
This property is initialized to FALSE by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property.

Value
Meaning

OPOS_SUCCESS
Property has been properly set up.

See Also
Authorization Methods
CapAdditionalSecurityInformation Property

Syntax
BOOL CapAdditionalSecurityInformation;
Remarks
If TRUE, the AdditionalSecurityInformation property may be utilized; otherwise it is FALSE.

This property is initialized by Open method.

See Also
AdditionalSecurityInformation Property
CapAuthorizeCompletion Property

Syntax
BOOL CapAuthorizeCompletion;
Remarks
If TRUE, the AuthorizeCompletion method has been implemented; otherwise it is FALSE.

This property is initialized by the Open method.

See Also
AuthorizeCompletion Method

CapAuthorizePreSales Property

Syntax
BOOL CapAuthorizePreSales;
Remarks
If TRUE, the AuthorizePreSales method has been implemented; otherwise it is FALSE.

This property is initialized by the Open method.

See Also
AuthorizePreSales Method
CapAuthorizeRefund Property

Syntax
BOOL CapAuthorizeRefund;
Remarks
If TRUE, the AuthorizeRefund method has been implemented; otherwise it is FALSE.

This property is initialized by the Open method.
See Also
AuthorizeRefund Method
CapAuthorizeVoid Property

Syntax
BOOL CapAuthorizeVoid;
Remarks
If TRUE, the AuthorizeVoid method has been implemented; otherwise it is FALSE.

This property is initialized by the Open method.

See Also
AuthorizeVoid Method
CapAuthorizeVoidPreSales Property

Syntax
BOOL CapAuthorizeVoidPreSales;
Remarks
If TRUE, the AuthorizeVoidPreSales method has been implemented; otherwise it is FALSE.

This property is initialized by the Open method.

See Also
AuthorizeVoidPreSales Method

CapCenterResultCode property

Syntax
BOOL CapCenterResultCode;
Remarks
If TRUE, the CenterResultCode property has been implemented; otherwise it is FALSE.

This property is initialized by the Open method.

See Also
CenterResultCode Property

CapCheckCard Property

Syntax
BOOL CapCheckCard;
Remarks
If TRUE, the CheckCard method has been implemented; otherwise it is FALSE.

This property is initialized by the Open method.

See Also
CheckCard Method

CapDailyLog Property

Syntax
LONG CapDailyLog;
Remarks
Shows the daily log ability of the device.

Value
Meaning

CAT_DL_NONE
The CAT device does not have the daily log functions.

CAT_DL_REPORTING
The CAT device only has an intermediate total function which reads the daily log but does not erase the log.

CAT_DL_SETTLEMENT

The CAT device only has the “final total” and “erase daily log” functions.

CAT_DL_REPORTING_SETTLEMENT
The CAT device has both the intermediate total function and the final total and erase daily log function.

This property is initialized by the Open method.

See Also
DailyLog Property; AccessDailyLog Method

CapInstallments Property

Syntax
BOOL CapInstallments;
Remarks
If TRUE, the item “Installments” which is stored in the DailyLog property as the result of AccessDailyLog will be provided; otherwise it is FALSE.

This property is initialized by the Open method.

See Also
DailyLog Property

CapPaymentDetail Property

Syntax
BOOL CapPaymentDetail;
Remarks
If TRUE, the PaymentDetail property has been implemented; otherwise it is FALSE.

This property is initialized by Open method.

See Also
PaymentDetail Property

CapTaxOthers Property

Syntax
BOOL CapTaxOthers;
Remarks
If TRUE, the item “TaxOthers” which is stored in the DailyLog property as the result of AccessDailyLog will be provided; otherwise it is FALSE.
Note that this property is not related to the “TaxOthers” argument used with the authorization methods.

This property is initialized by the Open method.

See Also
DailyLog Property

CapTransactionNumber Property

Syntax
BOOL CapTransactionNumber;
Remarks
If TRUE, the TransactionNumber property has been implemented; otherwise it is FALSE.

This property is initialized by the Open method.

See Also
TransactionNumber Property

CapTrainingMode Property

Syntax
BOOL CapTrainingMode;
Remarks
If TRUE, the TrainingMode property has been implemented; otherwise it is FALSE.

This property is initialized by the Open method.

See Also
TrainingMode Property

CardCompanyID Property R
Syntax
BSTR CardCompanyID;
Remarks
This property is initialized to NULL by the Open method and is updated when an authorization operation successfully completes.
The length of the ID string varies depending upon the CAT device.

CenterResultCode Property R
Syntax
BSTR CenterResultCode;
Remarks
Contains the code from the approval agency. Check the approval agency for the actual codes to be stored.
This property is initialized to NULL by the Open method and is updated when an authorization operation successfully completes
DailyLog Property R
Syntax
BSTR DailyLog;
Remarks
Stores the result of the AccessDailyLog method. The data is delimited by CR(13)+LF(10) for each transaction and is stored in ASCII code. The detailed data of each transaction is comma separated [i.e. delimited by “,” (44)].
The details of one transaction are shown as follows:

No.
Item
Property
Corresponding Cap Property

1
Card company ID
CardCompanyID
None

2
Transaction type
TransactionType
None

3
Transaction date

Note 1)
None
None

4
Transaction number

Note 3)
TransactionNumber
CapTransactionNumber

5
Payment condition
PaymentCondition
None

6
Slip number
SlipNumber
None

7
Approval code
ApprovalCode
None

8
Purchase date

Note 5)

None
None

9
Account number
AccountNumber
None

10
Amount

Note 4)
The argument Amount of the authorization method or the amount actually approved.
None

11
Tax/others

Note 3)
The argument TaxOthers of the authorization method.
CapTaxOthers

12
Installments
Note 3)
None
CapInstallments

13
Additional data

Note 2)
AdditionalSecurityInformation
CapAdditionalSecurityInformation

Notes from the previous table:
1) Format

Item
Format

Transaction date
YYYYMMDDHHMMSS

Purchase date
MMDD

Some CAT devices may not support seconds by the internal clock. In that case, the seconds field of the transaction date is filled with “00”
2) Additional data

The area where the CAT device stores the vendor specific data. This enables an application to receive data other than that defined in this specification. The data stored here is vendor specific and should not be used for development which places an importance on
portability.
3) If the corresponding Cap property is FALSE

Cap property is set to FALSE if the CAT device provides no corresponding data. In such instances, the item can’t be displayed so the next comma delimiter immediately follows. For example, if “Amount” is 1234 yen and “Tax/others” is missing and “Installments” is 2, the description will be “1234,,2”. This makes the description independent of Cap property and makes the position of each data item consistent.
4) Amount

Amount always includes “Tax/others” even if item 11 is present.
5) Purchase date

The date manually entered for the purchase transaction after approval.

Example
An example of daily log content is shown below.

Item
Description
Meaning

Card company ID
102
JCB

Transaction type
CAT_TRANSACTION_SALES
Purchase

Transaction date
19980116134530
1/16/1998

13:45:30

Transaction number
123456
123456

Payment condition
CAT_PAYMENT_INSTALLMENT_1
Installment 1

Slip number
12345
12345

Approval code
0123456
0123456

Purchase date
None
None

Account number
1234123412341234
1234-1234-1234-1234

Amount
12345
12345JPY

Tax/others
None
None

Number of payments
2
2

Additional data
12345678
Specific information

The actual data stored in DailyLog will be as follows.

102,10,19980116134530,123456,61,12345,0123456,,1234123412341234,12345,,2,12345678[CR][LF]

See Also
CapDailyLog Property; AccessDailyLog Method
PaymentCondition Property R
Syntax
LONG
PaymentCondition;
Remarks
Holds the payment condition of the most recent successful authorization operation.

This property will be set to one of the following values. See PaymentDetail for the detailed payment string that correlates to the following PaymentCondition values.
Value

Meaning

CAT_PAYMENT_LUMP

Lump-sum

CAT_PAYMENT_BONUS_1

Bonus 1

CAT_PAYMENT_BONUS_2

Bonus 2

CAT_PAYMENT_BONUS_3

Bonus 3

CAT_PAYMENT_BONUS_4

Bonus 4

CAT_PAYMENT_BONUS_5

Bonus 5

CAT_PAYMENT_INSTALLMENT_1

Installment 1

CAT_PAYMENT_INSTALLMENT_2

Installment 2

CAT_PAYMENT_INSTALLMENT_3

Installment 3

CAT_PAYMENT_BONUS_COMBINATION_1
Bonus combination payments 1

CAT_PAYMENT_BONUS_COMBINATION_2
Bonus combination payments 2

CAT_PAYMENT_BONUS_COMBINATION_3
Bonus combination payments 3

CAT_PAYMENT_BONUS_COMBINATION_4
Bonus combination payments 4

CAT_PAYMENT_ REVOLVING

Revolving

See Also
PaymentDetail Property
PaymentDetail Property R
Syntax
BSTR PaymentDetail;
Remarks
Contains payment condition details as the result of an authorization operation. Payment details vary depending on the value of PaymentCondition. The data will be stored as comma separated ASCII code. NULL means that no data is stored and represents a BSTR with zero length data.
PaymentCondition
PaymentDetail

CAT_PAYMENT_LUMP
NULL

CAT_PAYMENT_BONUS_1
NULL

CAT_PAYMENT_BONUS_2
Number of bonus payments

CAT_PAYMENT_BONUS_3
1st bonus month

CAT_PAYMENT_BONUS_4*
Number of bonus payments, 1st bonus month, 2nd bonus month, 3rd bonus month, 4th bonus month, 5th bonus month, 6th bonus month

CAT_PAYMENT_BONUS_5*
Number of bonus payments, 1st bonus month, 1st bonus amount, 2nd bonus month, 2nd bonus amount, 3rd bonus month, 3rd bonus amount, 4th bonus month, 4th bonus amount, 5th bonus month, 5th bonus amount, 6th bonus month, 6th bonus amount

CAT_PAYMENT_INSTALLMENT_1
1st billing month, Number of payments

CAT_PAYMENT_INSTALLMENT_2*
1st billing month, Number of payments, 1st amount, 2nd amount, 3rd amount, 4th amount, 5th amount, 6th amount

CAT_PAYMENT_INSTALLMENT_3
1st billing month, Number of payments, 1st amount

CAT_PAYMENT_BONUS_COMBINATION_1
1st billing month, Number of payments

CAT_PAYMENT_BONUS_COMBINATION_2
1st billing month, Number of payments, bonus amount

CAT_PAYMENT_BONUS_COMBINATION_3*
1st billing month, Number of payments, number of bonus payments, 1st bonus month, 2nd bonus month, 3rd bonus month, 4th bonus month, 5th bonus month, 6th bonus month

CAT_PAYMENT_BONUS_COMBINATION_4*
1st billing month, Number of payments, number of bonus payments, 1st bonus month, 1st bonus amount, 2nd bonus month, 2nd bonus amount, 3rd bonus month, 3rd bonus amount, 4th bonus month, 4th bonus amount, 5th bonus month, 5th bonus amount, 6th bonus month, 6th bonus amount

CAT_PAYMENT_REVOLVING
NULL

*Maximum 6 installments
·

·

·

·

·

·

·

·

·

·

·

·

·

·

The payment types and names vary depending on the CAT device. The following are the payment types and terms available for CAT devices. Note that there are some differences between OPOS terms and those used by the CAT devices. The goal of this table is to synchronize these terms.
General Payment Category
Entry item
 PaymentCondition Value

CAT

Name
CAT
(Old CAT)
G-CAT
JET-S
SG-CAT
Master-T

Credit
Card
Not specified
Not specified
JCB
VISA
MASTER

OPOS

Term
Card Company Terms

Lump-sum
(None)
10
Lump-sum
Lump-sum
Lump-sum
Lump-sum
Lump-sum
Lump-sum

Bonus
(None)
21
Bonus 1
Bonus 1
Bonus 1
Bonus 1
Bonus 1
Bonus 1

Number of bonus payments
22
Bonus 2
Bonus 2
Bonus 2
Bonus 2
Bonus 2
Bonus 2

Bonus month(s)
23
Bonus 3
Bonus 3
Does not exist.
Does not exist.
Bonus 3
Bonus 3

Number of bonus payments

Bonus month (1)

Bonus month (2)

Bonus month (3)

Bonus month (4)

Bonus month (5)

Bonus month (6)
24
Bonus 4
Bonus 4
Bonus 3
Bonus 3
Bonus 4
(Up to two entries for bonus month)
Bonus 4

Number of bonus payments

Bonus month (1)

Bonus amount (1)

Bonus month (2)

Bonus amount (2)

Bonus month (3)

Bonus amount (3)

Bonus month (4)

Bonus amount (4)

Bonus month (5)

Bonus amount (5)

Bonus month (6)

Bonus amount (6)
25
Bonus 5
Bonus 5
Does not exist.
Does not exist.
Does not exist.
Bonus 5

Installment
Payment start month

Number of payments
61
Installment 1
Installment 1
Installment 1
Installment 1
Installment 1
Installment 1

Payment start month

Number of payments

Installment amount (1)

Installment amount (2)

Installment amount (3)

Installment amount (4)

Installment amount (5)

Installment amount (6)
62
Installment 2
Installment 2
Does not exist.
Does not exist.
Does not exist.
Does not exist.

Payment start month

Number of payments

Initial amount
63
Installment 3
Installment 3
Installment 2
Installment 2
Does not exist.
Installment 2

Combination
Payment start month

Number of payments
31
Bonus

Combination 1
Bonus

Combination 1
Bonus

Combination 1
Bonus

Combination 1
Bonus

Combination 1
Bonus

Combination 1

Payment start month

Number of payments

Bonus amount
32
Bonus

Combination 2
Bonus

Combination 2
Does not exist.
Does not exist.
Bonus

Combination 2
Bonus

Combination 2

Payment start month

Number of payments

Number of bonus payments

Bonus month (1)

Bonus month (2)

Bonus month (3)

Bonus month (4)

Bonus month (5)

Bonus month (6)
33
Bonus

Combination 3
Bonus

Combination 3
Does not exist.
Does not exist.
Bonus

Combination 3
(Up to two entries for bonus month)
Bonus

Combination 3

Payment start month

Number of payments

Number of bonus payments

Bonus month (1)

Bonus amount (1)

Bonus month (2)

Bonus amount (2)

Bonus month (3)

Bonus amount (3)

Bonus month (4)

Bonus amount (4)

Bonus month (5)

Bonus amount (5)

Bonus month (6)

Bonus amount (6)
34
Bonus

Combination 4
Bonus

Combination 4
Bonus

Combination 2
Bonus

Combination 2
Bonus

Combination 4

(Up to two entries for bonus month and amount)
Bonus

Combination 4

Revolving
(None)
80
Revolving
Revolving
Revolving
Revolving
Revolving
Revolving

See Also
CapPaymentDetail Property

SequenceNumber Property R
Syntax
LONG
 SequenceNumber;
Remarks
Stores a “sequence number” as the result of each method call. This number needs to be checked by an application to see if it matches with the argument SequenceNumber of the originating method.
If the “sequence number” returned from the CAT device is not numeric, the CAT control set this property to zero (0).
This property is initialized to zero (0) by the Open method and is updated when an authorization operation successfully completes
SlipNumber Property R
Syntax
BSTR SlipNumber;
Remarks
Stores a “slip number” as the result of each authorization operation.
This property is initialized to NULL by the Open method and is updated when an authorization operation successfully completes
TrainingMode Property R/W

Syntax
BOOL TrainingMode;
Remarks
If TRUE, each operation will be run in training mode; otherwise each operation will be run in normal mode.

TrainingMode needs to be explicitly set to FALSE by an application to exit from training mode, because it will not automatically be set to FALSE after the completion of an operation.

This property will be initialized to FALSE by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property.

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
CapTrainingMode is FALSE.

TransactionNumber Property R
Syntax
BSTR TransactionNumber;
 Remarks
Stores a “transaction number” as the result of each authorization operation.
This property is initialized to NULL by the Open method and is updated when an authorization operation successfully completes
TransactionType Property R
Syntax
LONG
TransactionType;
Remarks
Stores a “transaction type” as the result of each authorization operation.
This property is initialized to zero (0) by the Open method and is updated when an authorization operation successfully completes.
This property will be set to one of the following values.
Value

Meaning

CAT_TRANSACTION_SALES

Sales

CAT_TRANSACTION_VOID

Cancellation

CAT_TRANSACTION_REFUND

Refund purchase

CAT_TRANSACTION_COMPLETION

Purchase after approval

CAT_TRANSACTION_PRESALES

Pre-authorization

CAT_TRANSACTION_CHECKCARD

Card Check

CAT_TRANSACTION_VOIDPRESALES
Cancel pre-authorization approval

Methods

AccessDailyLog Method

Syntax
LONG AccessDailyLog (LONG SequenceNumber, LONG Type, LONG Timeout);
Parameter
Description

SequenceNumber
The sequence number to get daily log.

Type
Specify whether the daily log is intermediate total or final total and erase.

Timeout
The maximum waiting time (in milliseconds) until the response is received from the CAT device. OPOS_FOREVER(-1), 0, and positive values can be specified.
Remarks
Gets daily log from CAT.

Daily log will be retrieved and stored in DailyLog as specified by SequenceNumber.

When Timeout is OPOS_FOREVER(-1), timeout never occurs and the device waits until it receives response from the CAT.

Application must specify one of the following values for Type for daily log type (either intermediate total or adjustment). Legal values depend upon the CapDailyLog value.
Value

Meaning

CAT_DL_REPORTING

Intermediate total.

CAT_DL_SETTLEMENT
Final total and erase.
Return
One of the following values is returned by the method and placed in the ResultCode property.

Value
Meaning

OPOS_SUCCESS
Acquisition processing was successful.

OPOS_E_ILLEGAL
Invalid or unsupported Type or Timeout parameter was specified, or CapDailyLog is FALSE.

OPOS_E_TIMEOUT
No response was received from CAT during the specified Timeout time in milliseconds.

OPOS_E_EXTENDED
The detail code has been stored in ResultCodeExtended.

OPOS_E_BUSY
The CAT device cannot accept any commands now.

Other Values
See ResultCode.

See Also
CapDailyLog Property, DailyLog Property

AuthorizeCompletion Method
Syntax
LONG AuthorizeCompletion (LONG SequenceNumber, CURRENCY Amount, CURRENCY TaxOthers, LONG Timeout);
Parameter
Description

SequenceNumber
Sequence number for approval

Amount
Purchase amount for approval

TaxOthers
Tax and other amounts for approval

Timeout
The maximum waiting time (in milliseconds) until the response is received from the CAT device. OPOS_FOREVER(-1), 0 and positive values can be specified.
Remarks
Purchase after approval is intended.

Sales after approval for Amount and TaxOthers is intended as the approval specified by SequenceNumber.

When Timeout is OPOS_FOREVER(-1), timeout never occurs and the device waits until it receives response from the CAT.

Return
One of the following values is returned by the method and placed in the ResultCode property.

Value
Meaning

OPOS_SUCCESS
Approval processing was successful.

OPOS_E_ILLEGAL
Invalid Timeout parameter was specified, or CapAuthorizeCompletion is FALSE.
OPOS_E_TIMEOUT
No response was received from CAT during the specified
Timeout time in milliseconds.

OPOS_E_EXTENDED
The detail code has been stored in ResultCodeExtended.

OPOS_E_BUSY
The CAT device cannot accept any commands now.

Other Values
See ResultCode.

.

See Also
CapAuthorizeCompletion Property
AuthorizePreSales Method
Syntax
LONG AuthorizePreSales (LONG SequenceNumber, CURRENCY Amount, CURRENCY TaxOthers, LONG Timeout);
Parameter
Description

SequenceNumber
Sequence number for approval

Amount
Purchase amount for approval

TaxOthers
Tax and other amounts for approval

Timeout
The maximum waiting time (in milliseconds) until the response is received from the CAT device. OPOS_FOREVER(-1), 0 and positive values can be specified.

Remarks
Makes a pre-authorization.

Pre-authorization for Amount and TaxOthers is made as the approval specified by SequenceNumber.

When Timeout is OPOS_FOREVER(-1), timeout never occurs and the device waits until it receives response from the CAT.

Return
One of the following values is returned by the method and placed in the ResultCode property.

Value
Meaning

OPOS_SUCCESS
Approval processing was successful.

OPOS_E_ILLEGAL
Invalid Timeout parameter was specified, or CapAuthorizePreSales is FALSE.

OPOS_E_TIMEOUT
No response was received from CAT during the specified
Timeout time in milliseconds.

OPOS_E_EXTENDED
The detail code has been stored in ResultCodeExtended.

OPOS_E_BUSY
The CAT device cannot accept any commands now.

Other Values
See ResultCode.
See Also
CapAuthorizePreSales Property
AuthorizeRefund Method
Syntax
LONG AuthorizeRefund (LONG SequenceNumber, CURRENCY Amount, CURRENCY TaxOthers, LONG Timeout);
Parameter
Description

SequenceNumber
Sequence number for approval

Amount
Purchase amount for approval

TaxOthers
Tax and other amounts for approval

Timeout
The maximum waiting time (in milliseconds) until the response is received from the CAT device. OPOS_FOREVER(-1), 0 and positive values can be specified.

Remarks
Refund purchase approval is intended.

Refund purchase approval for Amount and TaxOthers is intended as the approval specified by SequenceNumber.

When Timeout is OPOS_FOREVER(-1), timeout never occurs and the device waits until it receives response from the CAT.

Return
One of the following values is returned by the method and placed in the ResultCode property.

Value
Meaning

OPOS_SUCCESS
Approval processing was successful.

OPOS_E_ILLEGAL
Invalid Timeout parameter was specified, or CapAuthorizeRefund is FALSE.

OPOS_E_TIMEOUT
No response was received from CAT during the specified Timeout time in milliseconds.

OPOS_E_EXTENDED
The detail code has been stored in ResultCodeExtended.

OPOS_E_BUSY
The CAT device cannot accept any commands now.

Other Values
See ResultCode.
See Also
CapAuthorizeRefund Property
AuthorizeSales Method
Syntax
LONG AuthorizeSales (LONG SequenceNumber, CURRENCY Amount, CURRENCY TaxOthers, LONG Timeout);
Parameter
Description

SequenceNumber
Sequence number for approval

Amount
Purchase amount for approval

TaxOthers
Tax and other amounts for approval

Timeout
The maximum waiting time (in milliseconds) until the response is received from the CAT device. OPOS_FOREVER(-1), 0 and positive values can be specified.

Remarks
Normal purchase approval is intended.

Normal purchase approval for Amount and TaxOthers is intended as the approval specified by SequenceNumber.

When Timeout is OPOS_FOREVER(-1), timeout never occurs and the device waits until it receives response from the CAT.

Return
One of the following values is returned by the method and placed in the ResultCode property.

Value
Meaning

OPOS_SUCCESS
Approval processing was successful.

OPOS_E_ILLEGAL
Invalid Timeout parameter was specified.

OPOS_E_TIMEOUT
No response was received from CAT during the specified Timeout time in milliseconds.

OPOS_E_EXTENDED
The detail code has been stored in ResultCodeExtended.

OPOS_E_BUSY
The CAT device cannot accept any commands now.

Other Values
See ResultCode.
AuthorizeVoid Method
Syntax
LONG AuthorizeVoid (LONG SequenceNumber, CURRENCY Amount, CURRENCY TaxOthers, LONG Timeout);
Parameter
Description

SequenceNumber
Sequence number for approval

Amount
Purchase amount for approval

TaxOthers
Tax and other amounts for approval

Timeout
The maximum waiting time (in milliseconds) until the response is received from the CAT device. OPOS_FOREVER(-1), 0 and positive values can be specified.

Remarks
Purchase cancellation approval is intended.

Cancellation approval for Amount and TaxOthers is intended as the approval specified by SequenceNumber.

When Timeout is OPOS_FOREVER(-1), timeout never occurs and the device waits until it receives response from the CAT.

Return
One of the following values is returned by the method and placed in the ResultCode property.

Value
Meaning

OPOS_SUCCESS
Approval processing was successful.

OPOS_E_ILLEGAL
Invalid Timeout parameter was specified, or CapAuthorizeVoid is FALSE.

OPOS_E_TIMEOUT
No response was received from CAT during the specified Timeout time in milliseconds.

OPOS_E_EXTENDED
The detail code has been stored in ResultCodeExtended.

OPOS_E_BUSY
The CAT device cannot accept any commands now.

Other Values
See ResultCode.
See Also
CapAuthorizeVoid Property
AuthorizeVoidPreSales Method
Syntax
LONG AuthorizeVoidPreSales (LONG SequenceNumber, CURRENCY Amount, CURRENCY TaxOthers, LONG Timeout);
Parameter
Description

SequenceNumber
Sequence number for approval

Amount
Purchase amount for approval

TaxOthers
Tax and other amounts for approval

Timeout
The maximum waiting time (in milliseconds) until the response is received from the CAT device. OPOS_FOREVER(-1), 0 and positive values can be specified.

Remarks
Pre-authorization cancellation approval is intended.

Pre-authorization cancellation approval for Amount and TaxOthers is intended as the approval specified by SequenceNumber.

When Timeout is OPOS_FOREVER(-1), timeout never occurs and the device waits until it receives response from the CAT.

Normal cancellation could be used for CAT control and CAT devices which have not implemented the pre-authorization approval cancellation. Refer to the documentation supplied with CAT device and / or CAT control.
Return
One of the following values is returned by the method and placed in the ResultCode property.

Value
Meaning

OPOS_SUCCESS
Approval processing was successful.

OPOS_E_ILLEGAL
Invalid Timeout parameter was specified, or CapAuthorizeVoidPreSales is FALSE.

OPOS_E_TIMEOUT
No response was received from CAT during the specified Timeout time in milliseconds.

OPOS_E_EXTENDED
The detail code has been stored in ResultCodeExtended.

OPOS_E_BUSY
The CAT device cannot accept any commands now.

Other Values
See ResultCode.
See Also
CapAuthorizeVoidPreSales Property
CheckCard Method
Syntax
LONG CheckCard (LONG SequenceNumber, LONG Timeout);
Parameter
Description

SequenceNumber
Sequence number for approval

Timeout
The maximum waiting time (in milliseconds) until the response is received from the CAT device. OPOS_FOREVER(-1), 0 and positive values can be specified.
Remarks
Card Check is intended.

Card Check will be made as specified by SequenceNumber.

When Timeout is OPOS_FOREVER(-1), timeout never occurs and the device waits until it receives response from the CAT.

Return
One of the following values is returned by the method and placed in the ResultCode property.

Value
Meaning

OPOS_SUCCESS
Approval processing was successful.

OPOS_E_ILLEGAL
Invalid Timeout parameter was specified, or CapCheckCard is FALSE.

OPOS_E_TIMEOUT
No response was received from CAT during the specified Timeout time in milliseconds.

OPOS_E_EXTENDED
The detail code has been stored in ResultCodeExtended.

OPOS_E_BUSY
The CAT device cannot accept any commands now.

Other Values
See ResultCode.
See Also
CapCheckCard Property

Events
ErrorEvent Event
Syntax
void ErrorEvent (LONG ResultCode, LONG ResultCodeExtended, LONG ErrorLocus, LONG* pErrorResponse);

Parameter
Description

ResultCode
The code which caused the error event. Remarks
ResultCode for the value.
ResultCodeExtended
The extended code which caused the error event. Remarks
the value below for the value.

ErrorLocus
OPOS_EL_OUTPUT is specified. An error occurred
during asynchronous action.

pErrorResponse
Pointer to the error event response. Remarks the value
below.

If ResultCode is OPOS_E_EXTENDED, ResultCodeExtended will be set to one of the following values.

Value
Meaning

OPOS_ECAT_CENTERERROR
An error was returned from the approval agency. The detail error code is defined in CenterResultCode.
OPOS_ECAT_COMMANDERR
The command sent to CAT is wrong. This error is never returned so long as CAT control is working correctly.

OPOS_ECAT_RESET
CAT was stopped during processing by CAT reset key (stop key) and so on.

OPOS_ECAT_COMMUNICATIONERROR
Communication error has occurred between the approval agency and CAT.

OPOS_ECAT_DAILYLOGOVERFLOW
Daily log was too big to be stored. Keeping daily log has been stopped and the value of DailyLog property is uncertain.
The content of the position specified by pErrorResponse will be preset to the default value of OPOS_ER_RETRY. An application sets one of the following values.

Value
Meaning

OPOS_ER_RETRY
Retries the asynchronous processing. The error state is exited.
OPOS_ER_CLEAR
Clear the asynchronous processing. The error state is exited.

Remarks
Fired when an error is detected while processing an asynchronous authorize group method or the AccessDailyLog method. The control’s State transitions into the error state.
See Also
Status, Result Code, and State Model”
Chapter 6
Coin Dispenser

Summary

Properties

Common

Type
Access
Initialized After

AutoDisable
1.2
Boolean
R/W
Not Supported

BinaryConversion
1.2
Long
R/W
Open

CapPowerReporting
1.3
Long
R
Open

CheckHealthText
1.0
String
R
Open

Claimed
1.0
Boolean
R
Open

DataCount
1.2
Long
R
Not Supported

DataEventEnabled
1.0
Boolean
R/W
Not Supported

DeviceEnabled
1.0
Boolean
R/W
Open & Claim

FreezeEvents
1.0
Boolean
R/W
Open

OutputID
1.0
Long
R
Not Supported

PowerNotify
1.3
Long
R/W
Open

PowerState
1.3
Long
R
Open

ResultCode
1.0
Long
R
--

ResultCodeExtended
1.0
Long
R
Open

State
1.0
Long
R
--

ControlObjectDescription
1.0
String
R
--

ControlObjectVersion
1.0
Long
R
--

ServiceObjectDescription
1.0
String
R
Open

ServiceObjectVersion
1.0
Long
R
Open

DeviceDescription
1.0
String
R
Open

DeviceName
1.0
String
R
Open

Specific

Type
Access
Initialized After

CapEmptySensor
1.0
Boolean
R
Open

CapJamSensor
1.0
Boolean
R
Open

CapNearEmptySensor
1.0
Boolean
R
Open

DispenserStatus
1.0
Long
R
Open, Claim, & Enable

Methods

Common

May Use After

Open
1.0
--

Close
1.0
Open

Claim
1.0
Open

Release
1.0
Open & Claim

CheckHealth
1.0
Open, Claim, & Enable

ClearInput
1.0
Not Supported

ClearOutput
1.0
Not Supported

DirectIO
1.0
Open

Specific

DispenseChange
1.0
Open, Claim, & Enable

Events

Name

May Occur After

DataEvent
1.0
Not Supported

DirectIOEvent
1.0
Open, Claim

ErrorEvent
1.0
Not Supported

OutputCompleteEvent
1.0
Not Supported

StatusUpdateEvent
1.0
Open, Claim, & Enable

General Information

The Coin Dispenser Control’s OLE programmatic ID is “OPOS.CoinDispenser”.

Capabilities

The coin dispenser has the following capability:

· Supports a method that allows a specified amount of change to be dispensed from the device.

The coin dispenser may have the following additional capability:

· Coin dispenser status reporting, which indicates empty coin slot conditions, near empty coin slot conditions, and coin slot jamming conditions.

Model

The general model of a coin dispenser is:

· A coin dispenser consists of a number of coin slots which hold the coinage to be dispensed. The programmer using the Coin Dispenser Control is not concerned with controlling the individual slots of coinage, but rather calls a method with the amount of change to be dispensed. It is the responsibility of the coin dispenser device or the Control to dispense the proper amount of change from the various slots.

Device Sharing

The coin dispenser is an exclusive-use device. Its device sharing rules are:

· The application must claim the device before enabling it.

· The application must claim and enable the device before accessing some of the properties, dispensing change, or receiving status update events.

· See the “Summary” table for precise usage prerequisites.

Properties

CapEmptySensor Property

Syntax
BOOL CapEmptySensor;

Remarks
If TRUE, the coin dispenser can report an out-of-coinage condition;
otherwise it is FALSE.

This property is initialized by the Open method.

CapJamSensor Property

Syntax
BOOL CapJamSensor;

Remarks
If TRUE, the coin dispenser can report a mechanical jam or failure condition;
otherwise it is FALSE.

This property is initialized by the Open method.

CapNearEmptySensor Property

Syntax
BOOL CapNearEmptySensor;

Remarks
If TRUE, the coin dispenser can report when it is almost out of coinage;
otherwise it is FALSE.

This property is initialized by the Open method.

DispenserStatus Property

Syntax
LONG DispenserStatus;

Remarks
Holds the current status of the dispenser. It may be one of the following:

Value
Meaning

COIN_STATUS_OK
Ready to dispense coinage. This value is also set when the dispenser is unable to detect an error condition.

COIN_STATUS_EMPTY
Cannot dispense coinage because it is empty.

COIN_STATUS_NEAREMPTY
Can still dispense coinage, but it nearly empty.

COIN_STATUS_JAM
A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled.

Methods

DispenseChange Method

Syntax
LONG DispenseChange (LONG Amount);
The Amount parameter contains the amount of change to be dispensed.

Remarks
Call to dispense change. The value represented by the Amount parameter is a count of the currency units to dispense (such as cents or yen).

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The specified change was dispensed successfully.

OPOS_E_ILLEGAL
An Amount parameter value of zero was specified, or the Amount parameter contained a negative value or a value greater than the device can dispense.

Other Values
See ResultCode.

Events

StatusUpdateEvent

Syntax
void StatusUpdateEvent (LONG Status);
The Status parameter contains the coin dispenser status condition:

Value
Meaning

COIN_STATUS_OK
Ready to dispense coinage. This value is also set when the dispenser is unable to detect an error condition.

COIN_STATUS_EMPTY
Cannot dispense coinage because it is empty.

COIN_STATUS_NEAREMPTY
Can still dispense coinage, but is nearly empty.

COIN_STATUS_JAM
A mechanical fault has occurred.

Power reporting StatusUpdateEvent values
See StatusUpdateEvent description on page 68.

Remarks
Fired when a coin dispenser sensor indicates a status change.

The coin dispenser is only able to fire status event changes for the sensor types supported by the values described in the capabilities properties.

Chapter 7
Fiscal Printer

Summary

Properties

Common

Type
Access
Initialized After

AutoDisable
1.3
Boolean
R/W
Not Supported

BinaryConversion
1.3
Long
R/W
Open

CheckHealthText
1.3
String
R
Open

Claimed
1.3
Boolean
R
Open

DataCount
1.3
Long
R
Not Supported

DataEventEnabled
1.3
Boolean
R/W
Not Supported

DeviceEnabled
1.3
Boolean
R/W
Open & Claim

FreezeEvents
1.3
Boolean
R/W
Open

OutputID
1.3
Long
R
Open

PowerState
1.3
Long
R
Open

PowerNotify
1.3
Long
R/W
Open

ResultCode
1.3
Long
R
--

ResultCodeExtended
1.3
Long
R
Open

State
1.3
Long
R
--

ControlObjectDescription
1.3
String
R
--

ControlObjectVersion
1.3
Long
R
--

ServiceObjectDescription
1.3
String
R
Open

ServiceObjectVersion
1.3
Long
R
Open

DeviceDescription
1.3
String
R
Open

DeviceName
1.3
String
R
Open

Specific

Type
Access
Initialized After

CapAdditionalLines
1.3
Boolean
R
Open

CapAmountAdjustment
1.3
Boolean
R
Open

CapAmountNotPaid
1.3
Boolean
R
Open

CapCheckTotal
1.3
Boolean
R
Open

CapCoverSensor (2)
1.3
Boolean
R
Open

CapDoubleWidth
1.3
Boolean
R
Open

CapDuplicateReceipt
1.3
Boolean
R
Open

CapFixedOutput
1.3
Boolean
R
Open

CapHasVatTable
1.3
Boolean
R
Open

CapIndependentHeader
1.3
Boolean
R
Open

CapItemList
1.3
Boolean
R
Open

CapJrnEmptySensor (2)
1.3
Boolean
R
Open

CapJrnNearEndSensor (2)
1.3
Boolean
R
Open

CapJrnPresent (2)
1.3
Boolean
R
Open

CapNonFiscalMode
1.3
Boolean
R
Open

CapOrderAdjustmentFirst
1.3
Boolean
R
Open

CapPercentAdjustment
1.3
Boolean
R
Open

CapPositiveAdjustment

1.3
Boolean
R
Open

CapPowerLossReport
1.3
Boolean
R
Open

CapPredefinedPayment
 Lines
1.3
Boolean
R
Open

CapReceiptNotPaid
1.3
Boolean
R
Open

CapRecEmptySensor (2)
1.3
Boolean
R
Open

CapRecNearEndSensor (2)
1.3
Boolean
R
Open

CapRecPresent (2)
1.3
Boolean
R
Open

CapRemainingFiscal
 Memory
1.3
Boolean
R
Open

CapReservedWord
1.3
Boolean
R
Open

CapSetHeader
1.3
Boolean
R
Open

CapSetPOSID
1.3
Boolean
R
Open

CapSetStoreFiscalID
1.3
Boolean
R
Open

CapSetTrailer
1.3
Boolean
R
Open

CapSetVatTable
1.3
Boolean
R
Open

Specific (continued)

Type
Access
Initialized After

CapSlpEmptySensor (2)
1.3
Boolean
R
Open

CapSlpFiscalDocument
1.3
Boolean
R
Open

CapSlpFullSlip (2)
1.3
Boolean
R
Open

CapSlpNearEndSensor (2)
1.3
Boolean
R
Open

CapSlpPresent (2)
1.3
Boolean
R
Open

CapSlpValidation
1.3
Boolean
R
Open

CapSubAmountAdjustment
1.3
Boolean
R
Open

CapSubPercentAdjustment
1.3
Boolean
R
Open

CapSubtotal
1.3
Boolean
R
Open

CapTrainingMode
1.3
Boolean
R
Open

CapValidateJournal
1.3
Boolean
R
Open

CapXReport
1.3
Boolean
R
Open

AmountDecimalPlaces
1.3
Long
R
Open, Claim, & Enable

AsyncMode
1.3
Boolean
R/W
Open

CheckTotal
1.3
Boolean
R/W
Open

CountryCode
1.3
Long
R
Open, Claim, & Enable

CoverOpen (2)
1.3
Boolean
R
Open, Claim, & Enable

DayOpened
1.3
Boolean
R
Open, Claim, & Enable

DescriptionLength
1.3
Long
R
Open

DuplicateReceipt
1.3
Boolean
R/W
Open

ErrorLevel
1.3
Long
R
Open

ErrorOutID
1.3
Long
R
Open, Claim & Enable

ErrorState
1.3
Long
R
Open

ErrorStation
1.3
Long
R
Open

ErrorString
1.3
String
R
Open

FlagWhenIdle
1.3
Boolean
R/W
Open

JrnEmpty (2)
1.3
Boolean
R
Open, Claim, & Enable

JrnNearEnd (2)
1.3
Boolean
R
Open, Claim, & Enable

MessageLength
1.3
Long
R
Open

NumHeaderLines
1.3
Long
R
Open

NumTrailerLines
1.3
Long
R
Open

NumVatRates
1.3
Long
R
Open

PredefinedPaymentLines
1.3
String
R
Open

PrinterState
1.3
Long
R
Open, Claim, & Enable

QuantityDecimalPlaces
1.3
Long
R
Open, Claim, & Enable

QuantityLength
1.3
Long
R
Open, Claim, & Enable

RecEmpty (2)
1.3
Boolean
R
Open, Claim, & Enable

RecNearEnd (2)
1.3
Boolean
R
Open, Claim, & Enable

RemainingFiscalMemory
1.3
Long
R
Open, Claim, & Enable

ReservedWord (1)
1.3
String
R
Open

SlpEmpty (2)
1.3
Boolean
R
Open, Claim, & Enable

SlpNearEnd (2)
1.3
Boolean
R
Open, Claim, & Enable

SlipSelection
1.3
Long
R/W
Open, Claim, & Enable

TrainingModeActive
1.3
Boolean
R
Open, Claim, & Enable

Methods

Common

May Use After

Open
1.3
--

Close
1.3
Open

Claim
1.3
Open

Release
1.3
Open & Claim

CheckHealth
1.3
Open, Claim, & Enable

ClearInput
1.3
Not Supported

ClearOutput
1.3
Open & Claim

DirectIO
1.3
Open

Specific - Presetting Fiscal

SetDate
1.3
Open, Claim, & Enable

SetHeaderLine
1.3
Open, Claim, & Enable

SetPOSID (1)
1.3
Open, Claim, & Enable

SetStoreFiscalID
1.3
Open, Claim, & Enable

SetTrailerLine
1.3
Open, Claim, & Enable

SetVatTable
1.3
Open, Claim, & Enable

SetVatValue
1.3
Open, Claim, & Enable

Specific - Fiscal Receipt

BeginFiscalReceipt
1.3
Open, Claim, & Enable

EndFiscalReceipt
1.3
Open, Claim, & Enable

PrintDuplicateReceipt
1.3
Open, Claim, & Enable

PrintRecItem
1.3
Open, Claim, & Enable

PrintRecItemAdjustment
1.3
Open, Claim, & Enable

PrintRecMessage
1.3
Open, Claim, & Enable

PrintRecNotPaid
1.3
Open, Claim, & Enable

PrintRecRefund
1.3
Open, Claim, & Enable

PrintRecSubtotal
1.3
Open, Claim, & Enable

PrintRecSubtotalAdjustment
1.3
Open, Claim, & Enable

PrintRecTotal
1.3
Open, Claim, & Enable

PrintRecVoid
1.3
Open, Claim, & Enable

PrintRecVoidItem
1.3
Open, Claim, & Enable

Specific (continued)

May Use After

Specific - Fiscal Document

BeginFiscalDocument
1.3
Open, Claim, & Enable

EndFiscalDocument
1.3
Open, Claim, & Enable

PrintFiscalDocumentLine
1.3
Open, Claim, & Enable

Specific - Item Lists

BeginItemList (1)
1.3
Open, Claim, & Enable

EndItemList (1)
1.3
Open, Claim, & Enable

VerifyItem (1)
1.3
Open, Claim, & Enable

Specific - Fiscal Reports

PrintPeriodicTotalsReport
1.3
Open, Claim, & Enable

PrintPowerLossReport
1.3
Open, Claim, & Enable

PrintReport
1.3
Open, Claim, & Enable

PrintXReport
1.3
Open, Claim, & Enable

PrintZReport
1.3
Open, Claim, & Enable

Specific - Slip Insertion

BeginInsertion (2)
1.3
Open, Claim, & Enable

BeginRemoval (2)
1.3
Open, Claim, & Enable

EndInsertion (2)
1.3
Open, Claim, & Enable

EndRemoval (2)
1.3
Open, Claim, & Enable

Specific - Non-Fiscal

BeginFixedOutput (1)
1.3
Open, Claim, & Enable

BeginNonFiscal
1.3
Open, Claim, & Enable

BeginTraining
1.3
Open, Claim, & Enable

EndFixedOutput (1)
1.3
Open, Claim, & Enable

EndNonFiscal
1.3
Open, Claim, & Enable

EndTraining
1.3
Open, Claim, & Enable

PrintFixedOutput (1)
1.3
Open, Claim, & Enable

PrintNormal
1.3
Open, Claim, & Enable

Specific (continued)

May Use After

Specific - Data Requests

GetData
1.3
Open, Claim, & Enable

GetDate
1.3
Open, Claim, & Enable

GetTotalizer
1.3
Open, Claim, & Enable

GetVatEntry (1)
1.3
Open, Claim, & Enable

Specific - Error Correction

ClearError
1.3
Open, Claim, & Enable

ResetPrinter
1.3
Open, Claim, & Enable

Events

Name

May Occur After

DataEvent
1.3
Not Supported

DirectIOEvent
1.3
Open

ErrorEvent
1.3
Open, Claim, & Enable

OutputCompleteEvent
1.3
Open, Claim, & Enable

StatusUpdateEvent
1.3
Open, Claim, & Enable

All methods and properties marked with (1) are specific to at least one particular country and are not required by the fiscal legislation of all countries.

Properties and methods marked with (2) are adapted from the POS Printer device.

General Information

The Fiscal Printer Control’s OLE programmatic ID is “OPOS.FiscalPrinter”.

This device was added in OPOS Release 1.3.

The fiscal printer OLE Control does not attempt to encapsulate the generic Windows graphics printer. Rather, for performance and ease of use considerations, the interfaces are defined to directly control a printer.

Since fiscal rules differ between countries, this interface tries to generalize the common requirements at the maximum extent specifications. This interface is based upon the fiscal requirements of the following countries, but it may fit the needs of other countries as well:

· Brazil

· Greece

· Hungary

· Italy

· Poland

· Turkey

The printer model defines three stations with the following general uses:

· Journal Used to log transaction information. Must be kept by the store for audit.

· Receipt Used to print transaction information. It is mandatory to give a printed fiscal receipt to the customer. Contains either a knife to cut the paper between transactions, or a tear bar to manually cut the paper.

· Slip Used to print information on a form. Usually given to the customer.

Also used to print “validation” information on a form. The form type is typically a check or credit card slip.

Configuration and initialization of the fiscal memory of the printer are not covered in this specification. These low level operations must be performed by technical assistance personnel.

Device Sharing

The Fiscal Printer is an exclusive-use device, as follows:

· The application must claim the device before enabling it.

· The application must claim and enable the device before accessing many printer-specific properties.

· The application must claim and enable the device before calling methods that manipulate the device.

General requirements

Fiscal printers do not simply print text as standard printers do, they are used to monitor and memorize all fiscal information about a sale transaction. A fiscal printer has to accumulate totals, discounts, number of canceled receipts, taxes, etc. In order to do this, it is not sufficient to send unformatted strings of text to the printer; there is a need to separate each individual field in a receipt line item, thus differentiating between descriptions, prices and discounts. Moreover, it is necessary to define different printing commands for each different sale functionality (such as refund, item or void).

Fiscal rules are different among countries. This interface tries to generalize these requirements by summarizing the common requirements. Fiscal law requires that:

· Fiscal receipts must be printed and given to the customer.

· Fiscal printers must be equipped with memory to store daily totals. Each receipt line item must increment totals registers and, in most countries (Greece, Poland, Brazil, Hungary and Turkey) tax registers as well.

· Discounts, canceled items and canceled receipts must increment their associated registers on the printer.

· Fiscal printer must include a clock to store date and time information relative to each single receipt.

· Each fiscal receipt line item is printed both on the receipt and on the journal. (Italy, Greece, Poland)

· After a power failure (or a turn off) the fiscal printer must be in the same state as it was before this event occurred. This implies that care must be taken in managing the fiscal printer status and that power failure events must be managed by the application. In some countries a power failure must be logged and a report must be printed.

Printer Modes

According to fiscal rules, it is possible for a fiscal printer to also offer functionality beyond the required fiscal printing mode. These additional modes are optional and may or may not be present on any particular fiscal printer.

There are three possible printer modes:

· Fiscal: This is the only required mode for a fiscal printer. In this mode the application has access to all the methods needed to manage a sale transaction and to print a fiscal receipt. It is assumed that any lines printed to the receipt station while in fiscal mode are also printed on the journal station.

· Training: In this mode the printer is used for training purposes (such as cashier training). In this mode the printer will accept fiscal commands but the printer will indicate on each receipt or document that the transaction is not an actual fiscal transaction. The printer will not update any of its internal fiscal registers while in training mode. Such printed receipts are usually marked as “training” receipts by fiscal printers.
The CapTrainingMode property will be set to TRUE if the printer supports training mode, FALSE otherwise.

· Non-Fiscal: In this mode the printer can be used to print simple text on the receipt station (echoed on the journal station) or the slip station. The printer will print some additional lines along with the application requested output to indicate that this output is not of a fiscal nature. Such printed receipts are usually marked as “non-fiscal” receipts by fiscal printers.
The CapNonFiscalMode property will be set to TRUE if the printer supports non-fiscal printing, FALSE otherwise.

Model

The Fiscal Printer follows the general output model, with some enhancements:

· Most methods are always performed synchronously. Synchronous methods will fail if asynchronous output is outstanding.

· The following methods are performed either synchronously or asynchronously, depending on the value of the AsyncMode property:

PrintFiscalDocumentLine
PrintFixedOutput
PrintNormal
PrintRecItem
PrintRecItemAdjustment
PrintRecMessage
PrintRecNotPaid
PrintRecRefund
PrintRecSubtotal
PrintRecSubtotalAdjustment
PrintRecTotal
PrintRecVoid
PrintRecVoidItem

When AsyncMode is FALSE, then these methods print synchronously and return their completion status to the application.

When AsyncMode is TRUE, then these methods operate as follows:

· The Control buffers the request, sets the OutputID property to an identifier for this request, and returns as soon as possible. When the device completes the request successfully, then the Control fires an OutputCompleteEvent. A parameter of this event contains the OutputID of the completed request.

Asynchronous printer methods will not return an error status due to a printing problem, such as out of paper or printer fault. These errors will only be reported by an ErrorEvent. An error status is returned only if the printer is not claimed and enabled, a parameter is invalid, or the request cannot be enqueued. The first two error cases are due to an application error, while the last is a serious system resource exception.

· If an error occurs while performing an asynchronous request, an ErrorEvent is enqueued and delivered. The ErrorStation property is set to the station or stations that were printing when the error occurred. The ErrorLevel, ErrorString and ErrorState and ErrorOutID properties are also set.

The event handler may call synchronous print methods (but not asynchronous methods), then can either retry the outstanding output or clear it.

· The Control guarantees that asynchronous output is performed on a first-in first-out basis.

· All output buffered by OPOS may be deleted by calling the ClearOutput method. OutputCompleteEvents will not be fired for cleared output. This method also stops any output that may be in progress (when possible).

· The property FlagWhenIdle may be set to cause the Control to fire a StatusUpdateEvent when all outstanding outputs have finished, whether successfully or because they were cleared.

ErrorModelThe printer error reporting model is as follows:

· Most of the fiscal printer error conditions are reported by setting the ResultCode to OPOS_E_EXTENDED and then setting ResultCodeExtended to one of the following error conditions:

OPOS_EFPTR_COVER_OPEN
The printer cover is open.

OPOS_EFPTR_JRN_EMPTY
The journal station has run out of paper.

OPOS_EFPTR_REC_EMPTY
The receipt station has run out of paper.

OPOS_EFPTR_SLP_EMPTY
The slip station has run out of paper.

OPOS_EFPTR_MISSING_DEVICES:
Some of the other devices which according to the local fiscal legislation are to be connected are missing. In some countries in order to use a fiscal printer a full set of peripheral devices are to be connected to the POS (such as cash drawer and customer display). In case one of these devices is not present sales are not allowed.

OPOS_EFPTR_WRONG_STATE
The requested method could not be executed in the printer’s current state.

OPOS_EFPTR_TECHNICAL_ASSISTANCE
The printer has encountered a severe error condition. Calling for printer technical assistance is required.

OPOS_EFPTR_CLOCK_ERROR
The printer’s internal clock has failed.

OPOS_EFPTR_FISCAL_MEMORY_FULL
The printer’s fiscal memory has been exhausted.

OPOS_EFPTR_FISCAL_MEMORY_DISCONNECTED
The printer’s fiscal memory has been disconnected.

OPOS_EFPTR_FISCAL_TOTALS_ERROR
The Grand Total in working memory does not match the one in the EPROM.

OPOS_EFPTR_BAD_ITEM_QUANTITY
The Quantity parameter is invalid.

OPOS_EFPTR_BAD_ITEM_AMOUNT
The Amount parameter is invalid.

OPOS_EFPTR_BAD_ITEM_DESCRIPTION
The Description parameter is either too long, contains illegal characters or contains a reserved word.

OPOS_EFPTR_RECEIPT_TOTAL_OVERFLOW
The receipt total has overflowed.

OPOS_EFPTR_BAD_VAT
The Vat parameter is invalid.

OPOS_EFPTR_BAD_PRICE
The Price parameter is invalid.

OPOS_EFPTR_BAD_DATE
The date parameter is invalid.

OPOS_EFPTR_NEGATIVE_TOTAL
The printer’s computed total or subtotal is less than zero.

OPOS_EFPTR_WORD_NOT_ALLOWED
The description contains the reserved word.

· Other printer errors are reported by setting the ResultCode to OPOS_E_FAILURE or another standard error status. These failures are typically due to a printer fault or jam, or to a more serious error.

SET PrinterStates * MERGEFORMAT Printer Stateshere

SET PrinterStates * MERGEFORMAT
As previously described, a fiscal printer is characterized by different printing modes. Moreover, the set of commands that can be executed at a particular moment depends upon the current state of the printer.

The current state of the fiscal printer is kept in the PrinterState property.

The fiscal printer has the following states:

· Monitor:
This is a neutral state. From this state it is possible to move to most of the other printer states. After a successful call to the Claim method and successful setting of the DeviceEnabled property to TRUE the printer should be in this state unless there is a printer error.

· Fiscal Receipt:
The printer is processing a fiscal receipt. All PrintRec… methods are available for use while in this state. This state is entered from the Monitor state using the BeginFiscalReceipt method.

· Fiscal Receipt Total:
The printer has already accepted at least one payment method, but the receipt’s total amount has not yet been tendered. This state is entered from the Fiscal Receipt state by use of the PrintRecTotal method. The printer remains in this state while the total remains unpaid. This state can left by using the PrintRecTotal, PrintRecNotPaid or PrintRecVoid methods.

· Fiscal Receipt Ending:
The printer has completed the receipt up to the Total line. In this state it may be possible to print general messages using the PrintRecMessage method if it is supported by the printer. This state is entered from the Fiscal Receipt state via the PrintRecVoid method or from the Fiscal Receipt Total state using either the PrintRecTotal, PrintRecNotPaid or PrintRecVoid methods. This state is exited using the EndFiscalReceipt method at which time the printer returns to the Monitor state.

· Fiscal Document:
The printer is processing a fiscal document. The printer will accept the PrintFiscalDocumentLine method while in this state. This state is entered from the Monitor state using the BeginFiscalDocument method. This state is exited using the EndFiscalDocument method at which time the printer returns to the Monitor state.

· Monitor and TrainingModeActive = TRUE:
The printer is being used for training purposes. All fiscal receipt and document commands are available. This state is entered from the Monitor state using the BeginTraining method. This state is exited using the EndTraining method at which time the printer returns to the Monitor state.

· Fiscal Receipt and TrainingModeActive = TRUE:
The printer is being used for training purposes and a receipt is currently opened. To each line of the receipt special text will be added in order to differentiate it from a fiscal receipt.

· Fiscal Total and TrainingModeActive = TRUE:
The printer is in training mode and receipt total is being handled.

· Fiscal ReceiptEnding and TrainingModeActive = TRUE:
The printer is being used for training is in the receipt ending phase.

· NonFiscal:
The printer is printing non-fiscal output on either the receipt (echoed on the journal) or the slip. In this state the printer will accept the PrintNormal method. The printer prints a message that indicates that this is non-fiscal output with all application text. This state is entered from the Monitor state using the BeginNonFiscal method. This state is exited using the EndNonFiscal method at which time the printer returns to the Monitor state.

· Fixed:
The printer is being used to print fixed, non-fiscal output to one of the printer’s stations. In this state the printer will accept the PrintFixedOutput method. This state is entered from the Monitor state using the BeginFixedOutput method. This state is exited using the EndFixedOutput method at which time the printer returns to the Monitor state.

· ItemList:
The printer is currently printing a line item report. In this state the printer will accept the VerifyItem method. This state is entered from the Monitor state using the BeginItemList method. This state is exited using the EndItemList method at which time the printer returns to the Monitor state.

· Report:
The printer is currently printing one of the supported types of reports. This state is entered from the Monitor state using one of the PrintReport, PrintPeriodicTotalsReport, PrintPowerLossReport, PrintXReport or PrintZReport methods. When the report print completes, the printer automatically returns to Monitor state.

· FiscalSystemBlocked:
The printer is no longer operational due to one of the following reasons:

· The printer has been disconnected or has lost power.

· The printer’s fiscal memory has been exhausted.

· The printer’s internal data has become inconsistent.

In this state the printer will only accept methods to print reports and retrieve data. The printer cannot exit this state without the assistance of a technician.

When the application sets the property DeviceEnabled to TRUE it also monitors its current state. In a standard situation, the PrinterState property is set to FPTR_PS_MONITOR after a successfully setting DeviceEnabled to TRUE. This indicates that there was no interrupted operation remaining in the printer.

If the printer is not in the FPTR_PS_MONITOR state, the state reflects the printer's interrupted operation and the PowerState property is set to OPOS_PS_OFF. In this situation it is necessary to force the printer to a normal state by calling the ResetPrinter method.

This means that a power failure occurred or the last application which accessed the device left it in a not clear state.

Notice that even in this case the ResultCode property will be set to OPOS_SUCCESS after setting DeviceEnabled to TRUE. It is required that the application check the PowerState property and checks for a received StatusUpdateEvent with the value OPOS_SUE_POWER_OFF in the Data argument after successfully setting the DeviceEnabled property.

Document Printing

Using a fiscal printer’s slip station it may be possible (depending upon the printer’s capabilities and on special fiscal rules) to print the following kinds of documents:

· Fiscal Documents:
In order to print fiscal documents an amount value must be sent to the printer and recorded by it. The CapSlpFiscalDocument property will be set to TRUE if the printer supports printing fiscal documents, and FALSE otherwise. If fiscal documents are supported they may be either full length (if CapSlpFullSlip is TRUE) or validation (if CapSlpValidation is TRUE). The actual selection is made using the SlipSelection property but only one totalizer is assigned to all the fiscal documents.

· Non-Fiscal Full Length Documents:
Full length slip documents may be printed if CapSlpFullSlip is TRUE and SlipSelection is set to FPTR_SS_FULL_LENGTH.

· Non-Fiscal Validation Documents:
Validation documents may be printed if CapSlpValidation is TRUE and SlipSelection is set to FPTR_SS_VALIDATION.

· Fixed Text Documents:
Fixed text documents may be printed if CapFixedOutput is TRUE. If fixed text documents are supported they may be either full length (if CapSlpFullSlip is TRUE) or validation (if CapSlpValidation is TRUE). The actual selection is made using the SlipSelection property.

Ordering of Fiscal Receipt Print Requests

A fiscal receipt is started using the BeginFiscalReceipt method. If the CapIndependentHeader property is true, then it is up to the application to decide if the fiscal receipt header lines are to be printed at this time or not. Otherwise header lines are printed immediately prior to the first line item inside a fiscal receipt. Printing the header lines at this time will decrease the amount of time required to process the first fiscal receipt print method, but it may result in more receipt voids as well. The BeginFiscalReceipt method may only be called if the printer is currently in the Monitor state and this call will change the printer’s current state to Fiscal Receipt.

Before selling the first line item it is possible to exit from the fiscal receipt state by calling the EndFiscalReceipt method. If header lines have already been printed, this method will cause also receipt voiding.

Once the first line item has been printed and the printer remains in the Fiscal Receipt state, the following fiscal print methods are available:

PrintRecItem
PrintRecItemAdjustment
PrintRecNotPaid
PrintRecRefund
PrintRecSubtotal
PrintRecSubtotalAdjustment
PrintRecTotal
PrintRecVoid
PrintRecVoidItem

The PrintRecItem, PrintRecItemAdjustment, PrintRecRefund, PrintRecSubtotal, PrintRecSubtotalAdjustment and PrintRecVoidItem will leave the printer in the Fiscal Receipt state. The PrintRecNotPaid (only available if the CapReceiptNotPaid property is TRUE) and PrintRecTotal methods will change the printer’s state to either Fiscal Receipt Total or Fiscal Receipt Ending, depending upon whether the entire receipt total has been met. The PrintRecVoid method will change the printer’s state to Fiscal Receipt Ending.

While in the Fiscal Receipt Total state the following fiscal print methods are available:

PrintRecNotPaid
PrintRecTotal
PrintRecVoid

The PrintRecNotPaid (only available if the CapReceiptNotPaid property is TRUE) and PrintRecTotal methods will either leave the printer in the Fiscal Receipt Total state or change the printer’s state to Fiscal Receipt Ending, depending upon whether the entire receipt total has been met. The PrintRecVoid method will change the printer’s state to Fiscal Receipt Ending.

While in the Fiscal Receipt Ending state the following fiscal methods are available:

PrintRecMessage
EndFiscalReceipt

The PrintRecMessage method is only available if the CapAdditionalLines property is TRUE and this method will leave the printer in the Fiscal Receipt Ending state. The EndFiscalReceipt will cause receipt closing and will then change the printer’s state to Monitor.

Be aware that at no time can the printer’s total for the receipt be negative. If this occurs the printer will generate an error.

Receipt Layouts

The following is an example of a typical receipt layout:

· Header Lines:
Header lines contain all of the information about the store, such as telephone number, address and name of the store. All of these lines are fixed and are defined before selling the first item (using the SetHeaderLine method). These lines may either be printed when the BeginFiscalReceipt method is called or when the first fiscal receipt method is called.

· Transaction Lines:
All of the lines of a fiscal transaction, such as line items, discounts and surcharges.

· Total Line:
The line containing the transaction total, tender amounts and possibly change due.

· Trailer Lines:
These are fixed promotional messages stored on the printer (using the SetTrailerLine method). They are automatically printed when the EndFiscalReceipt method is called. Note that the fiscal logotype, date and time and serial number lines are not considered part of the trailer lines. In fact, depending upon fiscal legislation and upon the printer vendor, the relative position of the trailer and the fiscal logotype lines can vary. Information which has to be inserted in the receipt due to fiscal legislation is automatically printed at receipt closure.

Example of a fiscal receipt:

VAT Tables

Some fiscal printers support storing VAT (Value Added Tax) tables in the printer’s memory. Some of these printers will allow the application to set and modify any of the table entries. Others allow only adding new table entries but do not allow existing entries to be modified. Some printers allow the VAT table to bet set only once.

If the printer supports VAT tables, the CapHasVatTable property is set to TRUE. If the printer allows the VAT table entries to be set or modified the CapSetVatTable property is set to TRUE. The maximum number of different vat rate entries in the VAT table is given by the NumVatRates property. VAT tables are set through a two step process. First the application uses the SetVatValue method to set each table entry to be sent to the printer. Next, the SetVatTable method is called to send the entire VAT table to the printer at one time.

Receipt Duplication

In some countries fiscal legislation can allow printing more than one copy of the same receipt. The CapDuplicateReceipt property will be set to TRUE if the printer is capable of printing duplicate receipts. Then, setting the DuplicateReceipt to TRUE causes the buffering of all receipt printing commands. DuplicateReceipt property is set to FALSE after receipt closing In order to print the receipt again the PrintDuplicateReceipt method has to be called.

CURRENCY amounts, percentage amounts, VAT rates, and quantity amounts

· CURRENCY amounts (and also prices) are passed as values with the data type CURRENCY. On a Win32-based platform this is a 64 bit signed long value that implicitly assumes four digits as the fractional part. So, the range supported is from
-922,337,203,685,477.5808
to
+922,337,203,685,477.5807

The fractional part used in the calculation unit of a Fiscal Printer may differ from the CURRENCY data type. The number of digits in the fractional part is stored in the AmountDecimalPlaces property and determined by the Fiscal Printer. The application has to take care that calculations in the application use the same fractional part for amounts.

· If the CapHasVatTable property is TRUE, VAT rates are passed using the indexes that were sent to the SetVatValue method.
If the CapHasVatTable property is FALSE, VAT rates are passed as amounts with the data type LONG. The number of digits in the fractional part is implicitly assumed to be four.

· Percentage amounts are used in methods which allow also surcharge and/or discount amounts. If the amounts are specified to be a percentage value the value is also passed in a parameter of type CURRENCY.
On a Win32-based platform the percentage value has then (as given by the CURRENCY data type) four digits in the fractional part.
It is the percentage (0.0001% to 99.9999%) multiplied by 10000.

· Quantity amounts are passed as values with the data type LONG. The number of digits in the fractional part is stored in the QuantityDecimalPlaces property and determined by the Fiscal Printer.

Properties

AmountDecimalPlaces Property

Syntax
LONG AmountDecimalPlaces;
Remarks
Holds the number of decimal digits that the fiscal device uses for calculations.

This property is initialized when the device is enabled.

AsyncMode Property R/W

Syntax
BOOL AsyncMode;
Remarks
If TRUE, then some print methods like PrintRecItemAdjustment, PrintRecItem, PrintNormal, etc. will be performed asynchronously.
If FALSE, they will be performed synchronously.

This property is initialized to FALSE by the Open method.

For the complete list of method which are performed either synchronously or asynchronously see Printer States Model on page 181.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

See Also
Printer States Model (Page 181)

CapAdditionalLines Property

Syntax
BOOL CapAdditionalLines;

Remarks
If TRUE, then the printer supports the printing of application defined lines on a fiscal receipt between the total line and the end of the fiscal receipt, FALSE otherwise.

If this property is TRUE, then after all totals lines are printed it is possible to print application-defined strings, such as the ones used for fidelity cards. In this case, after the total lines are printed, the PrinterState property is set to ReceiptEnding and PrintRecMessage can be called.
This property is initialized by the Open method.

CapAmountAdjustment Property

Syntax
BOOL CapAmountAdjustment;

Remarks
If TRUE, then the printer handles fixed amount discounts or fixed amount surcharges on items, FALSE otherwise.
This property is initialized by the Open method.

CapAmountNotPaid Property

Syntax
BOOL CapAmountNotPaid;

Remarks
If TRUE, then the printer allows the recording of not paid amounts, FALSE otherwise.

This property is initialized by the Open method.

CapCheckTotal Property

Syntax
BOOL CapCheckTotal;

Remarks
If TRUE, then automatic comparison of the printer’s total and the application’s total can be enabled and disabled. If FALSE, then the automatic comparison cannot be enabled and is always considered disabled.

This property is initialized by the Open method.

CapCoverSensor Property

Syntax
BOOL CapCoverSensor;

Remarks
If TRUE, then the printer has a “cover open” sensor;
otherwise it is FALSE.

This property is initialized by the Open method.

CapDoubleWidth Property

Syntax
BOOL CapDoubleWidth;

Remarks
If TRUE, then the printer can print double width characters, FALSE otherwise.

This property is initialized by the Open method.

CapDuplicateReceipt Property

Syntax
BOOL CapDuplicateReceipt;
Remarks
If TRUE, then the printer allows printing more than one copy of the same fiscal receipt, FALSE otherwise..
This property is initialized by the Open method.

CapFixedOutput Property

Syntax
BOOL CapFixedOutput;

Remarks
If TRUE, then the printer supports fixed format text printing through the BeginFixedOutput, PrintFixedOutput and EndFixedOutput methods, FALSE otherwise.

This property is initialized by the Open method.

CapHasVatTable Property

Syntax
BOOL CapHasVatTable;

Remarks
If TRUE, then the printer has a tax table, FALSE otherwise.

This property is initialized by the Open method.

CapIndependentHeader Property

Syntax
BOOL CapIndependentHeader;

Remarks
If TRUE, then the printer supports printing the fiscal receipt header lines before the first fiscal receipt command is processed, FALSE otherwise.

This property is initialized by the Open method.

CapItemList Property

Syntax
BOOL CapItemList;

Remarks
If TRUE, then the printer can print a report of items of a specified VAT class, FALSE otherwise.

This property is initialized by the Open method.

CapJrnEmptySensor Property

Syntax
BOOL CapJrnEmptySensor;

Remarks
If TRUE, then the journal has an out-of-paper sensor;
otherwise it is FALSE.

This property is initialized by the Open method.

CapJrnNearEndSensor Property

Syntax
BOOL CapJrnNearEndSensor;

Remarks
If TRUE, then the journal has a low paper sensor;
otherwise it is FALSE.

This property is initialized by the Open method.

CapJrnPresent Property

Syntax
BOOL CapJrnPresent;

Remarks
If TRUE, then the journal print station is present;
otherwise it is FALSE.

Unlike POS printers, on fiscal printers the application is not able to directly access the journal. The fiscal printer itself prints on the journal if present.

This property is initialized by the Open method.

CapNonFiscalMode Property

Syntax
BOOL CapNonFiscalMode;

Remarks
If TRUE, then the printer allows printing in non-fiscal mode, FALSE otherwise.

This property is initialized by the Open method.

CapOrderAdjustmentFirst Property

Syntax
BOOL CapOrderAdjustmentFirst;

Remarks
This property defines the usage of PrintRecItem and PrintRecItemAdjustment
If FALSE, the application has to call PrintRecItem first and then call PrintRecItemAdjustment to give a discount or a surcharge for a single article.

If TRUE, the application has to call PrintRecItemAdjustment first and then call PrintRecItem .

This property is initialized by the Open method.

CapPercentAdjustment Property

Syntax
BOOL CapPercentAdjustment;

Remarks
If TRUE, then the printer handles percentage discounts or percentage surcharges on items, FALSE otherwise.

This property is initialized by the Open method.

CapPositiveAdjustment Property

Syntax
BOOL CapPositiveAdjustment;

Remarks
This property defines abilities of the PrintRecItemAdjustment
If it is TRUE then it is possible to apply surcharges, otherwise it is false.

This property is initialized by the Open method.

CapPowerLossReport Property

Syntax
BOOL CapPowerLossReport;

Remarks
If TRUE, then the printer can print a power loss report using the PrintPowerLossReport method, FALSE otherwise.

This property is initialized by the Open method.

CapPredefinedPaymentLines Property

Syntax
BOOL CapPredefinedPaymentLines;

Remarks
If TRUE, the printer can store and print predefined payment descriptions, FALSE otherwise.

This property is initialized by the Open method.

CapReceiptNotPaid Property

Syntax
BOOL CapReceiptNotPaid;

Remarks
If TRUE, then the printer supports using the PrintRecNotPaid method to specify a part of the receipt total that is not paid, FALSE otherwise.

This property is initialized by the Open method.

CapRecEmptySensor Property

Syntax
BOOL CapRecEmptySensor;

Remarks
If TRUE, then the receipt has an out-of-paper sensor;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRecNearEndSensor Property

Syntax
BOOL CapRecNearEndSensor;

Remarks
If TRUE, then the receipt has a low paper sensor;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRecPresent Property

Syntax
BOOL CapRecPresent;

Remarks
If TRUE, then the receipt print station is present;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRemainingFiscalMemory Property

Syntax
BOOL CapRemainingFiscalMemory;

Remarks
If TRUE, then the printer supports using the RemainingFiscalMemory property to show the amount of Fiscal Memory remaining If FALSE, the printer does not support reporting the Fiscal Memory status of the printer.

This property is initialized by the Open method.

CapReservedWord Property

Syntax
BOOL CapReservedWord;

Remarks
If TRUE, then the printer prints a reserved word (for example, “TOTALE”) before printing the total amount, FALSE otherwise.

If TRUE, the reserved word is stored in the ReservedWord property. This reserved word may not be printed using any fiscal print method.

This property is initialized by the Open method.

CapSetHeader Property

Syntax
BOOL CapSetHeader;

Remarks
If TRUE, then it is possible to use the SetHeaderLine method to initialize the contents of a particular line of the receipt header, FALSE otherwise.

This property is initialized by the Open method.

CapSetPOSID Property

Syntax
BOOL CapSetPOSID;

Remarks
If TRUE, then it is possible to use the SetPOSID method to initialize the values of POSID and CashierID, FALSE otherwise.

These values are printed on each fiscal receipt.

This property is initialized by the Open method.

CapSetStoreFiscalID Property

Syntax
BOOL CapSetStoreFiscalID;

Remarks
If TRUE, then it is possible to use the SetStoreFiscalID method to set up the Fiscal ID number which will be printed on each fiscal receipt, FALSE otherwise.

This property is initialized by the Open method.

CapSetTrailer Property

Syntax
BOOL CapSetTrailer;

Remarks
If TRUE, then it is possible to use the SetTrailerLine method to initialize the contents of a particular line of the receipt trailer, FALSE otherwise.

This property is initialized by the Open method.

CapSetVatTable Property

Syntax
BOOL CapSetVatTable;

Remarks
If TRUE, then it is possible to use the SetVatValue and SetVatTable methods to modify the contents of the printer’s VAT table, FALSE otherwise.

Some printers may not allow existing VAT table entries to be modified. Only new entries may be set on these printers.

This property is initialized by the Open method.

CapSlpEmptySensor Property

Syntax
BOOL CapSlpEmptySensor;

Remarks
If TRUE, then the slip has a “slip in” sensor;
otherwise it is FALSE.

This property is initialized by the Open method.

CapSlpFiscalDocument Property

Syntax
BOOL CapSlpFiscalDocument;

Remarks
If TRUE, then the printer allows fiscal printing to the slip station, FALSE otherwise.

This property is initialized by the Open method.

CapSlpFullSlip Property

Syntax
BOOL CapSlpFullSlip;

Remarks
If TRUE, then the printer supports printing full length forms on the slip station, FALSE otherwise.

It is possible to choose between full slip and validation documents by setting the SlipSelection property.

This property is initialized by the Open method.

CapSlpNearEndSensor Property

Syntax
BOOL CapSlpNearEndSensor;

Remarks
If TRUE, then the slip has a “slip near end” sensor;
otherwise it is FALSE.

This property is initialized by the Open method.

CapSlpPresent Property

Syntax
BOOL CapSlpPresent;

Remarks
If TRUE, then the printer has a slip station, FALSE otherwise.

This property is initialized by the Open method.

CapSlpValidation Property

Syntax
BOOL CapSlpValidation;

Remarks
If TRUE, then the printer supports printing validation information on the slip station, FALSE otherwise.

It is possible to choose between full slip and validation documents by setting the SlipSelection property.

In some countries, when printing non fiscal validations using the slip station a limited number of lines could be printed.

This property is initialized by the Open method.

CapSubAmountAdjustment Property

Syntax
BOOL CapSubAmountAdjustment;

Remarks
If TRUE, then the printer handles fixed amount discounts on the subtotal, FALSE otherwise.

This property is initialized by the Open method.

CapSubPercentAdjustment Property

Syntax
BOOL CapSubPercentAdjustment;

Remarks
If TRUE, then the printer handles percentage discounts on the subtotal, FALSE otherwise.

This property is initialized by the Open method.

CapSubtotal Property

Syntax
BOOL CapSubtotal;

Remarks
If TRUE, then it is possible to use the PrintRecSubtotal method to print the current subtotal, FALSE otherwise.

This property is initialized by the Open method.

CapTrainingMode Property

Syntax
BOOL CapTrainingMode;

Remarks
If TRUE, then the printer supports a training mode, FALSE otherwise.

This property is initialized by the Open method.

CapValidateJournal Property

Syntax
BOOL CapValidateJournal;

Remarks
If TRUE, then it is possible to use the PrintNormal method to print a validation string on the journal station, FALSE otherwise.

This property is initialized by the Open method.

CapXReport Property

Syntax
BOOL CapXReport;

Remarks
If TRUE, then it is possible to use the PrintXReport method to print an X report, FALSE otherwise.

This property is initialized by the Open method.

CheckTotal Property R/W

Syntax
BOOL CheckTotal;

Remarks
If TRUE, automatic comparison between the fiscal printer’s total and the application’s total is enabled. If FALSE, automatic comparison is disabled.

This property is only valid if CapCheckTotal is TRUE.

This property is initialized to TRUE by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
Setting this property is not valid for this service object (see CapCheckTotal).

CountryCode Property

Syntax
LONG CountryCode;

Remarks
Holds a value identifying which countries are supported by this Service Object. It can contain any of the following values logically ORed together:

Value
Meaning

FPTR_CC_BRAZIL
The printer supports Brazil’s fiscal rules.

FPTR_CC_GREECE
The printer supports Greece’s fiscal rules.

FPTR_CC_HUNGARY
The printer supports Hungary’s fiscal rules.

FPTR_CC_ITALY
The printer supports Italy’s fiscal rules.

FPTR_CC_POLAND
The printer supports Poland’s fiscal rules.

FPTR_CC_TURKEY
The printer supports Turkey’s fiscal rules.

This property is initialized by the Open method.

CoverOpen Property

Syntax
BOOL CoverOpen;

Remarks
If TRUE, then the printer’s cover is open;
otherwise it is FALSE.

If the CapCoverSensor property is FALSE, then the printer does not have a cover open sensor, and this property always returns FALSE.

This property is initialized and kept current while the device is enabled.

DayOpened Property

Syntax
BOOL DayOpened;

Remarks
If TRUE, then the fiscal day has been started on the printer, FALSE otherwise.

The Fiscal Day of the printer can be either opened or not opened. The DayOpened property reflects whether or not the printer considers its Fiscal Day to be opened or not.

Some methods may only be called while the Fiscal Day is not yet opened (DayOpened is FALSE). Methods that can be called after the Fiscal Day is opened change from country to country. Usually all the configuration methods are to be called only before the Fiscal Day is opened.

Depending on fiscal legislation, some of the following methods may be allowed only if the printer has not yet begun its Fiscal Day:

SetDate
SetHeaderLine
SetPOSID
SetStoreFiscalID
SetTrailerLine
SetVatTable
SetVatValue

This property is initialized and kept current while the device is enabled.

DescriptionLength Property

Syntax
LONG DescriptionLength;

Remarks
Holds the maximum number of characters that may be passed as a description parameter.

This property is initialized by the Open method.

DuplicateReceipt Property

Syntax
BOOL DuplicateReceipt;

Remarks
If this property is set to TRUE all the printing commands inside a fiscal receipt will be buffered and they can be printed again via the PrintDuplicateReceipt method.

ErrorLevel Property

Syntax
LONG ErrorLevel;

Remarks
The severity of the error condition.

Values are:

Value
Meaning

FPTR_EL_NONE
No error condition is present.

FPTR_EL_RECOVERABLE
A recoverable error has occurred.
(Example: Out of paper.)

FPTR_EL_FATAL
A non-recoverable error has occurred.
(Example: Internal printer failure.)

FPTR_EL_BLOCKED
A severe hardware failure which can be resolved only by technicians. (Example: Fiscal memory failure.). This error can not be recovered.

This property is set by the Control just before delivering an ErrorEvent. When the error is cleared, then the property is changed to FPTR_EL_NONE.

ErrorOutID Property

Syntax
LONG ErrorOutID;

Remarks
The identifier of the output in the queue which raised an error event, when using asynchronous printing.

This property is set just before an ErrorEvent is delivered.

ErrorState Property

Syntax
LONG ErrorState;

Remarks
Holds the current state of the printer when firing an error event for an asynchronous output.

This property is set just before an ErrorEvent is delivered.

See the PrinterState property on page 213 for a list of values.

ErrorStation Property

Syntax
LONG ErrorStation;

Remarks
Holds the station or stations that were printing when an error was detected.

This property will be set to one of the following values: FPTR_S_JOURNAL, FPTR_S_RECEIPT, FPTR_S_SLIP, FPTR_S_JOURNAL_RECEIPT.

This property is set just before an ErrorEvent is delivered.

ErrorString Property

Syntax
BSTR ErrorString;

Remarks
A vendor-supplied description of the current error.

This property is set by the Control just before delivering an ErrorEvent. If no description is available, the property is set to an empty string. When the error is cleared, then the property is changed to an empty string.

FlagWhenIdle Property R/W

Syntax
BOOL FlagWhenIdle;
Remarks
If TRUE, the Control will fire a StatusUpdateEvent if it is in the idle state.
If FALSE, this event will not be fired.

FlagWhenIdle is automatically reset to FALSE when the status event is delivered.

The main use of idle status event that is controlled by this property is to give the application control when all outstanding asynchronous outputs have been processed. The event will be fired if the outputs were completed successfully or if they were cleared by the ClearOutput method or by an ErrorEvent handler.

If the State is already set to OPOS_S_IDLE when the FlagWhenIdle property is set to TRUE, then a StatusUpdateEvent is fired immediately. The application can therefore depend upon the event, with no race condition between the starting of its last asynchronous output and the setting of this flag.

This property is initialized to FALSE by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

JrnEmpty Property

Syntax
BOOL JrnEmpty;

Remarks
If TRUE, the journal is out of paper.
If FALSE, journal paper is present.

If the capability CapJrnEmptySensor is FALSE, then the value of this property is always FALSE.

This property is initialized and kept current while the device is enabled.

See Also
JrnNearEnd Property

JrnNearEnd Property

Syntax
BOOL JrnNearEnd;

Remarks
If TRUE, the journal paper is low.
If FALSE, journal paper is not low.

If the capability CapJrnNearEndSensor is FALSE, then the value of this property is always FALSE.

This property is initialized and kept current while the device is enabled.

See Also
JrnEmpty Property

MessageLength Property

Syntax
LONG MessageLength;

Remarks
Holds the maximum number of characters that may be passed as a message line in the method PrintRecMessage. The value may change in different modes of the fiscal printer. For example in the mode “Fiscal Receipt” the number of characters may be bigger than in the mode “Fiscal Receipt Total”.

This property is initialized by the Open method.

NumHeaderLines Property

Syntax
LONG NumHeaderLines;

Remarks
Contains the maximum number of header lines that can be printed for each fiscal receipt. Header lines usually contain information like store address, store name, store Fiscal ID. Each header line is set using the SetHeaderLine method and remains set even after the printer is switched off. Header lines are automatically printed when a fiscal receipt is initiated using the BeginFiscalReceipt method or when the first line item inside a receipt is sold.

This property is initialized by the Open method.

NumTrailerLines Property

Syntax
LONG NumTrailerLines;

Remarks
Contains the maximum number of trailer lines that can be printed for each fiscal receipt. Trailer lines are usually promotional messages. Each trailer line is set using the SetTrailerLine method and remains set even after the printer is switched off. Trailer lines are automatically printed either after the last PrintRecTotal or when a fiscal receipt is closed using the EndFiscalReceipt method.

This property is initialized by the Open method.

NumVatRates Property

Syntax
LONG NumVatRates;

Remarks
Contains the maximum number of vat rates that can be entered into the printer’s Vat table.

This property is initialized by the Open method.

PredefinedPaymentLines Property

Syntax
BSTR PredefinedPaymentLines;

Remarks
If CapPredefinedPaymentLines is TRUE, only predefined payment lines are allowed. The value of this property is the list of all possible words to be used as indexes of the predefined payment lines (for example, “a,b,c,d,z”). Those indexes are used in the PrintRecTotal method for the description parameter.

This property is initialized by the Open method.

PrinterState Property

Syntax
LONG PrinterState;
Remarks
Holds the printer’s current operational state. This property controls which methods are currently legal.

Values are:

Value
Meaning

FPTR_PS_MONITOR
If TrainingModeActive property is FALSE:
The printer is currently not in a specific operational mode. In this state the printer will accept any of the Begin… methods as well as the Set… methods.

If TrainingModeActive property is TRUE:
The printer is currently being used for training purposes. In this state the printer will accept any of the PrintRec… methods or the EndTraining method.

FPTR_PS_FISCAL_RECEIPT
If TrainingModeActive property is FALSE:
The printer is currently processing a fiscal receipt. In this state the printer will accept any of the PrintRec… methods.

If TrainingModeActive property is TRUE:
The printer is currently being used for training purposes and a fiscal receipt is currently opened.

FPTR_PS_FISCAL_RECEIPT_TOTAL
If TrainingModeActive property is FALSE:
The printer has already accepted at least one payment, but the total has not been completely paid. In this state the printer will accept either the PrintRecTotal or PrintRecNotPaid methods.

If TrainingModeActive property is TRUE:
The printer is currently being used for training purposes and the printer has already accepted at least one payment, but the total has not been completely paid.

FPTR_PS_FISCAL_RECEIPT_ENDING
If TrainingModeActive property is FALSE:
The printer has completed the receipt up to the total line. In this state the printer will accept either the PrintRecMessage or EndFiscalReceipt methods.

If TrainingModeActive property is TRUE:
The printer is currently being used for training purposes and a fiscal receipt is going to be closed.

FPTR_PS_FISCAL_DOCUMENT
The printer is currently processing a fiscal slip. In this state the printer will accept either the PrintFiscalDocumentLine or EndFiscalDocument methods.

FPTR_PS_FIXED_OUTPUT
The printer is currently processing fixed text output to one or more stations. In this state the printer will accept either the PrintFixedOutput or EndFixedOutput methods.

FPTR_PS_ITEM_LIST
The printer is currently processing an item list report. In this state the printer will accept either the VerifyItem or EndItemList methods.

FPTR_PS_NONFISCAL
The printer is currently processing non-fiscal output to one or more stations. In this state the printer will accept either the PrintNormal or EndNonFiscal methods.

FPTR_PS_LOCKED
The printer has encountered a non-recoverable hardware problem. A printer technician must be contacted to exit this state.

FPTR_PS_REPORT
The printer is currently processing a fiscal report. In this state the printer will not accept any methods until the report has completed.

There are a few methods that are accepted in any state except FPTR_PS_LOCKED. These are BeginInsertion, EndInsertion, BeginRemoval, EndRemoval, GetDate, GetData, GetTotalizer, GetVatEntry, ResetPrinter and ClearOutput.

For more information, see the discussion of Printer States on page 184.

This property is initialized by the Open method.

QuantityDecimalPlaces Property

Syntax
LONG QuantityDecimalPlaces;
Remarks
Holds the number of decimal digits in the fractional part that should be assumed to be in any quantity parameter passed to this Service Object.

This property is initialized to 0 (zero) by the Open method.

QuantityLength Property

Syntax
LONG QuantityLength;

Remarks
Holds the maximum number of digits that may be passed as a quantity parameter, including both the whole and fractional parts.

This property is initialized by the Open method.

RecEmpty Property

Syntax
BOOL RecEmpty;

Remarks
If TRUE, the receipt is out of paper.
If FALSE, receipt paper is present.

If the capability CapRecEmptySensor is FALSE, then the value of this property is always FALSE.

This property is initialized and kept current while the device is enabled.

See Also
RecNearEnd Property

RecNearEnd Property

Syntax
BOOL RecNearEnd;

Remarks
If TRUE, the receipt paper is low.
If FALSE, receipt paper is not low.

If the capability CapRecNearEndSensor is FALSE, then the value of this property is always FALSE.

This property is initialized and kept current while the device is enabled.

See Also
RecEmpty Property

RemainingFiscalMemory Property

Syntax
LONG RemainingFiscalMemory;

Remarks
Holds the remaining counter of Fiscal Memory.

This property is initialized and kept current while the device is enabled and may be updated by PrintZReport method.

See Also
CapRemainingFiscalMemory Property

ReservedWord Property

Syntax
BSTR ReservedWord;

Remarks
Holds the string that is automatically printed with the total when the PrintRecTotal method is called. This word may not occur in any string that is passed into any fiscal output methods.

This property is only valid if CapReservedWord is TRUE.

This property is initialized by the Open method.

SlpEmpty Property

Syntax
BOOL SlpEmpty;

Remarks
If TRUE, a slip form is not present.
If FALSE, a slip form is present.

If the capability CapSlpEmptySensor is FALSE, then the value of this property is always FALSE.

This property is initialized and kept current while the device is enabled.

Note

The “slip empty” sensor should be used primarily to determine whether a form has been inserted before printing, and can be monitored to determine whether a form is still in place. This sensor is usually placed one or more print lines above the slip print head.

However, the “slip near end” sensor (when present) should be used to determine when nearing the end of the slip. This sensor is usually placed one or more print lines below the slip print head.

See Also
SlpNearEnd Property

SlpNearEnd Property

Syntax
BOOL SlpNearEnd;

Remarks
If TRUE, the slip form is near its end.
If FALSE, the slip form is not near its end.

The “near end” sensor is also sometimes called the “trailing edge” sensor, referring to the bottom edge of the slip.

If the capability CapSlpNearEndSensor is FALSE, then the value of this property is always FALSE.

This property is initialized and kept current while the device is enabled.

Note

The “slip empty” sensor should be used primarily to determine whether a form has been inserted before printing, and can be monitored to determine whether a form is still in place. This sensor is usually placed one or more print lines above the slip print head.

However, the “slip near end” sensor (when present) should be used to determine when nearing the end of the slip. This sensor is usually placed one or more print lines below the slip print head.

See Also
SlpEmpty Property

SlipSelection Property R/W

Syntax
LONG SlipSelection;

Remarks
Selects the kind of document to be printed on the slip station.

Values are:

Value
Meaning

FPTR_SS_FULL_LENGTH
Print full length documents.

FPTR_SS_VALIDATION
Print validation documents.

The value of SlipSelection is initialized to FPTR_SS_FULL_LENGTH by the Claim method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An invalid slip type was specified.

TrainingModeActive Property

Syntax
BOOL TrainingModeActive;

Remarks
Holds the current printer's operational state concerning the training mode. Training mode allows all fiscal commands, but each receipt is marked as non-fiscal and no internal printer registers are updated with any data while in training mode. Some countries' fiscal rules require that all blank characters on a training mode receipt are printed as some other character. Italy, for example, requires that all training mode receipts print a ? instead of a blank.

Values are:

Value
Meaning

TRUE
The printer is currently in training mode. That means no data are written into the EPROM of the fiscal printer.

FALSE
The printer is currently in normal mode. All printed receipts will also update the fiscal memory..

Methods

BeginFiscalDocument Method

Syntax
LONG BeginFiscalDocument (LONG DocumentAmount);
Parameter
Description

DocumentAmount
Amount of document to be stored by the printer.

Remarks
Called to initiate fiscal printing to the slip station.

This method is only supported if CapSlpFiscalDocument is TRUE.

The slip paper must be inserted into the slip station using Begin/EndInsertion before calling this method.

Each fiscal line will be printed using the PrintFiscalDocumentLine method.

If this method is successful, the PrinterState property will be changed to FPTR_PS_FISCAL_DOCUMENT.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress.

OPOS_E_ILLEGAL
One of the following errors occurred:

· The slip station does not exist (see the CapSlpPresent property).

· The printer does not support fiscal output to the slip station (see the CapSlpFiscalDocument property).

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer’s current state does not allow this state transition.

ResultCodeExtended = OPOS_EFPTR_SLP_EMPTY:
There is no paper in the slip station.

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_AMOUNT:
The DocumentAmount parameter is invalid.

Other Values
See ResultCode.

See Also
EndFiscalDocument Method, PrintFiscalDocumentLine Method AmountDecimalPlaces Property

BeginFiscalReceipt Method

Syntax
LONG BeginFiscalReceipt (BOOL PrintHeader);
Parameter
Description

PrintHeader
Indicates if the header lines are to be printed at this time.

Remarks
Called to initiate fiscal printing to the receipt station.

If PrintHeader and the CapIndependentHeader property are both TRUE all defined header lines will be printed before control is returned. Otherwise header lines will be printed when the first item is sold.

If this method is successful, the PrinterState property will be changed to FPTR_PS_FISCAL_RECEIPT.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress.

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer’s current state does not allow this state transition.

Other Values
See ResultCode.

See Also
EndFiscalReceipt Method, PrintRec… Methods, CapIndependentHeader Property

BeginFixedOutput Method

Syntax
LONG BeginFixedOutput (LONG Station, LONG DocumentType);
Parameter
Description

Station
The printer station to be used. May be either FPTR_S_RECEIPT or FPTR_S_SLIP.

DocumentType
Identifier of a document stored in the printer.
Remarks
Called to initiate non-fiscal fixed text printing on a printer station.
This method is only supported if CapFixedOutput is TRUE.

If the Station parameter is FPTR_S_SLIP, the slip paper must be inserted into the slip station using Begin/EndInsertion before calling this method.

Each fixed output will be printed using the PrintFixedOutput method. If this method is successful, the PrinterState property will be changed to FPTR_PS_FIXED_OUTPUT. The EndFixedOutput method ends fixed output modality and resets PrinterState.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress.

OPOS_E_ILLEGAL
One of the following errors occurred:

· The slip station does not exist (see the CapSlpPresent property).

· The printer does not support fixed output (see the CapFixedOutput property).

· The Station parameter is invalid.

· The DocumentType is invalid.

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer’s current state does not allow this state transition.

ResultCodeExtended = OPOS_EFPTR_SLP_EMPTY:
There is no paper in the slip station.

Other Values
See ResultCode.

See Also
EndFixedOutput Method, PrintFixedOutput Method

BeginInsertion Method

Syntax
LONG BeginInsertion (LONG Timeout);
The Timeout parameter gives the number of milliseconds before failing the method.
If zero, the method tries to begin insertion mode, then returns the appropriate status immediately.
If OPOS_FOREVER (-1), the method tries to begin insertion mode, then waits as long as needed until either the form is inserted or an error occurs.

Remarks
Called to initiate slip processing.

When called, the slip station is made ready to receive a form by opening the form’s handling “jaws” or activating a form insertion mode. This method is paired with the EndInsertion method for controlling form insertion.

If the printer device cannot be placed into insertion mode, an error is returned to the application. Otherwise, the Control continues to monitor form insertion until either:

· The form is successfully inserted. In this case, the Control returns an OPOS_SUCCESS status.

· The form is not inserted before Timeout milliseconds have elapsed, or an error is reported by the printer device. In this case, the Control either returns OPOS_E_TIMEOUT or another error. The printer device remains in form insertion mode. This allows an application to perform some user interaction and reissue the BeginInsertion method without altering the form handling mechanism.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was initiated successfully.

OPOS_E_BUSY
Cannot perform while output is in progress.

OPOS_E_ILLEGAL
The slip station does not exist (see the CapSlpPresent property).

OPOS_E_TIMEOUT
The specified time has elapsed without the form being properly inserted.

Other Values
See ResultCode.

See Also
EndInsertion Method; BeginRemoval Method; EndRemoval Method

 BeginItemList Method

Syntax
LONG BeginItemList (LONG VatID);
Parameter
Description

VatID
Vat identifier for reporting.

Remarks
Called to initiate a validation report of items belonging to a particular VAT class.

This method is only supported if CapItemList is TRUE.

If this method is successful, the PrinterState property will be changed to FPTR_PS_ITEM_LIST.

After this method only VerifyItem and EndItemList methods may be called.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress.

OPOS_E_ILLEGAL
One of the following errors occurred:

· The printer does not support an item list report (see the CapItemList property).

· The printer does not support VAT tables (see the CapHasVatTable property).

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer’s current state does not allow this state transition.

ResultCodeExtended = OPOS_EFPTR_BAD_VAT:
The VatID parameter is invalid.

Other Values
See ResultCode.

See Also
EndItemList Method, VerifyItem Method

BeginNonFiscal Method

Syntax
LONG BeginNonFiscal ();
Remarks
Called to initiate non-fiscal operations on the printer.

This method is only supported if CapNonFiscalMode is TRUE.

Output in this mode is accomplished using the PrintNormal method.

This method can be successfully called only if the current value of the PrinterState property is FPTR_PS_MONITOR.

If this method is successful, the PrinterState property will be changed to FPTR_PS_NONFISCAL.

In order to stop non fiscal modality EndNonFiscal method should be called.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress.

OPOS_E_ILLEGAL
One of the following errors occurred:

· The printer does not support non-fiscal output (see the CapNonFiscalMode property).

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer’s current state does not allow this state transition.

Other Values
See ResultCode.

See Also
EndNonFiscal Method, PrintNormal Method

BeginRemoval Method

Syntax
LONG BeginRemoval (LONG Timeout);
The Timeout property gives the number of milliseconds before failing the method.
If zero, the method tries to begin removal mode, then returns the appropriate status immediately.
If OPOS_FOREVER (-1), the method tries to begin removal mode, then waits as long as needed until either the form is removed or an error occurs.

Remarks
Called to initiate form removal processing.

When called, the printer is made ready to remove a form by opening the form handling “jaws” or activating a form ejection mode. This method is paired with the EndRemoval method for controlling form removal.

If the printer device cannot be placed into removal or ejection mode, an error is returned to the application. Otherwise, the Control continues to monitor form removal until either:

· The form is successfully removed. In this case, the Control returns an OPOS_SUCCESS status.

· The form is not removed before Timeout milliseconds have elapsed, or an error is reported by the printer device. In this case, the Control either returns OPOS_E_TIMEOUT or another error. The printer device remains in form removal mode. This allows an application to perform some user interaction and reissue the BeginRemoval method without altering the form handling mechanism.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was initiated successfully.

OPOS_E_BUSY
Cannot perform while output is in progress.

OPOS_E_ILLEGAL
The printer does not have a slip station (see the CapSlpPresent property).

OPOS_E_TIMEOUT
The specified time has elapsed without the form being properly removed.

Other Values
See ResultCode.

See Also
BeginInsertion Method; EndInsertion Method; EndRemoval Method

BeginTraining Method

Syntax
LONG BeginTraining ();
Remarks
Called to initiate training operations.

This method is only supported if CapTrainingMode is TRUE.

Output in this mode is accomplished using the PrintRec… methods in order to print a receipt or other methods to print reports.

This method can be successfully called only if the current value of the PrinterState property is FPTR_PS_MONITOR.

If this method is successful, the TrainingModeActive property will be changed to TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress.

OPOS_E_ILLEGAL
One of the following errors occurred:

· The printer does not support training mode (see the CapTrainingMode property).

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer’s current state does not allow this state transition.

Other Values
See ResultCode.

See Also
EndTraining Method, PrintRec… Methods

ClearError Method

Syntax
LONG ClearError ();
Remarks
Called to clear all printer error conditions.

This method is always performed synchronously.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_FAILURE
Error recovery failed.

Other Values
See ResultCode.

EndFiscalDocument Method

Syntax
LONG EndFiscalDocument ();
Remarks
Called to terminate fiscal printing to the slip station.

This method is only supported if CapSlpFiscalDocument is TRUE.

If this method is successful, the PrinterState property will be changed to FPTR_PS_MONITOR.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress.

OPOS_E_ILLEGAL
The printer does not support fiscal output to the slip station (see the CapSlpFiscalDocument property).

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer is not currently in the Fiscal Document state.

Other Values
See ResultCode.

See Also
BeginFiscalDocument Method, PrintFiscalDocumentLine Method

EndFiscalReceipt Method

Syntax
LONG EndFiscalReceipt (BOOL PrintHeader);

Parameter
Description

PrintHeader
Indicates if the header lines are to be printed at this time.

Remarks
Called to terminate fiscal printing to the receipt station.

If PrintHeader is FALSE, this method will close the current fiscal receipt, cut it, and print the trailer lines and fiscal logotype, if they were not already printed after the total lines. All functions carried out by this method will be completed before this call returns.

If this method is successful, the PrinterState property will be changed to FPTR_PS_MONITOR.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress.

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer is not currently in the Fiscal Receipt Ending state.

Other Values
See ResultCode.

See Also
BeginFiscalReceipt Method, PrintRec… Methods

EndFixedOutput Method

Syntax
LONG EndFixedOutput ();
Remarks
Called to terminate non-fiscal fixed text printing on a printer station.

This method is only supported if CapFixedOutput is TRUE.

If this method is successful, the PrinterState property will be changed to FPTR_PS_MONITOR.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress.

OPOS_E_ILLEGAL
The printer does not support fixed output (see the CapFixedOutput property).

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer is not currently in the Fixed Output state.

Other Values
See ResultCode.

See Also
BeginFixedOutput Method, PrintFixedOutput Method

EndInsertion Method

Syntax
LONG EndInsertion ();
Remarks
Called to end form insertion processing.

When called, the printer is taken out of form insertion mode. If the slip device has forms “jaws,” they are closed by this method. If a form is detected in the device, a successful status of OPOS_SUCCESS is returned to the application. If no form is present, an extended error status OPOS_EFPTR_SLP_EMPTY is returned.

This method is paired with the BeginInsertion method for controlling form insertion. The application may choose to call this method immediately after a successful BeginInsertion if it wants to use the printer sensors to determine when a form is positioned within the slip printer. Alternatively, the application may prompt the user and wait for a key press before calling this method.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was initiated successfully.

OPOS_E_ILLEGAL
The printer is not in slip insertion mode.

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_EFPTR_COVER_OPEN:
The device was taken out of insertion mode while the printer cover was open.

ResultCodeExtended = OPOS_EFPTR_SLP_EMPTY:
The device was taken out of insertion mode without a form being inserted.

Other Values
See ResultCode.

See Also
BeginInsertion Method; BeginRemoval Method; EndRemoval Method

EndItemList Method

Syntax
LONG EndItemList ();
Remarks
Called to terminate a validation report of items belonging to a particular VAT class.

This method is only supported if CapItemList is TRUE and CapHasVatTable is TRUE.

This method is paired with the BeginItemList method.

This method can be successfully called only if current value of PrinterState property is equal to FPTR_PS_ITEM_LIST.

If this method is successful, the PrinterState property will be changed to FPTR_PS_MONITOR.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress.

OPOS_E_ILLEGAL
One of the following errors occurred:

· The printer does not support fixed output (see the CapItemList property).

· The printer does not support VAT tables (see the CapHasVatTable property).

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer’s current state does not allow this state transition.

Other Values
See ResultCode.

See Also
BeginItemList Method, VerifyItem Method

EndNonFiscal Method

Syntax
LONG EndNonFiscal ();
Remarks
Called to terminate non-fiscal operations on one printer station.

This method is only supported if CapNonFiscalMode is TRUE.

If this method is successful, the PrinterState property will be changed to FPTR_PS_MONITOR.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress.

OPOS_E_ILLEGAL
The printer does not support non-fiscal output (see the CapNonFiscalMode property).

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer is not currently in the Non-Fiscal state.

Other Values
See ResultCode.

See Also
BeginNonFiscal Method, PrintNormal Method

EndRemoval Method

Syntax
LONG EndRemoval ();
Remarks
Called to end form removal processing.

When called, the printer is taken out of form removal or ejection mode. If no form is detected in the device, a successful status of OPOS_SUCCESS is returned to the application. If a form is present, an extended error status OPOS_EFPTR_SLP_FORM is returned.

This method is paired with the BeginRemoval method for controlling form removal. The application may choose to call this method immediately after a successful BeginRemoval if it wants to use the printer sensors to determine when the form has been removed. Alternatively, the application may prompt the user and wait for a key press before calling this method.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was initiated successfully.

OPOS_E_ILLEGAL
The printer is not in slip removal mode.

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_EFPTR_SLP_FORM:
The device was taken out of removal mode while a form was still present.

Other Values
See ResultCode.

See Also
BeginInsertion Method; EndInsertion Method; BeginRemoval Method

EndTraining Method

Syntax
LONG EndTraining ();
Remarks
Called to terminate training operations on either the receipt or slip station.

This method is only supported if CapTrainingMode is TRUE.

If this method is successful, the TrainingModeActive property will be changed to FALSE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress.

OPOS_E_ILLEGAL
The printer does not support training mode (see the CapTrainingMode property).

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer is not currently in the Training state.

Other Values
See ResultCode.

See Also
BeginTraining Method, PrintRec… Methods

GetData Method

Syntax
LONG GetData (LONG DataItem, LONG* OptArgs, BSTR* Data);
Parameter
Description

DataItem
The specific data item to retrieve.

OptArgs
For some countries, this additional argument may be needed. Consult the Service Object vendor's documentation for details.Data
Character string to hold the data retrieved.

The DataItem parameter values are:

Value
Meaning

FPTR_GD_CURRENT_TOTAL
Get the current receipt total.

FPTR_GD_DAILY_TOTAL
Get the daily total.

FPTR_GD_RECEIPT_NUMBER
Get the number of fiscal receipts printed.

FPTR_GD_REFUND
Get the current total of refunds.

FPTR_GD_NOT_PAID
Get the current total of not paid receipts.

FPTR_GD_MID_VOID
Get the total number of voided receipts.

FPTR_GD_Z_REPORT
Get the Z report number.

FPTR_GD_GRAND_TOTAL
Get the printer’s grand total.

FPTR_GD_PRINTER_ID
Get the printer’s fiscal ID.

FPTR_GD_FIRMWARE
Get the printer’s firmware release number.

FPTR_GD_RESTART
Get the printer’s restart count

Remarks
Called to retrieve data from the printer’s fiscal module.

The data is returned in a string because some of the fields, such as the grand total, might overflow a 4-byte integer.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
The DataItem specified is invalid.

OPOS_E_BUSY
Cannot perform while output is in progress.

Other Values
See ResultCode.

GetDate Method

Syntax
LONG GetDate (BSTR* Date);
Parameter
Description

Date
Date and time returned as a string.

Remarks
Called to get the printer’s date and time.

The date and time are returned as a string in the format “ddmmyyyyhhmm”, where:

dd
day of the month (1 - 31)
mm
month (1 - 12)
yyyy
year (1997-)
hh
hour (0-23)
mm
minutes (0-59)

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
Retrieval of the date and time is not valid at this time.

Other Values
See ResultCode.

GetTotalizer Method

Syntax
LONG GetTotalizer (LONG VatID, LONG OptArgs, BSTR* Data);
Parameter
Description

VatID
VAT identifier of the required totalizer.

OptArgs
For some countries, this additional argument may be needed. Consult the Service Object vendor's documentation for details.
Data
Totalizer returned as a string.

Remarks
Called to get the totalizer associated with the given VAT rate.

If CapSetVatTable is false then only one totalizer is present.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
The VatID parameters is invalid.

Other Values
See ResultCode.

GetVatEntry Method

Syntax
LONG GetVatEntry (LONG VatID, LONG OptArgs, LONG* VatRate);
Parameter
Description

VatID
VAT identifier of the required rate.

OptArgs
For some countries, this additional argument may be needed. Consult the Service Object vendor's documentation for details.
VatRate
Pointer to the rate associated with the VAT identifier.

Remarks
Called to get the rate associated with a given VAT identifier.

This method is only supported if CapSetVatTable is TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
The VatID parameters is invalid.

Other Values
See ResultCode.

PrintDuplicateReceipt Method

Syntax
LONG PrintDuplicateReceipt ();

Remarks
Called to print a duplicate of a buffered transaction.

This method is only supported if CapDuplicateReceipt is TRUE.

This method will succeed if both the CapDuplicateReceipt and DuplicateReceipt properties are TRUE.

This method resets the DuplicateReceipt property to FALSE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress. (Can only be returned if AsyncMode is FALSE.)

OPOS_E_ILLEGAL
One of the following errors occurred:

· The printer does not support duplicate receipts (see the CapDuplicateReceipt property).

· There is no buffered transaction to print (see DuplicateReceipt property).

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer is not currently in the Monitor state.

ResultCodeExtended = OPOS_EFPTR_JRN_EMPTY:
The journal station is out of paper.

ResultCodeExtended = OPOS_EFPTR_REC_EMPTY:
The receipt station is out of paper.

PrintFiscalDocumentLine Method

Syntax
LONG PrintFiscalDocumentLine (BSTR DocumentLine);
Parameter
Description

DocumentLine
String to be printed on the fiscal slip.
Remarks
Called to print a line of fiscal text to the slip station.

This method is only supported if CapSlpFiscalDocument is TRUE.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress. (Can only be returned if AsyncMode is FALSE.)

OPOS_E_ILLEGAL
The printer does not support fiscal documents (see the CapSlpFiscalDocument property).

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer is not currently in the Fiscal Document state.

ResultCodeExtended = OPOS_EFPTR_COVER_OPEN:
The printer cover is open.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
BeginFiscalDocument Method, EndFiscalDocument Method

PrintFixedOutput Method

Syntax
LONG PrintFixedOutput (LONG DocumentType, LONG LineNumber, BSTR Data);
Parameter
Description

DocumentType
Identifier of a document stored in the printer

LineNumber
Number of the line in the document to print.

Data
String parameter for placement in printed line.

Remarks
Called to print a line of a fixed document to the print station specified in the BeginFixedOutput method. Each call prints a single line from a document by merging the stored text with the parameter Data. Within a document lines must be printed sequentially. Some lines are optional and some lines are required, such as the first and last lines.

This method is only supported if CapFixedOutput is TRUE.

The printer state is set to FPTR_PS_FIXED_OUTPUT

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress. (Can only be returned if AsyncMode is FALSE.)

OPOS_E_ILLEGAL
One of the following errors occurred:

· The printer does not support fixed output (see the CapFixedOutput property).

· The LineNumber is invalid.

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer is not currently in the Fixed Output state.

ResultCodeExtended = OPOS_EFPTR_COVER_OPEN:
The printer cover is open.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
BeginFixedOutput Method, EndFixedOutput Method

PrintNormal Method

Syntax
LONG PrintNormal (LONG Station, BSTR Data);
Parameter
Description

Station
The printer station to be used. May be FPTR_S_RECEIPT, FPTR_S_JOURNAL, FPTR_S_JOURNAL_RECEIPT or FPTR_S_SLIP.

Data
The characters to be printed, consisting mostly of printable characters.

This method performs non-fiscal printing. Escape sequences, carriage returns (13 decimal), and line feeds (10 decimal) are available on some printers, but in many cases these are not supported.
The format of this data depends upon the value of the BinaryConversion property.

Remarks
Called to print Data on the printer Station.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Special character values within Data are:

Value
Meaning

Line Feed (10)
Print any data in the line buffer, and feed to the next print line. (A Carriage Return is not required in order to cause the line to be printed.)

Carriage Return (13)
If a Carriage Return immediately precedes a Line Feed, or if the line buffer is empty, then it is ignored.

Otherwise, the line buffer is printed and the printer does not feed to the next print line.
On some printers, print without feed may be directly supported.
On others, a print may always feed to the next line, in which case the Service Object will print the line buffer and perform a reverse line feed if supported.
If the printer does not support either of these features, then Carriage Return acts like a Line Feed.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
The specified Station does not exist. (See the CapSlpPresent property.)

OPOS_E_BUSY
Cannot perform while output is in progress. (Can only be returned if AsyncMode is FALSE.)

OPOS_E_EXTENDED;

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer is not currently in the Non-Fiscal state.

ResultCodeExtended = OPOS_EFPTR_COVER_OPEN:
The printer cover is open.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
BeginNonFiscal Method, EndNonFiscal Method, AsyncMode property

PrintPeriodicTotalsReport Method

Syntax
LONG PrintPeriodicTotalsReport (BSTR Date1, BSTR Date2);
Parameter
Description

Date1
Starting date of report to print.
Date2
Ending date of report to print.

Remarks
Called to print a report of totals for a range of dates on the receipt.

This method is always performed synchronously.

The dates are strings in the format “ddmmyyyyhhmm”, where:

dd
day of the month (1 - 31)

mm
month (1 - 12)

yyyy
year (1997-)

hh
hour (0-23)

mm
minutes (0-59)

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer’s current state does not allow this state transition.

ResultCodeExtended = OPOS_EFPTR_JRN_EMPTY:
The journal station is out of paper.

ResultCodeExtended = OPOS_EFPTR_REC_EMPTY:
The receipt station is out of paper.

ResultCodeExtended = OPOS_EFPTR_BAD_DATE:
One of the date parameters is invalid.

Other Values
See ResultCode.

PrintPowerLossReport Method

Syntax
LONG PrintPowerLossReport ();
Remarks
Called to print on the receipt a report of a power failure that resulted in a loss of data stored in the CMOS of the printer.

This method is only supported if CapPowerLossReport is TRUE.

This method is always performed synchronously.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress.

OPOS_E_ILLEGAL
The printer does not support power loss reports (see the CapPowerLossReport property).

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer’s current state does not allow this state transition.

ResultCodeExtended = OPOS_EFPTR_COVER_OPEN:
The printer cover is open.

ResultCodeExtended = OPOS_EFPTR_JRN_EMPTY:
The journal station is out of paper.

ResultCodeExtended = OPOS_EFPTR_REC_EMPTY:
The receipt station is out of paper.

Other Values
See ResultCode.

PrintRecItem Method

Syntax
LONG PrintRecItem (BSTR Description, CURRENCY Price, LONG Quantity, LONG VatInfo, CURRENCY UnitPrice, BSTR UnitName)

Parameter
Description

Description
Text describing the item sold.

Price
Price of the line item.

Quantity
Number of items. If zero, a single item is assumed.
VatInfo
VAT rate identifier or amount. If not used a zero is to be transferred.

UnitPrice
Price of each item. If not used a zero is to be transferred.

UnitName
Name of the unit i.e. “kg” or “ltr” or “pcs”. If not used an empty string (““) is to be transferred

Remarks
Called to print a receipt item for a sold item. If the Quantity parameter is 0, then a single item quantity will be assumed.

Minimum parameters are Description and Price or Description, Price, Quantity, and UnitPrice. Most countries require Quantity and VatInfo and some countries also require UnitPrice and UnitName.

VatInfo contains a VAT table identifier if CapHasVatTable is TRUE. Otherwise it contains a VAT amount.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress. (Can only be returned if AsyncMode is FALSE.)

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer is not currently in the Fiscal Receipt state.

ResultCodeExtended = OPOS_EFPTR_COVER_OPEN:
The printer cover is open.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_QUANTITY:
The quantity is invalid.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_PRICE:
The unit price is invalid.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a reserved word.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_RECEIPT_TOTAL_OVERFLOW:
The receipt total has overflowed.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
BeginFiscalReceipt Method, EndFiscalReceipt Method, PrintRec… Methods, AmountDecimalPlaces Property

PrintRecItemAdjustment Method

Syntax
LONG PrintRecItemAdjustment (LONG AdjustmentType, BSTR Description, CURRENCY Amount, LONG VatInfo);
Parameter
Description

AdjustmentType
Type of discount. See below for values.
Description
Text describing the discount.

Amount
Amount of the discount.

VatInfo
VAT rate identifier or amount.

AdjustmentType can have the following values:

Value
Meaning

FPTR_AT_AMOUNT_DISCOUNT
Fixed amount discount. The Amount parameter contains a currency value.

FPTR_AT_AMOUNT_SURCHARGE
Fixed amount surcharge. The Amount parameter contains a currency value.
FPTR_AT_PERCENTAGE_DISCOUNT
Percentage discount. The Amount parameter contains a percentage value.

FPTR_AT_PERCENTAGE_SURCHARGE
Percentage surcharge. The Amount parameter contains a percentage value.

Remarks
Called to apply and print a discount or a surcharge to the last receipt item sold. This discount may be either a fixed currency amount or a percentage amount relating to the last item.

If CapOrderAdjustmentFirst is true, the method must be called before the corresponding PrintRecItem method.

If CapOrderAdjustmentFirst is false, the method must be called after the PrintRecItem.
This discount/surcharge may be either a fixed currency amount or a percentage amount relating to the last item.

If the discount amount is greater than the receipt subtotal, an error occurs since the subtotal can never be negative.

In many countries discount operations cause the printing of a fixed line of text expressing the kind of operation that has been perform

VatInfo contains a VAT table identifier if CapHasVatTable is TRUE. Otherwise it contains a VAT amount.

Fixed amount discounts/surcharges are only supported if CapAmountAdjustment is TRUE.

Percentage discounts are only supported if CapPercentAdjustment is TRUE.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress. (Can only be returned if AsyncMode is FALSE.)

OPOS_E_ILLEGAL
One of the following errors occurred:

· The printer does not support fixed amount adjustments (see the CapAmountAdjustment property).

· The printer does not support percentage discounts (see the CapPercentAdjustment property).

· The AdjustmentType parameter is invalid.

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer is not currently in the Fiscal Receipt state.

ResultCodeExtended = OPOS_EFPTR_COVER_OPEN:
The printer cover is open.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_AMOUNT:
The discount amount is invalid.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a reserved word.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
BeginFiscalReceipt Method, EndFiscalReceipt Method, PrintRec… Methods, AmountDecimalPlaces Property

PrintRecMessage Method

Syntax
LONG PrintRecMessage (BSTR Message);
Parameter
Description

Message
Text message to print.

Remarks
Called to print a message on the fiscal receipt. The length of an individual message is limited to the number of characters given in the MessageLength property.

This method is only supported if CapAdditionalLines is TRUE.

This method is only supported when the printer is in the Fiscal Receipt Ending state.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress. (Can only be returned if AsyncMode is FALSE.)

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer is not currently in the Fiscal Receipt Ending state.

ResultCodeExtended = OPOS_EFPTR_COVER_OPEN:
The printer cover is open.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_DESCRIPTION:
The message is too long or contains a reserved word.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
BeginFiscalReceipt Method, EndFiscalReceipt Method, PrintRec… Methods, MessageLength property, CapAdditionalLines property

PrintRecNotPaid Method

Syntax
LONG PrintRecNotPaid (BSTR Description, CURRENCY Amount);
Parameter
Description

Description
Text describing the not paid amount.

Amount
Amount not paid.

Remarks
Called to indicate that part of the receipt’s total was not paid.

Some fixed text, along with the Description, will be printed on the receipt and journal to indicate that part of the receipt total has not been paid.

This method is only supported if CapAmountNotPaid is TRUE.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

If this method is successful, the PrinterState property will be changed to either FPTR_PS_FISCAL_RECEIPT_TOTAL or FPTR_PS_FISCAL_RECEIPT_ENDING depending upon whether the entire receipt total is now accounted for or not.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress. (Can only be returned if AsyncMode is FALSE.)

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer is not currently in either the Fiscal Receipt or Fiscal Receipt Total state.

ResultCodeExtended = OPOS_EFPTR_COVER_OPEN:
The printer cover is open.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_AMOUNT:
The amount is invalid.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
BeginFiscalReceipt Method, EndFiscalReceipt Method, PrintRec… Methods, AmountDecimalPlaces Property

PrintRecRefund Method

Syntax
LONG PrintRecRefund (BSTR Description, CURRENCY Amount, LONG VatInfo);
Parameter
Description

Description
Text describing the refund.

Amount
Amount of the refund.

VatInfo
VAT rate identifier or amount.

Remarks
Called to process a refund. The Amount is positive, but it is printed as a negative number and the totals registers are decremented.

Some fixed text, along with the Description, will be printed on the receipt and journal to indicate that a refund has occurred.

VatInfo contains a VAT table identifier if CapHasVatTable is TRUE. Otherwise it contains a VAT amount.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress. (Can only be returned if AsyncMode is FALSE.)

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer is not currently in the Fiscal Receipt state.

ResultCodeExtended = OPOS_EFPTR_COVER_OPEN:
The printer cover is open.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_AMOUNT:
The amount is invalid.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_VAT:
The VAT information is invalid.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
BeginFiscalReceipt Method, EndFiscalReceipt Method, PrintRec… Methods, AmountDecimalPlaces Property

PrintRecSubtotal Method

Syntax
LONG PrintRecSubtotal (CURRENCY Amount);
Parameter
Description

Amount
Amount of the subtotal.

Remarks
Called to check and print the current receipt subtotal. If CapCheckTotal is TRUE, the Amount is compared to the subtotal calculated by the printer. If the subtotals match, the subtotal is printed on both the receipt and journal. If the results do not match, the receipt is automatically canceled. If CapCheckTotal is FALSE, then the subtotal is printed on the receipt and journal and the parameter is never compared to the subtotal computed by the printer.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

If this method compares the application’s subtotal with the printer’s subtotal and they do not match, the PrinterState property will be changed to FPTR_PS_FISCAL_RECEIPT_ENDING.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress. (Can only be returned if AsyncMode is FALSE.)

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer is not currently in the Fiscal Receipt state.

ResultCodeExtended = OPOS_EFPTR_COVER_OPEN:
The printer cover is open.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_AMOUNT:
The subtotal from the application does not match the subtotal computed by the printer.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_NEGATIVE_TOTAL:
The total computed by the printer is less than zero.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
BeginFiscalReceipt Method, EndFiscalReceipt Method, PrintRec… Methods, AmountDecimalPlaces Property

PrintRecSubtotalAdjustment Method

Syntax
LONG PrintRecSubtotalAdjustment (LONG AdjustmentType, BSTR Description, CURRENCY Amount);
Parameter
Description

AdjustmentType
Type of discount. See below for values.
Description
Text describing the discount.

Amount
Amount of the discount.

AdjustmentType can have the following values:

Value
Meaning

FPTR_AT_AMOUNT_DISCOUNT
Fixed amount discount. The Amount parameter contains a currency value.

FPTR_AT_AMOUNT_SURCHARGE
Fixed amount surcharge. The Amount parameter contains a currency value.
FPTR_AT_PERCENTAGE_DISCOUNT
Percentage discount. The Amount parameter contains a percentage value.

FPTR_AT_PERCENTAGE_SURCHARGE
Percentage surcharge. The Amount parameter contains a percentage value.

Remarks
Called to apply and print a discount/surcharge to the current receipt subtotal. This discount/surcharge may be either a fixed currency amount or a percentage amount relating to the current receipt subtotal.

If the discount/surcharge amount is greater than the receipt subtotal, an error occurs since the subtotal can never be negative.

In many countries discount/surcharge operations cause the printing of a fixed line of text expressing the kind of operation that has been performed.

Fixed amount discounts are only supported if CapSubAmountAdjustment is TRUE.

Percentage discounts are only supported if CapSubPercentAdjustment is TRUE.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress. (Can only be returned if AsyncMode is FALSE.)

OPOS_E_ILLEGAL
One of the following errors occurred:

· The printer does not support fixed amount discounts (see the CapSubAmountAdjustment property).

· The printer does not support percentage discounts (see the CapSubPercentAdjustment property).

· The AdjustmentType parameter is invalid.

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer is not currently in the Fiscal Receipt state.

ResultCodeExtended = OPOS_EFPTR_COVER_OPEN:
The printer cover is open.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_AMOUNT:
The discount amount is invalid.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a reserved word.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
BeginFiscalReceipt Method, EndFiscalReceipt Method, PrintRec… Methods, AmountDecimalPlaces Property

PrintRecTotal Method

Syntax
LONG PrintRecTotal (CURRENCY Total, CURRENCY Payment, BSTR Description);
Parameter
Description

Total
Application computed receipt total.

Payment
Amount of payment tendered.

Description
Text description of the payment or the index of a predefined payment description.

Remarks
Called to check and print the current receipt total and to tender a payment. If CapCheckTotal is TRUE, the Total is compared to the total calculated by the printer. If the totals match, the total is printed on both the receipt and journal along with some fixed text. If the results do not match, the receipt is automatically canceled. If CapCheckTotal is FALSE, then the total is printed on the receipt and journal and the parameter is never compared to the total computed by the printer.

If CapPredefinedPaymentLines is TRUE, then the Description parameter contains the index of one of the printer’s predefined payment descriptions. The index is typically a single character of the alphabet. The set of allowed values for this index is to be described in the description of the service object and stored in the PredefinedPaymentLines property.

If Payment = Total, a line containing the Description and Payment is printed. The PrinterState property will be set to FPTR_PS_FISCAL_RECEIPT_ENDING.

If Payment > Total, a line containing the Description and Payment is printed followed by a second line containing the change due. The PrinterState property will be set to FPTR_PS_FISCAL_RECEIPT_ENDING.

If Payment < Total, a line containing the Description and Payment is printed. Since the entire receipt total has not yet been tendered, the PrinterState property will be set to FPTR_PS_FISCAL_RECEIPT_TOTAL.

If CapAdditionalLines property is FALSE, then receipt trailer lines, fiscal logotype and receipt cut are executed after the last total line, whenever receipt’s total became equal to the payment from the application. Otherwise these lines are printed calling the EndFiscalReceipt method.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress. (Can only be returned if AsyncMode is FALSE.)

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer is not currently in the Fiscal Receipt state.

ResultCodeExtended = OPOS_EFPTR_COVER_OPEN:
The printer cover is open.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_AMOUNT:
One of the following errors occurred:

· The application computed total does not match the printer computed total.

· The Total parameter is invalid.

· The Payment parameter is invalid
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_NEGATIVE_TOTAL:
The total computed by the printer is less than zero.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_WORD_NOT_ALLOWED:
The description contains the reserved word

Other Values
See ResultCode.

See Also
BeginFiscalReceipt Method, EndFiscalReceipt Method, PrintRec… Methods, PredefinedPaymentLines property, AmountDecimalPlaces Property

PrintRecVoid Method

Syntax
LONG PrintRecVoid (BSTR Description);
Parameter
Description

Description
Text describing the void.

Remarks
Called to cancel the current receipt. The receipt is annulled but it is not physically canceled from the printer’s fiscal memory since fiscal receipts are printed with an increasing serial number and totals are accumulated in registers. When a receipt is canceled, its subtotal is subtracted from the totals registers, but it is added to the canceled receipt register.

Some fixed text, along with the Description, will be printed on the receipt and journal to indicate that the receipt has been canceled.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

If this method is successful, the PrinterState property will be changed to FPTR_PS_FISCAL_RECEIPT_ENDING.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress. (Can only be returned if AsyncMode is FALSE.)

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer is not currently in the Fiscal Receipt state.

ResultCodeExtended = OPOS_EFPTR_COVER_OPEN:
The printer cover is open.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
BeginFiscalReceipt Method, EndFiscalReceipt Method, PrintRec… Methods

PrintRecVoidItem Method

Syntax
LONG PrintRecVoidItem (BSTR Description, CURRENCY Amount, LONG Quantity, LONG AdjustmentType, CURRENCY Adjustment, LONG VatInfo);
Parameter
Description

Description
Text description of the item void.

Amount
Amount of item to be voided.

Quantity
Quantity of item to be voided.

AdjustmentType
Type of discount. See below for values.

Adjustment
Amount of the discount/surcharge

VatInfo
VAT rate identifier or amount.

AdjustmentType can have the following values:

Value
Meaning

FPTR_AT_AMOUNT_DISCOUNT
Fixed amount discount. The Adjustment parameter contains a currency value.

FPTR_AT_AMOUNT_SURCHARGE
Fixed amount surcharge. The Adjustment parameter contains a currency value.
FPTR_AT_PERCENTAGE_DISCOUNT
Percentage discount. The Adjustment parameter contains a percentage value.

FPTR_AT_PERCENTAGE_SURCHARGE
Percentage surcharge. The Adjustment parameter contains a percentage value.

Remarks
Called to cancel an item that has been added to the receipt and print a void description. Amount is a positive number, it will be printed as a negative and will be decremented from the totals registers.

VatInfo contains a VAT table identifier if CapHasVatTable is TRUE. Otherwise it contains a VAT amount.

Fixed amount discounts/surcharges are only supported if CapAmountAdjustment is TRUE.

Percentage discounts are only supported if CapPercentAdjustment is TRUE.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress. (Can only be returned if AsyncMode is FALSE.)

OPOS_E_ILLEGAL
One of the following errors occurred:

· The printer does not support fixed amount adjustments (see the CapAmountAdjustment property).

· The printer does not support percentage discounts (see the CapPercentAdjustment property).

· The AdjustmentType parameter is invalid.

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer is not currently in the Fiscal Receipt state.

ResultCodeExtended = OPOS_EFPTR_COVER_OPEN:
The printer cover is open.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_AMOUNT:
The amount is invalid.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_QUANTITY:
The quantity is invalid.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_VAT:
The VAT information is invalid.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_NEGATIVE_TOTAL:
The total computed by the printer is less than zero.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
BeginFiscalReceipt Method, EndFiscalReceipt Method, PrintRec… Methods, AmountDecimalPlaces Property

PrintReport Method

Syntax
LONG PrintReport (LONG ReportType, BSTR StartNum, BSTR EndNum);

Parameter
Description

ReportType
The kind of report to print.
StartNum
ASCII string identifying the starting record in printer memory from which to begin printing

EndNum
ASCII string identifying the final record in printer memory at which printing is to end. See ReportType table below to find out the exact meaning of this parameter.

ReportType can have the following values:

Value
Meaning

FPTR_RT_ORDINAL
Prints a report between two Z report. If both StartNum and EndNum are valid and EndNum > StartNum, then a report of the period between StartNum and EndNum will be printed. If StartNum is valid and EndNum is 0, then a report of relating only to StartNum will be printed.
FPTR_RT_DATE
Prints a report between two dates. The dates are strings in the format “ddmmyyyyhhmm”, where:
dd

day of the month (01 - 31)
mm

month (01 - 12)
yyyy

year (1997- ...)
hh

hour (00-23)
mm

minutes (00-59)

Remarks
Called to print a report of the fiscal EPROM contents on the receipt that occurred between two end points.

This method is always performed synchronously.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress.

OPOS_E_ILLEGAL
One of the following errors occurred:

* The ReportType parameter is invalid.

* One or both of StartNum and EndNum are invalid.

* StartNum > EndNum.

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer's current state does not allow this state transition.

ResultCodeExtended = OPOS_EFPTR_COVER_OPEN:
The printer cover is open.

ResultCodeExtended = OPOS_EFPTR_JRN_EMPTY:
The journal station is out of paper.

ResultCodeExtended = OPOS_EFPTR_REC_EMPTY:
The receipt station is out of paper.

Other Values
See ResultCode.

PrintXReport Method

Syntax
LONG PrintXReport ();
Remarks
Called to print on the receipt a report of all the daily fiscal activities. No data will be written to the fiscal EPROM as a result of this method invocation.

This method is only supported if CapXReport is TRUE.

This method is always performed synchronously.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress.

OPOS_E_ILLEGAL
The printer does not support X reports (see the CapXReport property).

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer’s current state does not allow this state transition.

ResultCodeExtended = OPOS_EFPTR_COVER_OPEN:
The printer cover is open.

ResultCodeExtended = OPOS_EFPTR_JRN_EMPTY:
The journal station is out of paper.

ResultCodeExtended = OPOS_EFPTR_REC_EMPTY:
The receipt station is out of paper.

Other Values
See ResultCode.

PrintZReport Method

Syntax
LONG PrintZReport ();
Remarks
Called to print on the receipt a report of all the daily fiscal activities. Data will be written to the fiscal EPROM as a result of this method invocation.

This method is always performed synchronously.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress.

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer’s current state does not allow this state transition.

ResultCodeExtended = OPOS_EFPTR_COVER_OPEN:
The printer cover is open.

ResultCodeExtended = OPOS_EFPTR_JRN_EMPTY:
The journal station is out of paper.

ResultCodeExtended = OPOS_EFPTR_REC_EMPTY:
The receipt station is out of paper.

Other Values
See ResultCode.

ResetPrinter Method

Syntax
LONG ResetPrinter ();
Remarks
Called to force the printer to return to Monitor state. This forces any interrupted operations to be canceled and closed. This method must be invoked when the printer is not in a Monitor state after a successful call to the Claim method and successful setting of the DeviceEnabled property to TRUE. This typically happens if a power failures occurs during a fiscal operation.

Calling this method does not close the printer, i.e. does not force a Z report to be printed.

The Service Object will handle this command as follows:

· If the printer was in either Fiscal Receipt, Fiscal Receipt Total or Fiscal Receipt Ending state, the receipt will be ended without updating any registers.

· If the printer was in a non-fiscal state, the printer will exit that state.

· If the printer was in the training state, the printer will exit the training state.

This method is always performed synchronously.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

Other Values
See ResultCode.

SetDate Method

Syntax
LONG SetDate (BSTR Date);
Parameter
Description

Date
Date and time as a string.

Remarks
Called to set the printer’s date and time.

The date and time is passed as a string in the format “ddmmyyyyhhmm”, where:

dd
day of the month (1 - 31)
mm
month (1 - 12)
yyyy
year (1997-)
hh
hour (0-23)
mm
minutes (0-59)

This method can only be called while DayOpened is FALSE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
The printer has already begun the fiscal day (see the DayOpened property).

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_BAD_DATE:
One of the date parameters is invalid.

Other Values
See ResultCode.

SetHeaderLine Method

Syntax
LONG SetHeaderLine (LONG LineNumber, BSTR Text, BOOL DoubleWidth);
Parameter
Description

LineNumber
Line number of the header line to set.

Text
Text to which to set the header line.

DoubleWidth
Print this line in double wide characters.

Remarks
Called to set one of the fiscal receipt header lines. The text set by this method will be stored by the printer and retained across power losses.

LineNumber must be between 1 and the value of the NumHeaderLines property.

If Text is an empty string (““), then the header line is unset and will not be printed.

DoubleWidth characters will be printed if the printer supports them. See the CapDoubleWidth property to determine if they are supported.

This method is only supported if CapSetHeader is TRUE.

This method can only be called while DayOpened is FALSE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· The printer has already begun the fiscal day (see the DayOpened property).

· The LineNumber parameter was invalid.

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_DESCRIPTION:
The Text parameter is too long or contains a reserved word.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

SetPOSID Method

Syntax
LONG SetPOSID (BSTR POSID, BSTR CashierID);
Parameter
Description

POSID
Identifier for the POS system.

CashierID
Identifier of the current cashier.

Remarks
Called to set the POS and cashier identifiers. These values will be printed when each fiscal receipt is closed.

This method is only supported if CapSetPOSID is TRUE.

This method can only be called while DayOpened is FALSE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following error occurred:

· The printer does not support setting the POS identifier (see the CapSetPOSID property).

· The printer has already begun the fiscal day (see the DayOpened property).

· Either the POSID or CashierID parameter is invalid.

Other Values
See ResultCode.

SetStoreFiscalID Method

Syntax
LONG SetStoreFiscalID (BSTR ID);
Parameter
Description

ID
Fiscal identifier.

Remarks
Called to set the store fiscal ID. This value is retained by the printer even after power failures. This ID is automatically printed by the printer after the fiscal receipt header lines.

This method is only supported if CapSetStoreFiscalID is TRUE.

This method can only be called while DayOpened is FALSE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· The printer does not support setting the store fiscal identifier (see the CapSetStoreFiscalID property).

· The printer has already begun the fiscal day (see the DayOpened property).

· The ID parameter was invalid.

Other Values
See ResultCode.

SetTrailerLine Method

Syntax
LONG SetTrailerLine (LONG LineNumber, BSTR Text, BOOL DoubleWidth);
Parameter
Description

LineNumber
Line number of the trailer line to set.

Text
Text to which to set the trailer line.

DoubleWidth
Print this line in double wide characters.

Remarks
Called to set one of the fiscal receipt trailer lines. The text set by this method will be stored by the printer and retained across power losses.

LineNumber must be between 1 and the value of the NumTrailerLines property.

If Text is an empty string (““), then the trailer line is unset and will not be printed.

DoubleWidth characters will be printed if the printer supports them. See the CapDoubleWidth property to determine if they are supported.

This method is only supported if CapSetTrailer is TRUE.

This method can only be called while DayOpened is FALSE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· The printer has already begun the fiscal day (see the DayOpened property).

· The LineNumber parameter was invalid.

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_DESCRIPTION:
The Text parameter is too long or contains a reserved word.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

SetVatTable Method

Syntax
LONG SetVatTable ();
Remarks
Called to send the VAT table built inside the Service Object to the printer. The VAT table is built one entry at a time using the SetVatValue method.

This method is only supported if CapHasVatTable is TRUE.

This method can only be called while DayOpened is FALSE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
The printer has already begun the fiscal day (see the DayOpened property).

Other Values
See ResultCode.

See Also
SetVatValue Method

SetVatValue Method

Syntax
LONG SetVatValue (LONG VatID, BSTR VatValue);
Parameter
Description

VatID
Index of the VAT table entry to set.

VatValue
Tax value as a percentage.

Remarks
Called to set the value of a specific VAT class in the VAT table. The VAT table is built one entry at a time in the Service Object using this method. The entire table is then sent to the printer at one time using the SetVatTable method.

This method is only supported if CapHasVatTable is TRUE.

This method can only be called while DayOpened is FALSE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· The printer does not support VAT tables (see the CapHasVatTable property).

· The printer has already begun the fiscal day (see the DayOpened property).

· The printer does not support changing an existing VAT value.

Other Values
See ResultCode.

See Also
SetVatTable Method

VerifyItem Method

Syntax
LONG VerifyItem (BSTR ItemName, LONG VatID);
Parameter
Description

ItemName
Item to be verified.

VatID
VAT identifier of the item.

Remarks
Called to compare ItemName and its VatID with the values stored in the printer.

This method is only supported if CapHasVatTable is TRUE.

This method can only be called while the printer is in the Item List state.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
The printer does not support VAT tables (see the CapHasVatTable property).

OPOS_E_EXTENDED:

ResultCodeExtended = OPOS_EFPTR_WRONG_STATE:
The printer is not currently in the Item List state.

ResultCodeExtended = OPOS_EFPTR_BAD_ITEM_DESCRIPTION:
The item name is too long or contains a reserved word.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
SetVatTable Method

Events

ErrorEvent Event

Syntax
void ErrorEvent (LONG ResultCode, LONG ResultCodeExtended,
LONG ErrorLocus, LONG* pErrorResponse);
Parameter
Description

ResultCode
Result code causing the error event. See ResultCode for values.

ResultCodeExtended
Extended result code causing the error event. See values below.

ErrorLocus
Set to OPOS_EL_OUTPUT: Error occurred while processing asynchronous output.

pErrorResponse
Pointer to the error event response. See values below.

If ResultCode is OPOS_E_EXTENDED, then ResultCodeExtended is set to one of the following values:

Value
Meaning

OPOS_EFPTR_COVER_OPEN
The printer cover is open.

OPOS_EFPTR_JRN_EMPTY
The journal station is out of paper.

OPOS_EFPTR_REC_EMPTY
The receipt station is out of paper.

OPOS_EFPTR_SLP_EMPTY
A form is not inserted in the slip station.

OPOS_EFPTR_WRONG_STATE
The requested method could not be executed in the printer’s current state.

OPOS_EFPTR_TECHNICAL_ASSISTANCE
The printer has encountered a severe error condition. Calling for printer technical assistance is required.

OPOS_EFPTR_CLOCK_ERROR
The printer’s internal clock has failed.

OPOS_EFPTR_FISCAL_MEMORY_FULL
The printer’s fiscal memory has been exhausted.

OPOS_EFPTR_FISCAL_MEMORY_DISCONNECTED
The printer’s fiscal memory has been disconnected.

OPOS_EFPTR_FISCAL_TOTALS_ERROR
The Grand Total in working memory does not match the one in the EPROM.

OPOS_EFPTR_BAD_ITEM_QUANTITY
The Quantity parameter is invalid.

OPOS_EFPTR_BAD_ITEM_AMOUNT
The Amount parameter is invalid.

OPOS_EFPTR_BAD_ITEM_DESCRIPTION
The Description parameters is either to long, contains illegal characters or contains the reserved word.

OPOS_EFPTR_RECEIPT_TOTAL_OVERFLOW
The receipt total has overflowed.

OPOS_EFPTR_BAD_VAT
The Vat parameter is invalid.

OPOS_EFPTR_BAD_PRICE
The Price parameter is invalid.

OPOS_EFPTR_NEGATIVE_TOTAL
The printer’s computed total or subtotal is less than zero.

OPOS_EFPTR_MISSING_DEVICES
Some of the other devices which according to the local fiscal legislation are to be connected has been disconnected. In some countries in order to use a fiscal printer a full set of peripheral devices are to be connected to the POS (such as cash drawer and customer display). In case one of these devices is not present sales are not allowed.

The contents at the location pointed to by the pErrorResponse parameter are preset to the default value of OPOS_ER_RETRY. The application may set the value to one of the following:

Value
Meaning

OPOS_ER_RETRY
Retry the asynchronous output. The error state is exited.

OPOS_ER_CLEAR
Clear the asynchronous output. The error state is exited.

Remarks
Fired when an error is detected and the control transitions into the error state.

See Also
Printer Error Model (Page 182)

StatusUpdateEvent Event

Syntax
void StatusUpdateEvent (LONG Data);
The Data parameter may be one of the following:

Value
Meaning

FPTR_SUE_COVER_OPEN
Printer cover is open.

FPTR_SUE_COVER_OK
Printer cover is closed.

FPTR_SUE_JRN_EMPTY
No journal paper.

FPTR_SUE_JRN_NEAREMPTY
Journal paper is low.

FPTR_SUE_JRN_PAPEROK
Journal paper is ready.

FPTR_SUE_REC_EMPTY
No receipt paper.

FPTR_SUE_REC_NEAREMPTY
Receipt paper is low.

FPTR_SUE_REC_PAPEROK
Receipt paper is ready.

FPTR_SUE_SLP_EMPTY
No slip form.

FPTR_SUE_SLP_NEAREMPTY
Almost at the bottom of the slip form.

FPTR_SUE_SLP_PAPEROK
Slip form is inserted.

FPTR_SUE_IDLE
All asynchronous output has finished, either successfully or because output has been cleared. The printer State is now OPOS_S_IDLE. The FlagWhenIdle property must be TRUE for this event to be fired, and the Control automatically resets the property to FALSE just before delivering the event.

Power reporting StatusUpdateEvent values
See StatusUpdateEvent description on page 68.

Remarks
Fired when a significant status event has occurred.

Chapter 8
Hard Totals

Summary

Properties

Common

Type
Access
Initialized After

AutoDisable
1.2
Boolean
R/W
Not Supported

BinaryConversion
1.2
Long
R/W
Open

CapPowerReporting
1.3
Long
R
Open

CheckHealthText
1.0
String
R
Open

Claimed
1.0
Boolean
R
Open

DataCount
1.2
Long
R
Not Supported

DataEventEnabled
1.0
Boolean
R/W
Not Supported

DeviceEnabled
1.0
Boolean
R/W
Open

FreezeEvents
1.0
Boolean
R/W
Open

OutputID
1.0
Long
R
Not Supported

PowerNotify
1.3
Long
R/W
Open

PowerState
1.3
Long
R
Open

ResultCode
1.0
Long
R
--

ResultCodeExtended
1.0
Long
R
Open

State
1.0
Long
R
--

ControlObjectDescription
1.0
String
R
--

ControlObjectVersion
1.0
Long
R
--

ServiceObjectDescription
1.0
String
R
Open

ServiceObjectVersion
1.0
Long
R
Open

DeviceDescription
1.0
String
R
Open

DeviceName
1.0
String
R
Open

Specific

Type
Access
Initialized After

CapErrorDetection
1.0
Boolean
R
Open

CapSingleFile
1.0
Boolean
R
Open

CapTransactions
1.0
Boolean
R
Open

FreeData
1.0
Long
R
Open & Enable

TotalsSize
1.0
Long
R
Open & Enable

NumberOfFiles
1.0
Long
R
Open & Enable

TransactionInProgress
1.0
Boolean
R
Open

Methods

Common

May Use After

Open
1.0
--

Close
1.0
Open

Claim
1.0
Open

Release
1.0
Open & Claim

CheckHealth
1.0
Open & Enable; Note 1

ClearInput
1.0
Not Supported

ClearOutput
1.0
Not Supported

DirectIO
1.0
Open

Specific

ClaimFile
1.0
Open & Enable; Note 2

ReleaseFile
1.0
Open & Enable

Read
1.0
Open & Enable; Note 2

Write
1.0
Open & Enable; Note 2

SetAll
1.0
Open & Enable; Note 2

ValidateData
1.0
Open & Enable; Note 2

RecalculateValidationData
1.0
Open & Enable; Note 2

Create
1.0
Open & Enable; Note 1

Find
1.0
Open & Enable; Note 1

FindByIndex
1.0
Open & Enable; Note 1

Delete
1.0
Open & Enable; Note 2

Rename
1.0
Open & Enable; Note 2

BeginTrans
1.0
Open & Enable

CommitTrans
1.0
Open & Enable

Rollback
1.0
Open & Enable

Note 1: Also requires that no other application has claimed the hard totals device.

Note 2: Also requires that no other application has claimed the hard totals device or the file on which this method acts.

Events

Name

May Occur After

DataEvent
1.0
Not Supported

DirectIOEvent
1.0
Open, Claim

ErrorEvent
1.0
Not Supported

OutputCompleteEvent
1.0
Not Supported

StatusUpdateEvent
1.3
Open, Claim, & Enable

General Information

The Hard Totals Control’s OLE programmatic ID is “OPOS.Totals”.

Capabilities

The Hard Totals device has the following minimal set of capabilities:

· Supports at least one totals file with the name ““ (the empty string) in an area of totals memory. Each totals file is read and written as if it were a sequence of byte data.

· Each totals file is created with a fixed size and may be deleted, initialized, and claimed for exclusive use.

· Totals memory is frequently a limited but secure resource ‑ perhaps of only several thousand bytes of storage.

The Hard Totals device may have the following additional capabilities:

· Supports additional named totals files. They share some characteristics of a file system with only a root directory level. In addition to the minimal capabilities listed above, each totals file may also be renamed.

· Supports transactions, with begin and commit operations, plus rollback.

· Supports advanced error detection. This detection may be implemented through hardware or software.

Model

The following is the general model of the Hard Totals:

· A Hard Totals device is logically treated as a sequence of byte data, which the application subdivides into “totals files.” This is done by the Create method, which assigns a name, size, and error detection level to the totals file. Totals files have a fixed-length that is set at Create time.

At a minimum, a single totals file with the name ““ (the empty string) can be created and manipulated. Optionally, additional totals files with arbitrary names may be created.

Totals files model many of the characteristics of a traditional file system. The intent, however, is not to provide a robust file system. Rather, totals files allow partitioning and ease of access into what is frequently a limited but secure resource. In order to reduce unnecessary overhead usage of this resource, directory hierarchies are not supported, file attributes are minimized, and files may not be dynamically resized.

· The following operations may be performed on a totals file:

· Read: Read a series of data bytes.

· Write: Write a series of data bytes.

· SetAll: Set all the data in a totals file to a value.

· Find: Locate an existing totals file by name, and return a file handle and size.

· FindByIndex: Used to enumerate all of the files in the Hard Totals area.

· Delete: Delete a totals file by name.

· Rename: Rename an existing totals file.

· ClaimFile: Gain exclusive access to a specific file for use by the claiming application. A timeout value may be specified in case another application maintains access for a period a time.
The common Claim method may also be used to claim the entire Hard Totals device.

· ReleaseFile: Releases exclusive access to the file.

· The FreeData property holds the current number of unassigned data bytes.

· The TotalsSize property holds the totals memory size.

· The NumberOfFiles property holds the number of totals files that exist in the hard totals device.

· Transaction operations are optionally supported. A transaction is defined as a series of data writes to be applied as an atomic operation to one or more Hard Totals files.

During a transaction, data writes will typically be maintained in memory until a commit or rollback. Also FreeData will typically be reduced during a transaction to ensure that the commit has temporary totals space to perform the commit as an atomic operation.

· BeginTrans: Marks the beginning of a transaction.

· CommitTrans: Ends the current transaction, and saves the updated data. Software and/or hardware methods are used to ensure that either the entire transaction is saved, or that none of the updates are applied.

This will typically require writing the transaction to temporary totals space, setting state information within the device indicating that a commit is in progress, writing the data to the totals files, and freeing the temporary totals space. If the commit is interrupted, perhaps due to a system power loss or reset, then when the Hard Totals service object is reloaded and initialized, it can complete the commit by copying data from the temporary space into the totals files. This ensures the integrity of related totals data.

· Rollback: Ends the current transaction, and discards the updates. This may be useful in case of user intervention to cancel an update. Also, if advanced error detection shows that some totals data cannot be read properly in preparation for an update, then the transaction may need to be aborted.

· TransactionInProgress: This property holds the current state of transactions.

The application should Claim the files used during a transaction so that no other Hard Totals Control claims a file before CommitTrans, causing the commit to fail, returning an already claimed status.

· Advanced error detection is optionally supported by the following:

· A Read or a Write may report a validation error. Data is usually divided into validation blocks, over which sumchecks or CRCs are maintained. The size of validation data blocks is determined by the specific Service Object.

A validation error informs the application that one or more of the validation blocks containing the data to be read or written may be invalid due to a hardware error. (An error on a Write can occur when only a portion of a validation block must be changed. The validation block must be read and the block validated before the portion is changed.)

When a validation error is reported, it is recommended that the application read all of the data in the totals file. The application will want to determine which portions of data are invalid, and take action based on the results of the reads.

· RecalculateValidationData may be called to cause recalculation of all validation data within a totals file. This may be called after recovery has been performed as in the previous paragraph.

· ValidateData may be called to verify that all data within a totals file passes validation.

· Data Writes automatically cause recalculation of validation data for the validation block or blocks in which the written data resides.

· Since advanced error detection usually imposes a performance penalty, the application may choose to select this feature when each totals file is created.

Device Sharing

The hard totals device is sharable. Its device sharing rules are:

· After opening the device, most properties are readable.

· After opening and enabling the device, the application may access all properties and methods.

· If more than one application has opened and enabled the device, all applications may access its properties and methods.

· One application may claim the hard totals device. This restricts all other applications from reading, changing, or claiming any files on the device.

· One application may claim a hard totals file. This restricts all other applications from reading, changing, or claiming the file, and from claiming the hard totals device.

Properties

CapErrorDetection Property

Syntax
BOOL CapErrorDetection;

Remarks
If TRUE, then advanced error detection is supported;
otherwise it is FALSE.

This property is initialized by the Open method.

CapSingleFile Property

Syntax
BOOL CapSingleFile;

Remarks
If TRUE, then only a single file, identified by the empty string (“”), is supported;
otherwise it is FALSE.

This property is initialized by the Open method.

CapTransactions Property

Syntax
BOOL CapTransactions;

Remarks
If TRUE, then transactions are supported;
otherwise it is FALSE.

This property is initialized by the Open method.

FreeData Property

Syntax
LONG FreeData;
Remarks
Holds the number of bytes of unallocated data in the Hard Totals device.

Its value is initialized to an appropriate value when the device is enabled and is updated as files are Created and Deleted. If creating a file requires some overhead to support the file information, then FreeData is reduced by this overhead amount. This guarantees that a new file of size FreeData may be created.

Data writes within a transaction may temporarily reduce FreeData, since some Hard Totals space may need to be allocated to prepare for the transaction commit. Therefore, the application should ensure that sufficient FreeData is maintained to allow its maximally sized transactions to be performed.

See Also
Create Method; Write Method

NumberOfFiles Property

Syntax
LONG NumberOfFiles;
Remarks
Holds the number of totals file currently in the Hard Totals device.

This property is initialized and kept current while the device is enabled.

See Also
FreeData Property

TotalsSize Property

Syntax
LONG TotalsSize;
Remarks
Holds the size of the Hard Totals area. This size is equal to the largest totals file that can be created if no other files exist.

This property is initialized when the device is enabled.

See Also
FreeData Property

TransactionInProgress Property

Syntax
BOOL TransactionInProgress;

Remarks
If TRUE, then the application is within a transaction;
otherwise it is FALSE.

This property is initialized to FALSE by the Open method.

See Also
BeginTrans Method

Methods

BeginTrans Method

Syntax
LONG BeginTrans ();
Remarks
Marks the beginning of a series of Hard Totals writes that must either be applied as a group or not at all.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
Transactions are not supported by this device.

Other Values
See ResultCode.

See Also
CommitTrans Method; Rollback Method

Claim Method (Common)

Syntax
LONG Claim (LONG Timeout);

The Timeout parameter gives the maximum number of milliseconds to wait for exclusive access to be satisfied.
If zero, the method attempts to claim the device, then returns the appropriate status immediately.
If OPOS_FOREVER (-1), the method waits as long as needed until exclusive access is satisfied.

Remarks
Call this method to request exclusive access to the device.

If any other application has claimed exclusive access to any of the hard totals files by using ClaimFile, then this Claim cannot be satisfied until those files are released by ReleaseFile.

When successful, the Claimed property is changed to TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
Exclusive access has been granted. The Claimed property is now TRUE.
Also returned if this application has already claimed the device.

OPOS_E_ILLEGAL
An invalid Timeout parameter was specified.

OPOS_E_TIMEOUT
Another application has exclusive access to the device or one or more of its files and did not relinquish control before Timeout milliseconds expired.

See Also
“Device Sharing Model”; Release Method; ClaimFile Method; ReleaseFile Method

ClaimFile Method

Syntax
LONG ClaimFile (LONG HTotalsFile, LONG Timeout);
Parameter
Description

HTotalsFile
Handle to the totals file that is to be claimed.

Timeout
The time in milliseconds to wait for the file to become available.
If zero, the method attempts to claim the file, then returns the appropriate status immediately.
If OPOS_FOREVER (-1), the method waits as long as needed until exclusive access is satisfied.

Remarks
Attempts to gain exclusive access to a specific file for use by the claiming application. Once granted, the application maintains exclusive access until it explicitly releases access or until the device is closed.

If any other applications have claimed exclusive access to this file by using ClaimFile, or if an application has claimed exclusive access to the entire totals area by using Claim, then this ClaimFile cannot be satisfied until those claims have been released.

All claims are released when the application calls the Close method.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
The handle is invalid, or an invalid Timeout parameter was specified.

OPOS_E_TIMEOUT
The Timeout value expired before another application released exclusive access of either the requested totals file or the entire totals area.

See Also
Claim Method; ReleaseFile Method

CommitTrans Method

Syntax
LONG CommitTrans ();
Remarks
Ends the current transaction. All writes between the previous BeginTrans method and this method are saved to the Hard Totals areas.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
Transactions are not supported by this device, or no transaction is in progress.

Other Values
See ResultCode.

See Also
BeginTrans Method; Rollback Method

Create Method

Syntax
LONG Create (BSTR FileName, LONG* pHTotalsFile, LONG Size,
BOOL ErrorDetection);
Parameter
Description

FileName
The name to be assigned to the file.
Must be no longer than 10 characters. All displayable characters – characters (20-hex – are valid.

pHTotalsFile
Pointer to the handle of the newly created totals file. Set by the method.

Size
The length of the file in bytes. Once created, the file size cannot be changed – totals files are fixed-length files.

ErrorDetection
The level of error detection desired for this file:
If TRUE, then the Service Object will enable advanced error detection if supported.
If FALSE, then higher performance access is required, so advanced error detection need not be enabled for this file.

Remarks
Creates a totals file with the specified name, size, and error detection level. The data area is initialized to binary zeros.

If CapSingleFile is TRUE, then only one file may be created, and its name must be the empty string (“”). Otherwise, the number of totals files that may be created is limited only by the free space available in the Hard Totals area.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_CLAIMED
Cannot create because the entire totals file area is claimed by another application.

OPOS_E_ILLEGAL
The FileName is too long or contains invalid characters.

OPOS_E_EXISTS
FileName already exists.

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_ETOT_NOROOM:
There is insufficient room in the totals area to create the file.

Other Values
See ResultCode.

See Also
Find Method; Delete Method; Rename Method

Delete Method

Syntax
LONG Delete (BSTR FileName);
The FileName parameter specifies the totals file to be deleted.

Remarks
Delete the named file.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_CLAIMED
Cannot delete because either the totals file or the entire totals area is claimed by another application.

OPOS_E_ILLEGAL
The FileName is too long or contains invalid characters.

OPOS_E_NOEXIST
FileName was not found.

Other Values
See ResultCode.

See Also
Create Method; Find Method; Rename Method

Find Method

Syntax
LONG Find (BSTR FileName, LONG* pHTotalsFile, LONG* pSize);
Parameter
Description

FileName
The totals file name to be located.

pHTotalsFile
Pointer to the handle of the totals file. Set by the method.

pSize
Pointer to the length of the file in bytes. Set by the method.

Remarks
Locates an existing totals file.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_CLAIMED
Cannot find because the entire totals file area is claimed by another application.

OPOS_E_ILLEGAL
The FileName is too long or contains invalid characters.

OPOS_E_NOEXIST
FileName was not found.

Other Values
See ResultCode.

See Also
Create Method; Delete Method; Rename Method

FindByIndex Method

Syntax
LONG FindByIndex (LONG Index, BSTR* pFileName);
Parameter
Description

Index
The index of the totals file name to be found.

pFileName
Pointer to the totals file name to be returned. Set by the method.

Remarks
Returns the totals file name currently associated with the given index.

This method provides a means for enumerating all of the totals files currently defined. An Index of zero will return the file name at the first file position, with subsequent indices returning additional file names. The largest valid Index value is one less than NumberOfFiles.

The creation and deletion of files may change the relationship between indices and the file names, as the Control may compact or rearrange the data areas used to manage file names and attributes at these times. Therefore, the application may need to Claim the device to ensure that all file names are retrieved successfully.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_CLAIMED
Cannot find because the entire totals file area is claimed by another application.

OPOS_E_ILLEGAL
The Index is greater than the largest file index that is currently defined.

Other Values
See ResultCode.

See Also
Create Method; Find Method

Read Method

Syntax
LONG Read (LONG HTotalsFile, BSTR* pData, LONG Offset, LONG Count);
Parameter
Description

HTotalsFile
Totals file handle returned from a Create or Find method.

pData
Pointer to the data buffer in which the totals data will be placed.
The format of this data depends upon the value of the BinaryConversion property. See page 37.

Offset
Starting offset for the data to be read.

Count
Number of bytes of data to read.

Remarks
Read data from a totals file.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_CLAIMED
Cannot read because either the totals file or the entire totals area is claimed by another application.

OPOS_E_ILLEGAL
The handle is invalid, or part of the data range is outside the bounds of the totals file.

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_ETOT_VALIDATION:
A validation error has occurred while reading data.

Other Values
See ResultCode.

See Also
Write Method

RecalculateValidationData Method

Syntax
LONG RecalculateValidationData (LONG HTotalsFile);
The HTotalsFile parameter contains the handle of a totals file.

Remarks
Recalculates validation data for the specified totals file.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_CLAIMED
Cannot recalculate because either the totals file or the entire totals area is claimed by another application.

OPOS_E_ILLEGAL
The handle is invalid, or advanced error detection is either not supported by the Service Object or by this file.

Other Values
See ResultCode.

Release Method (Common)

Syntax
LONG Release ();

Remarks
Call this method to release exclusive access to the device.

An application may own claims on both the Hard Totals device through Claim as well as individual files through ClaimFile. Calling Release only releases the claim on the Hard Totals device.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
Exclusive access has been released. The Claimed property is now FALSE.

OPOS_E_ILLEGAL
The application does not have exclusive access to the device.

See Also
“Device Sharing Model”; Claim Method; ClaimFile Method
ReleaseFile Method

Syntax
LONG ReleaseFile (LONG HTotalsFile);
The HTotalsFile parameter contains the handle of the totals file to be released.

Remarks
Releases exclusive access to a specific file.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
The handle is invalid, or the specified file is not claimed by this application.

See Also
Claim Method; ClaimFile Method
Rename Method

Syntax
LONG Rename (LONG HTotalsFile, BSTR FileName);
Parameter
Description

HTotalsFile
Handle of the totals file to be renamed.

FileName
The new name to be assigned to the file.
The name must be no longer than 10 characters. All displayable characters – characters (20-hex – are valid.

Remarks
Renames a totals file.

If CapSingleFile is TRUE, then this method will fail.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_CLAIMED
Cannot rename because either the totals file or the entire totals area is claimed by another application.

OPOS_E_ILLEGAL
The file handle is invalid, the FileName is too long or contains invalid characters, or the CapSingleFile property is TRUE.

OPOS_E_EXISTS
FileName already exists.

Other Values
See ResultCode.

Rollback Method

Syntax
LONG Rollback ();
Remarks
Ends the current transaction. All writes between the previous BeginTrans and this method are discarded; they are not saved to the Hard Totals areas.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
Transactions are not supported by this device, or no transaction is in progress.

Other Values
See ResultCode.

See Also
BeginTrans Method; CommitTrans Method

SetAll Method

Syntax
LONG SetAll (LONG HTotalsFile, LONG Value);
Parameter
Description

HTotalsFile
Handle of a totals file.

Value
Value to set is in the low byte.

Remarks
Set all the data in a totals file to the specified value.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_CLAIMED
Cannot set because either the totals file or the entire totals area is claimed by another application.

Other Values
See ResultCode.

ValidateData Method

Syntax
LONG ValidateData (LONG HTotalsFile);
The HTotalsFile parameter contains the handle of a totals file.

Remarks
Verifies that all data in the specified totals file passes validation checks.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_CLAIMED
Cannot validate because either the totals file or the entire totals area is claimed by another application.

OPOS_E_ILLEGAL
The handle is invalid, or advanced error detection is either not supported by the Service Object or by this file.

Other Values
See ResultCode.

Write Method

Syntax
LONG Write (LONG HTotalsFile, BSTR Data, LONG Offset, LONG Count);
Parameter
Description

HTotalsFile
Totals file handle returned from a Create or Find method.

Data
Data buffer containing the totals data to be written.
The format of this data depends upon the value of the BinaryConversion property. See page 37.

Offset
Starting offset for the data to be written.

Count
Number of bytes of data to write.

Remarks
Write data to a totals file.

If a transaction is in progress, then the write will be buffered until a CommitTrans or Rollback method is called.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_CLAIMED
Cannot write because either the totals file or the entire totals area is claimed by another application.

OPOS_E_ILLEGAL
The handle is invalid, or part of all of the data range is outside the bounds of the totals file.

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_ETOT_NOROOM:
Cannot write because a transaction is in progress, and there is not enough free space to prepare for the transaction commit.

ResultCodeExtended = OPOS_ETOT_VALIDATION:
A validation error has occurred while reading data.

Other Values
See ResultCode.

See Also
Read Method; BeginTrans Method; CommitTrans Method; Rollback Method; FreeData Property

Chapter 9
Keylock

Summary

Properties

Common

Type
Access
Initialized After

AutoDisable
1.2
Boolean
R/W
Not Supported

BinaryConversion
1.2
Long
R/W
Open

CapPowerReporting
1.3
Long
R
Open

CheckHealthText
1.0
String
R
Open

Claimed
1.0
Boolean
R
Open

DataCount
1.2
Long
R
Not Supported

DataEventEnabled
1.0
Boolean
R/W
Not Supported

DeviceEnabled
1.0
Boolean
R/W
Open

FreezeEvents
1.0
Boolean
R/W
Open

OutputID
1.0
Long
R
Not Supported

PowerNotify
1.3
Long
R/W
Open

PowerState
1.3
Long
R
Open

ResultCode
1.0
Long
R
--

ResultCodeExtended
1.0
Long
R
Open

State
1.0
Long
R
--

ControlObjectDescription
1.0
String
R
--

ControlObjectVersion
1.0
Long
R
--

ServiceObjectDescription
1.0
String
R
Open

ServiceObjectVersion
1.0
Long
R
Open

DeviceDescription
1.0
String
R
Open

DeviceName
1.0
String
R
Open

Specific

Type
Access
Initialized After

KeyPosition
1.0
Long
R
Open & Enable

PositionCount
1.0
Long
R
Open

Methods

Common

May Use After

Open
1.0
--

Close
1.0
Open

Claim
1.0
Open

Release
1.0
Open & Claim

CheckHealth
1.0
Open & Enable

ClearInput
1.0
Not Supported

ClearOutput
1.0
Not Supported

DirectIO
1.0
Open

Specific

WaitForKeylockChange
1.0
Open & Enable

Events

Name

May Occur After

DataEvent
1.0
Not Supported

DirectIOEvent
1.0
Open

ErrorEvent
1.0
Not Supported

OutputCompleteEvent
1.0
Not Supported

StatusUpdateEvent
1.0
Open & Enable

General Information

The Keylock Control’s OLE programmatic ID is “OPOS.Keylock”.

Capabilities

The keylock has the following minimal set of capabilities:

· Supports at least three keylock positions.

· Supports reporting of keylock position changes, either by hardware or software detection.

Model

The keylock defines three keylock positions as constants. It is assumed that the keylock supports locked, normal, and supervisor positions. The constants for these keylock positions and their values are as follows:

· LOCK_KP_LOCK
1

· LOCK_KP_NORM
2

· LOCK_KP_SUPR
3

The KeyPosition property holds the value of the keylock position where the values range from one (1) to the total number of keylock positions contained in the PositionCount property.

Device Sharing

The keylock is sharable. Its device sharing rules are:

· After opening and enabling the device, the application may access all properties and methods and will receive status update events.

· If more than one application has opened and enabled the device, each of these applications may access its properties and methods. Status update events are fired to all of these applications.

· The keylock may not be claimed for exclusive access. If an application calls Claim, the method always return OPOS_E_ILLEGAL.

· See the “Summary” table for precise usage prerequisites.

Properties

KeyPosition Property

Syntax
LONG KeyPosition;
Remarks
Holds a value which indicates the keylock position.

This value is set by the Control whenever the keylock position is changed. In addition to the application receiving the StatusUpdateEvent, this value is changed to reflect the new keylock position.

The KeyPosition property may hold one of the following values:

Value
Meaning

LOCK_KP_LOCK
Keylock is in the “locked” position. Value is one (1).

LOCK_KP_NORM
Keylock is in the “normal” position. Value is two (2).

LOCK_KP_SUPR
Keylock is in the “supervisor” position. Value is three (3).

Other Values
Keylock is in one of the auxiliary positions. This value may range from four (4) up to the total number of keylock positions indicated by the PositionCount property.

This property is initialized and kept current while the device is enabled.

PositionCount Property

Syntax
LONG PositionCount;
Remarks
Holds the total number of keylock positions.

Contains the total number of positions that are present on the keylock device.

This property is initialized by the Open method.

Methods

WaitForKeylockChange Method

Syntax
LONG WaitForKeylockChange (LONG KeyPosition, LONG Timeout);
Parameter
Description

KeyPosition
Requested keylock position. See values below.

Timeout
Maximum number of milliseconds to wait for the keylock before returning control back to the application.
If zero, the method then returns the appropriate status immediately.
If OPOS_FOREVER (-1), the method waits as long as needed until the requested key position is satisfied or an error occurs.

The KeyPosition parameter may contain one of the following values:

Value
Meaning

LOCK_KP_ANY
Wait for any keylock position change. Value is zero (0).

LOCK_KP_LOCK
Wait for keylock position to be set to the “locked” position. Value is one (1).

LOCK_KP_NORM
Wait for keylock position to be set to the “normal” position. Value is two (2).

LOCK_KP_SUPR
Wait for keylock position to be set to the “supervisor” position. Value is three (3).

Other Values
Wait for keylock position to be set to one of the auxiliary positions. This value may range from four (4) up to the total number of keylock positions indicated by the PositionCount property.

Remarks
Call to wait for a specified keylock position to be set.

If the keylock position specified by the KeyPosition parameter is the same as the current keylock position, then the method returns immediately.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The keylock is in the specified position. If KeyPosition is LOCK_KP_ANY, then the keylock position has changed.

OPOS_E_ILLEGAL
An invalid parameter value was specified.

OPOS_E_TIMEOUT
The timeout period expired before the requested keylock positioning occurred.

Other Values
See ResultCode.

Events

StatusUpdateEvent Event

Syntax
void StatusUpdateEvent (LONG Status);
The Status parameter contains the updated keylock position. The following keylock position values may be set:

Value
Meaning

LOCK_KP_LOCK
Keylock is in the “locked” position. Value is one (1).

LOCK_KP_NORM
Keylock is in the “normal” position. Value is two (2).

LOCK_KP_SUPR
Keylock is in the “supervisor” position. Value is three (3).

Other Values
Keylock is in one of the auxiliary positions. This value may range from four (4) to the total number of keylock positions indicated by the PositionCount property.

Power reporting StatusUpdateEvent values
See StatusUpdateEvent description on page 68.

Remarks
Fired when the keylock position changes.

Chapter 10
Line Display

Summary

Properties

Common

Type
Access
Initialized After

AutoDisable
1.2
Boolean
R/W
Not Supported

BinaryConversion
1.2
Long
R/W
Open

CapPowerReporting
1.3
Long
R
Open

CheckHealthText
1.0
String
R
Open

Claimed
1.0
Boolean
R
Open

DataCount
1.2
Long
R
Not Supported

DataEventEnabled
1.0
Boolean
R/W
Not Supported

DeviceEnabled
1.0
Boolean
R/W
Open & Claim

FreezeEvents
1.0
Boolean
R/W
Open

OutputID
1.0
Long
R
Not Supported

PowerNotify
1.3
Long
R/W
Open

PowerState
1.3
Long
R
Open

ResultCode
1.0
Long
R
--

ResultCodeExtended
1.0
Long
R
Open

State
1.0
Long
R
--

ControlObjectDescription
1.0
String
R
--

ControlObjectVersion
1.0
Long
R
--

ServiceObjectDescription
1.0
String
R
Open

ServiceObjectVersion
1.0
Long
R
Open

DeviceDescription
1.0
String
R
Open

DeviceName
1.0
String
R
Open

Specific

Type
Access
Initialized After

CapBlink
1.0
Long
R
Open

CapBrightness
1.0
Boolean
R
Open

CapCharacterSet
1.0
Long
R
Open

CapDescriptors
1.0
Boolean
R
Open

CapHMarquee
1.0
Boolean
R
Open

CapICharWait
1.0
Boolean
R
Open

CapVMarquee
1.0
Boolean
R
Open

DeviceWindows
1.0
Long
R
Open

DeviceRows
1.0
Long
R
Open

DeviceColumns
1.0
Long
R
Open

DeviceDescriptors
1.0
Long
R
Open

DeviceBrightness
1.0
Long
R/W
Open, Claim, & Enable

CharacterSet
1.0
Long
R/W
Open, Claim, & Enable

CharacterSetList
1.0
String
R
Open

CurrentWindow
1.0
Long
R/W
Open

Rows
1.0
Long
R
Open

Columns
1.0
Long
R
Open

CursorRow
1.0
Long
R/W
Open

CursorColumn
1.0
Long
R/W
Open

CursorUpdate
1.0
Boolean
R/W
Open

MarqueeType
1.0
Long
R/W
Open

MarqueeFormat
1.0
Long
R/W
Open

MarqueeUnitWait
1.0
Long
R/W
Open

MarqueeRepeatWait
1.0
Long
R/W
Open

InterCharacterWait
1.0
Long
R/W
Open

Methods

Common

May Use After

Open
1.0
--

Close
1.0
Open

Claim
1.0
Open

Release
1.0
Open & Claim

CheckHealth
1.0
Open, Claim, & Enable

ClearInput
1.0
Not Supported

ClearOutput
1.0
Not Supported

DirectIO
1.0
Open

Specific

DisplayText
1.0
Open, Claim, & Enable

DisplayTextAt
1.0
Open, Claim, & Enable

ClearText
1.0
Open, Claim, & Enable

ScrollText
1.0
Open, Claim, & Enable

SetDescriptor
1.0
Open, Claim, & Enable

ClearDescriptors
1.0
Open, Claim, & Enable

CreateWindow
1.0
Open, Claim, & Enable

DestroyWindow
1.0
Open, Claim, & Enable

RefreshWindow
1.0
Open, Claim, & Enable

Events

Name

May Occur After

DataEvent
1.0
Not Supported

DirectIOEvent
1.0
Open, Claim

ErrorEvent
1.0
Not Supported

OutputCompleteEvent
1.0
Not Supported

StatusUpdateEvent
1.3
Open, Claim, & Enable

General Information

The Line Display Control’s OLE programmatic ID is “OPOS.LineDisplay”.

Capabilities

The Line Display has the following capability:

· Supports text character display. The default mode (or perhaps only mode) of the display is character display output.

The line display may also have the following additional capabilities:

· Supports windowing with marquee-like scrolling of the window. The display may support vertical or horizontal marquees, or both.

· Supports a waiting period between displaying characters, for a teletype effect.

· Supports character-level or device-level blinking.

· Supports one or more descriptors. Descriptors are small indicators with a fixed label, and are typically used to indicate transaction states such as item, total, and change.

· Supports device brightness control, with one or more levels of device dimming. All devices support brightness levels of “normal” and “blank” (at least through software support), but some devices also support one or more levels of dimming.

The following capability is not addressed in this version of the OPOS specification:

· Support for graphical displays, where the line display is addressable by individual pixels or dots.

Model

The general model of a line display:

· Consists of one or more rows containing one or more columns of characters. The characters in the default character set will include at least one of the following, with a capability defining the character set:

· The digits ‘0’ through ‘9’ plus space, minus (‘-’), and period (‘.’).

· The above set plus uppercase ‘A’ through ‘Z.’

· All ASCII characters from 0x20 through 0x7F, which includes space, digits, uppercase, lowercase, and some special characters.

· The rows and columns are numbered beginning with (0, 0) at the upper-left corner of the window.

· Window 0 is always defined as follows:

· Its “viewport” — the portion of the display that is updated by the window — covers the entire display.

· The size of the window matches the entire display.

Therefore, window 0, which is also called the “device window”, maps directly onto the display.

· Additional windows may be created. A created window has the following characteristics:

· Its viewport covers part or all of the display.

· The window may either match the size of the viewport, or it may be larger than the viewport in either the horizontal or vertical direction. In the second case, marquee scrolling of the window can be set.

· The window maintains its own values for rows and columns, current cursor row and column, cursor update flag, scroll type and format, and timers.

· All viewports behave transparently. If two viewports overlap, then the last character displayed at a position by either of the windows will be visible.

Display Modes

· Immediate Mode
In effect when MarqueeType is DISP_MT_NONE and InterCharacterWait is zero.

If the window is bigger than the viewport, then only those characters which map into the viewport will be seen.

· Teletype Mode
In effect when MarqueeType is DISP_MT_NONE and InterCharacterWait is not zero.

DisplayText and DisplayTextAt requests are enqueued and processed in the order they are received. The InterCharacterWait timer specifies the time to wait between outputting each character. InterCharacterWait only applies to those characters within the viewport.

· Marquee Mode
In effect when MarqueeType is not DISP_MT_NONE.

The window must be bigger than the viewport.

A marquee is typically initialized after entering Marquee Init Mode by setting MarqueeType to DISP_MT_INIT, then calling ClearText, DisplayText, and DisplayTextAt methods. Then, when MarqueeType is changed to an “on” value, Marquee On Mode is entered, and the marquee begins to be displayed in the viewport beginning at the start of the window (or end if the type is right or down).

When the mode is changed from Marquee On Mode to off, the marquee stops in place. A subsequent transition from back to Marquee On Mode continues from the current position.

When the mode is changed from Marquee On Mode to Marquee Init Mode, the marquee stops. Changes may be made to the window, then the window may be returned to Marquee On Mode to restart the marquee with the new data.

It is illegal to use DisplayText, DisplayTextAt, ClearText, RefreshWindow, and ScrollText unless in Marquee Init Mode or marquees are off.

Device Sharing

The line display is an exclusive-use device. Its device sharing rules are:

· The application must claim the device before enabling it.

· The application must claim and enable the device before accessing some properties or calling methods that update the device.

· See the “Summary” table for precise usage prerequisites.

Properties

CapBlink Property

Syntax
LONG CapBlink;

Remarks
Holds the character blink capability of the device. It may be one of the following:

Value
Meaning

DISP_CB_NOBLINK
Blinking is not supported. Value is 0.

DISP_CB_BLINKALL
Blinking is supported. The entire contents of the display are either blinking or in a steady state.

DISP_CB_BLINKEACH
Blinking is supported. Each character may be individually set to blink or to be in a steady state.

This property is initialized by the Open method.

CapBrightness Property

Syntax
BOOL CapBrightness;

Remarks
If TRUE, the brightness control is supported;
otherwise it is FALSE.

This property is initialized by the Open method.

CapCharacterSet Property

Syntax
LONG CapCharacterSet;

Remarks
Holds the default character set capability. It may be one of the following:

Value
Meaning

DISP_CCS_NUMERIC
The default character set supports numeric data, plus space, minus, and period.

DISP_CCS_ALPHA
The default character set supports uppercase alphabetic plus numeric, space, minus, and period.

DISP_CCS_ASCII
The default character set supports all ASCII characters between 20-hex and 7F-hex.

DISP_CCS_KANA
The default character set supports partial code page 932, including ASCII characters 20-hex through 7F-hex and the Japanese Kana characters A1-hex through DF-hex, but excluding the Japanese Kanji characters.

DISP_CCS_KANJI
The default character set supports code page 932, including the Shift-JIS Kanji characters, Levels 1 and 2.

The default character set may contain a superset of these ranges. The initial CharacterSet property may be examined for additional information.

This property is initialized by the Open method.

CapDescriptors Property

Syntax
BOOL CapDescriptors;

Remarks
If TRUE, then the display supports descriptors;
otherwise it is FALSE.

This property is initialized by the Open method.

CapHMarquee Property

Syntax
BOOL CapHMarquee;

Remarks
If TRUE, the display supports horizontal marquee windows;
otherwise it is FALSE.

This property is initialized by the Open method.

CapICharWait Property

Syntax
BOOL CapICharWait;

Remarks
If TRUE, the display supports intercharacter wait;
otherwise it is FALSE.

This property is initialized by the Open method.

CapVMarquee Property

Syntax
BOOL CapVMarquee;

Remarks
If TRUE, the display supports vertical marquee windows;
otherwise it is FALSE.

This property is initialized by the Open method.

CharacterSet Property R/W

Syntax
LONG CharacterSet;

Remarks
Contains the character set for displaying characters.

It is one of the following ranges or values:

Value
Meaning

Range 101 - 199
A device-specific character set that does not match a code page, nor the ASCII or Windows ANSI character sets.

Range 400 - 990
Code page; matches one of the standard values.

DISP_CS_ASCII
The ASCII character set, supporting the ASCII characters between 20-hex and 7F-hex. The value of this constant is 998.

DISP_CS_WINDOWS
The Windows ANSI character set. The value of this constant is 999. This is exactly equivalent to the Windows code page 1252.

Range 1000 and higher
Windows code page; matches one of the standard values.

This property is initialized to an appropriate value when the device is first enabled following the Open method. This value is guaranteed to support at least the set of characters specified by the CapCharacterSet capability.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

Other Values
See ResultCode.

See Also
CharacterSetList Property; CapCharacterSet Property

CharacterSetList Property

Syntax
BSTR CharacterSetList;

Remarks
A string of character set numbers.

This property is initialized by the Open method. The string consists of ASCII numeric set numbers separated by commas.

For example, if the string is “101,850,999”, then the device supports a device-specific character set, code page 850, and the Windows ANSI character set.

See Also
CharacterSet Property

Columns Property

Syntax
LONG Columns;

Remarks
Holds the number of columns for this window.

For window 0, Columns is the same as DeviceColumns.
For other windows, it may be less or greater than DeviceColumns.

This property is initialized to DeviceColumns by the Open method, and is updated when CurrentWindow is set and when CreateWindow or DestroyWindow are called.

See Also
Rows Property

CurrentWindow Property R/W

Syntax
LONG CurrentWindow;

Remarks
Holds the current window to which text is displayed.

Several properties are associated with each window: Rows, Columns, CursorRow, CursorColumn, CursorUpdate, MarqueeType, MarqueeUnitWait, MarqueeRepeatWait, and InterCharacterWait.
When set, this property changes the current window and sets the associated properties to their values for this window.

Setting a window does not refresh its viewport. If this window and another window’s viewports overlap, and the other window has changed the viewport, then RefreshWindow may be called to restore this window’s viewport contents.

This property is initialized to zero – the device window – by the Open method, and is updated when CreateWindow or DestroyWindow are called.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The new current window was set successfully.

OPOS_E_ILLEGAL
The new current window value is not valid.

CursorColumn Property R/W

Syntax
LONG CursorColumn;

Remarks
Holds the column in the current window to which the next displayed character will be output.

Legal values range from (zero) through (Columns). (See DisplayText for a note on the interpretation of CursorColumn = Columns.)

This property is initialized to zero on the by the Open and CreateWindow methods, and is updated when CurrentWindow is set or ClearText, DisplayTextAt, or DestroyWindow is called. It is also updated when DisplayText is called if CursorUpdate is TRUE.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The cursor column was set successfully.

OPOS_E_ILLEGAL
An invalid cursor column value was used.

See Also
CursorRow Property; DisplayText Method

CursorRow Property R/W

Syntax
LONG CursorRow;

Remarks
Holds the row in the current window to which the next displayed character will be output.

Legal values range from (zero) through (Rows - 1).

This property is initialized to zero by the Open and CreateWindow methods, and is updated when CurrentWindow is set or ClearText, DisplayTextAt, or DestroyWindow is called. It is also updated when DisplayText is called if CursorUpdate is TRUE.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The cursor row was set successfully.

OPOS_E_ILLEGAL
An invalid cursor row value was used.

See Also
CursorColumn Property; DisplayText Method

CursorUpdate Property R/W

Syntax
BOOL CursorUpdate;

Remarks
If TRUE when characters are displayed by the DisplayText or DisplayTextAt method, then CursorRow and CursorColumn will be updated to point to the character beyond the last character output.

If FALSE when characters are displayed, then the cursor properties will not be updated.

This property is maintained fore each window. It initialized to TRUE by the Open and CreateWindow methods, and is updated when CurrentWindow is set or DestroyWindow is called.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

See Also
CursorRow Property; CursorColumn Property

DeviceBrightness Property R/W

Syntax
LONG DeviceBrightness;

Remarks
Holds the device brightness value, expressed as a percentage between 0 and 100.

Any device can support 0% (blank) and 100% (full intensity). Blanking can, at a minimum, be supported by sending spaces to the device. If the capability CapBrightness is TRUE, then the device also supports one or more levels of dimming.

If a device does not support the specified brightness value, then the Service Object will choose an appropriate substitute.

This property is initialized to 100 when the device is first enabled following the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An invalid property value was used: Not in the range 0 through 100.

DeviceColumns Property

Syntax
LONG DeviceColumns;

Remarks
Holds the number of columns on this device.

This property is initialized by the Open method.

See Also
DeviceRows Property

DeviceDescriptors Property

Syntax
LONG DeviceDescriptors;

Remarks
Holds the number of descriptors on this device.

If the capability CapDescriptors is TRUE, then DeviceDescriptors is non-zero; otherwise it is zero.

This property is initialized by the Open method.

See Also
SetDescriptor Method; ClearDescriptors Method

DeviceRows Property

Syntax
LONG DeviceRows;

Remarks
Holds the number of rows on this device.

This property is initialized by the Open method.

See Also
DeviceColumns Property

DeviceWindows Property

Syntax
LONG DeviceWindows;

Remarks
Holds the maximum window number supported by this device. A value of zero indicates that only the device window is supported, and that no windows may be created.

This property is initialized by the Open method.

See Also
CurrentWindow Property

InterCharacterWait Property R/W

Syntax
LONG InterCharacterWait;

Remarks
Holds the wait time between displaying each character with the DisplayText and DisplayTextAt methods. This timer gives a “teletype” appearance when displaying the text.

InterCharacterWait is only used if the window is not in Marquee Mode — that is, MarqueeType must be DISP_MT_NONE.

When non-zero and the window is not in Marquee Mode, the window is in Teletype Mode: DisplayText and DisplayTextAt requests are enqueued and processed in the order they are received. The InterCharacterWait timer specifies the time to wait between outputting each character into the viewport. The wait time is the specified number of milliseconds. (Note that the system timer resolution may reduce the precision of the wait time.) If CursorUpdate is TRUE, CursorRow and CursorColumn are updated to their final values before DisplayText or DisplayTextAt returns, even though all of its data may not yet be displayed.

When the timer is zero and the window is not in Marquee Mode, Immediate Mode is in effect, so that characters are processed as quickly as possible. If some display requests are enqueued at the time that InterCharacterWait is set to zero, the requests are completed as quickly as possible.

If the capability CapICharWait is FALSE, then intercharacter wait is not supported, and the value of this property is not used.

This property is initialized to zero by the Open and CreateWindow methods, and is updated when CurrentWindow is set or DestroyWindow is called.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An illegal value was specified.

See Also
DisplayText Method

MarqueeFormat Property R/W

Syntax
LONG MarqueeFormat;

Remarks
Holds the marquee format for the current window.

Value
Meaning

DISP_MF_WALK
Begin the marquee by walking data from the opposite side. For example, if the marquee type is “left”, then the viewport is filled by bringing characters into the right side and scrolling them to the left.

DISP_MF_PLACE
Begin the marquee by placing data. For example, if the marquee type is “left”, then the viewport is filled by placing characters starting at the left side, and beginning scrolling only after the viewport is full.

The value of MarqueeFormat is initialized to DISP_MF_WALK by the Open and CreateWindow methods, and is updated when CurrentWindow is set or DestroyWindow is called.

MarqueeFormat is read when a transition is made to Marquee On Mode. It is not used when not in Marquee Mode.

When MarqueeFormat is DISP_MF_WALK, and a transition is made from Marquee Init Mode to Marquee On Mode, the following occurs:

1. Map the window to the viewport as follows:

Marquee Type
Window

Viewport

Left
First Column
=
Last Column

Up
First Row
=
Last Row

Right
Last Column
=
First Column

Down
Last Row
=
First Row
Fill the viewport with blanks. Continue to Step 2 without waiting.

2. Display the mapped portion of the window into the viewport, then wait MarqueeUnitWait milliseconds. Move the window mapping onto the viewport by one row or column in the marquee direction. Repeat until the viewport is full.

3. Refresh the viewport, then wait MarqueeUnitWait milliseconds. Move the window mapping by one row or column. Repeat until the last row or column is scrolled into the viewport (in which case, omit the unit wait).

4. Wait MarqueeRepeatWait milliseconds. Then go to step back to Step 1.

When MarqueeFormat is DISP_MF_PLACE, and a transition is made from Marquee Init Mode to Marquee On Mode, the following occurs:

1. Map the window to the viewport as follows:

Marquee Type
Window

Viewport

Left
First Column
=
First Column

Up
First Row
=
First Row

Right
Last Column
=
Last Column

Down
Last Row
=
Last Row
Fill the viewport with blanks. Continue to Step 2 without waiting.

2. Display a row or column into viewport, then wait MarqueeUnitWait milliseconds. Repeat until the viewport is full.

3. Move the window mapping onto the viewport by one row or column in the marquee direction, and refresh the viewport, then wait MarqueeUnitWait milliseconds. Repeat until the last row or column is scrolled into the viewport (in which case, omit the unit wait).

4. Wait MarqueeRepeatWait milliseconds. Then go to step back to Step 1.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An invalid property value was used, or attempted to change window 0.

See Also
MarqueeType Property; MarqueeUnitWait Property; MarqueeRepeatWait Property

Example 1
Marquee Walk format.
 - Assume a 2x20 display.
 - A Visual Basic application has a line display object named LD.
 - The application has performed:

LD.CreateWindow(0, 3, 2, 3, 2, 5) ’ 2x3 viewport of 2x5 window

LD.DisplayText(“0123456789”, DISP_DT_NORMAL)

The window contains:

0
1
2
3
4

0
0
1
2
3
4

1
5
6
7
8
9

and the display contains (assuming the other windows are all blank):

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0

0
1
2

1

5
6
7

If the application performs the sequence:

LD.MarqueeType = DISP_MT_INIT

LD.MarqueeFormat = DISP_MF_WALK

LD.DisplayTextAt(0, 4, “AB”, DISP_DT_NORMAL)
the viewport is not changed (since we are in Marquee Init Mode), and the window becomes:

0
1
2
3
4

0
0
1
2
3
A

1
B
6
7
8
9

If the application performs:

LD.MarqueeType = DISP_MT_LEFT
the window is not changed, and the viewport becomes:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0

0

1

B

After MarqueeUnitWait milliseconds, the viewport is changed to:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0

0
1

1

B
6

After MarqueeUnitWait milliseconds, the viewport is changed to:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0

0
1
2

1

B
6
7

After MarqueeUnitWait milliseconds, the viewport is changed to:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0

1
2
3

1

6
7
8

After MarqueeUnitWait milliseconds, the viewport is changed to:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0

2
3
A

1

7
8
9

The marquee has scrolled to the end of the window.
After MarqueeRepeatWait milliseconds, the marquee display restarts with the viewport changing to:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0

0

1

B

Example 2
Marquee Place format.
 - Assume a 2x20 display.
 - A Visual Basic application has a line display object named LD.
 - The application has performed:

LD.CreateWindow(0, 3, 2, 3, 2, 5) ’ 2x3 viewport of 2x5 window

LD.DisplayText(“0123456789”, DISP_DT_NORMAL)

The window contains:

0
1
2
3
4

0
0
1
2
3
4

1
5
6
7
8
9

and display contains (assuming the other windows are all blank):

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0

0
1
2

1

5
6
7

If the application performs the sequence:

LD.MarqueeType = DISP_MT_INIT

LD.MarqueeFormat = DISP_MF_PLACE

LD.DisplayTextAt(0, 4, “AB”, DISP_DT_NORMAL)
the viewport is not changed (since we are in Marquee Init Mode), and the window becomes:

0
1
2
3
4

0
0
1
2
3
A

1
B
6
7
8
9

If the application performs:

LD.MarqueeType = DISP_MT_LEFT
the window is not changed, and the viewport becomes:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0

0

1

B

After MarqueeUnitWait milliseconds, the viewport is changed to:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0

0
1

1

B
6

After MarqueeUnitWait milliseconds, the viewport is changed to:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0

0
1
2

1

B
6
7

From this point to the end of the window, the marquee action is the same as with marquee walking…
After MarqueeUnitWait milliseconds, the viewport is changed to:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0

1
2
3

1

6
7
8

After MarqueeUnitWait milliseconds, the viewport is changed to:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0

2
3
A

1

7
8
9

The marquee has scrolled to the end of the window.
After MarqueeRepeatWait milliseconds, the marquee display restarts with the viewport changing to:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0

0

1

B

MarqueeRepeatWait Property R/W

Syntax
LONG MarqueeRepeatWait;

Remarks
Holds the wait time between scrolling the final character or row of the window into its viewport and restarting the marquee with the first or last character or row.

The wait time is the specified number of milliseconds. (Note that the timer resolution may reduce the precision of the wait time.)

This property is initialized to zero by the Open and CreateWindow methods, and is updated when CurrentWindow is set or DestroyWindow is called.

MarqueeRepeatWait is not used if not in Marquee Mode.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An illegal value was specified.

See Also
MarqueeType Property; MarqueeFormat Property; MarqueeUnitWait Property

MarqueeType Property R/W

Syntax
LONG MarqueeType;

Remarks
Holds the marquee type for the current window. When not DISP_MT_NONE, the window is in Marquee Mode.

Value
Meaning

DISP_MT_NONE
Marquees are disabled for this window.

DISP_MT_INIT
Marquee Init Mode. Changes to the window are not reflected in the viewport until MarqueeType is changed to another value.

DISP_MT_UP
Scroll the window up. Illegal unless Rows is greater than the Height parameter used for the window’s CreateWindow call, and the capability CapVMarquee is TRUE.

DISP_MT_DOWN
Scroll the window down. Illegal unless Rows is greater than the Height parameter used for the window’s CreateWindow call, and the capability CapVMarquee is TRUE.

DISP_MT_LEFT
Scroll the window left. Illegal unless Columns is greater than the Width parameter used for the window’s CreateWindow call, and the capability CapHMarquee is TRUE.

DISP_MT_RIGHT
Scroll the window left. Illegal unless Columns is greater than the Width parameter used for the window’s CreateWindow call, and the capability CapHMarquee is TRUE.

A marquee is typically initialized after entering Marquee Init Mode by setting MarqueeType to DISP_MT_INIT, then calling ClearText and DisplayText(At) methods. Then, when MarqueeType is changed to an “on” value, Marquee On Mode is entered, and the marquee begins to be displayed in the viewport beginning at the start of the window (or end if the type is right or down).

When the mode is changed from Marquee On Mode to off, the marquee stops in place. A subsequent transition from back to Marquee On Mode continues from the current position.

When the mode is changed from Marquee On Mode to Marquee Init Mode, the marquee stops. Changes may be made to the window, then the window may be returned to Marquee On Mode to restart the marquee with the new data.

MarqueeType is always DISP_MT_NONE for window 0 – the device window.

The value of MarqueeType is initialized to DISP_MT_NONE by the Open and CreateWindow methods, and is updated when CurrentWindow is set or DestroyWindow is called.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An invalid property value was used, or attempted to change window 0.

See Also
MarqueeFormat Property; MarqueeUnitWait Property; MarqueeRepeatWait Property

MarqueeUnitWait Property R/W

Syntax
LONG MarqueeUnitWait;

Remarks
Holds the wait time between marquee scrolling of each column or row in the window.

The wait time is the specified number of milliseconds. (Note that the timer resolution may reduce the precision of the wait time.)

MarqueeUnitWait is not used if MarqueeType is DISP_MT_NONE.

This property is initialized to zero by the Open and CreateWindow methods, and is updated when CurrentWindow is set or DestroyWindow is called.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An illegal value was specified.

See Also
MarqueeType Property; MarqueeFormat Property; MarqueeRepeatWait Property

Rows Property

Syntax
LONG Rows;

Remarks
Holds the number of rows for this window.

For window 0, Rows is the same as DeviceRows.
For other windows, it may be less or greater than DeviceRows.

This property is initialized to DeviceRows by the Open method, and is updated when CurrentWindow is set or CreateWindow or DestroyWindow are called.

See Also
Columns Property

Methods

ClearDescriptors Method

Syntax
LONG ClearDescriptors ();

Remarks
Turns off all descriptors.

This function is illegal if the capability CapDescriptors is FALSE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
The device does not support descriptors.

Other Values
See ResultCode.

See Also
SetDescriptor Method; DeviceDescriptors Property

ClearText Method

Syntax
LONG ClearText ();

Remarks
Clears the current window to blanks, sets CursorRow and CursorColumn to zero, and resynchronizes the beginning of the window with the start of the viewport.

If in Immediate Mode or Teletype Mode, the viewport is also cleared immediately.

If in Marquee Init Mode, the viewport is not changed.

If in Marquee On Mode, ClearText is illegal.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
In Marquee On Mode.

Other Values
See ResultCode.

See Also
DisplayText Method

CreateWindow Method

Syntax
LONG CreateWindow (LONG ViewportRow, LONG ViewportColumn,
LONG ViewportHeight, LONG ViewportWidth,
LONG WindowHeight, LONG WindowWidth);
Parameter
Description

ViewportRow
The viewport’s start device row.

ViewportColumn
The viewport’s start device column.

ViewportHeight
The number of device rows in the viewport.

ViewportWidth
The number of device columns in the viewport.

WindowHeight
The number of rows in the window.

WindowWidth
The number of columns in the window.

Remarks
Creates a viewport over the portion of the display given by the first four parameters. The window size is given by the last two parameters. Valid window row values range from (0) to (WindowHeight-1) and column values range from (0) to (WindowWidth-1).

The window size must be at least as large as the viewport size.

The window size may be larger than the viewport size in one direction. Using the window marquee properties MarqueeType, MarqueeFormat, MarqueeUnitWait, and MarqueeRepeatWait, such a window may be continuously scrolled in a marquee fashion.

When successful, CreateWindow sets the CurrentWindow property to the window number assigned to this window. The following properties are maintained for each window, and are initialized as given:

Property
Value

Rows
Set to WindowHeight.

Columns
Set to WindowWidth.

CursorRow
Set to 0.

CursorColumn
Set to 0.

CursorUpdate
Set to TRUE.

MarqueeType
Set to DISP_MT_NONE.

MarqueeFormat
Set to DISP_MF_WALK.

MarqueeUnitWait
Set to 0.

MarqueeRepeatWait
Set to 0.

InterCharacterWait
Set to 0.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One or more parameters are out of their valid ranges, or all available windows are already in use.

Other Values
See ResultCode.

See Also
DestroyWindow Method; CurrentWindow Property

DestroyWindow Method

Syntax
LONG DestroyWindow ();

Remarks
Destroys the current window. The characters displayed in its viewport are not changed.

CurrentWindow is set to window 0. The device window and the associated window properties are updated.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
The current window is 0. This window may not be destroyed.

Other Values
See ResultCode.

See Also
CreateWindow Method; CurrentWindow Property

DisplayText Method

Syntax
LONG DisplayText (BSTR Data, LONG Attribute);
Parameter
Description

Data
The string of characters to display.
The format of this data depends upon the value of the BinaryConversion property. See page 37.

Attribute
The display attribute for the text. Must be either DISP_DT_NORMAL or DISP_DT_BLINK.

Remarks
The characters in Data are processed beginning at the location specified by CursorRow and CursorColumn, and continue in succeeding columns.

Character processing continues to the next row when the end of a window row is reached. If the end of the window is reached with additional characters to be processed, then the window is scrolled upward by one row and the bottom row is set to blanks. If CursorUpdate is TRUE, then CursorRow and CursorColumn are updated to point to the character following the last character of Data.

Note

Scrolling will not occur when the last character of Data is placed at the end of a row. In this case, when CursorUpdate is TRUE, then CursorRow is set to the row containing the last character, and CursorColumn is set to Columns (that is, to one more than the final character of the row).

This stipulation ensures that the display does not scroll when a character is written into its last position. Instead, the Control will wait until another character is written before scrolling the window.

The operation of DisplayText (and DisplayTextAt) varies for each mode:

· Immediate Mode (MarqueeType = DISP_MT_NONE and InterCharacterWait = 0): Updates the window and viewport immediately.

· Teletype Mode (MarqueeType = DISP_MT_NONE and InterCharacterWait not = 0): The Data is enqueued. Enqueued data requests are processed in order (typically by another thread within the Control), updating the window and viewport using a wait of InterCharacterWait milliseconds after each character is sent to the viewport.

· Marquee Init Mode (MarqueeType = DISP_MT_INIT): Updates the window, but doesn’t change the viewport.

· Marquee On Mode (MarqueeType not = DISP_MT_INIT): Illegal.

If the capability CapBlink is DISP_CB_NOBLINK, then Attribute is ignored. If it is DISP_CB_BLINKALL, then the entire display will blink when one or more characters have been set to blink. If it is DISP_CB_BLINKEACH, then only those characters displayed with the blink attribute will blink.

Special character values within Data are:

Value
Meaning

New Line (13)
Change the next character’s output position to the beginning of the current row.

Line Feed (10)
Change the next character’s output position to the beginning of the next row. Scroll the window if the current row is the last row of the window.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
Attribute is illegal, or the display is in Marquee On Mode.

Other Values
See ResultCode.

See Also
DisplayTextAt Method; ClearText Method; InterCharacterWait Property

DisplayTextAt Method

Syntax
LONG DisplayTextAt (LONG Row, LONG Column,
BSTR Data, LONG Attribute);
Parameter
Description

Row
The start row for the text.
Column
The start column for the text.
Data
The string of characters to display.
The format of this data depends upon the value of the BinaryConversion property. See page 37.

Attribute
The display attribute for the text. Must be either DISP_DT_NORMAL or DISP_DT_BLINK.

Remarks
The characters in Data are processed beginning at the window location specified by the Row and Column parameters, and continuing in succeeding columns.

This method has the same effect as setting the CursorRow to Row, setting CursorColumn to Column, and calling the DisplayText method.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
Row or Column are out or range, Attribute is illegal, or in Marquee On Mode.

Other Values
See ResultCode.

See Also
DisplayText Method; ClearText Method; InterCharacterWait Property

RefreshWindow Method

Syntax
LONG RefreshWindow (LONG Window);
The Window parameter specifies which window must be refreshed.
Remarks
Changes the current window to Window, then redisplays its viewport. Neither the mapping of the window to its viewport nor the window’s cursor position is changed.

This function may be used to restore a window after another window has overwritten some of its viewport.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
Window is larger than DeviceWindows or has not been created, or in Marquee On Mode.

Other Values
See ResultCode.

ScrollText Method

Syntax
LONG ScrollText (LONG Direction, LONG Units);
The Direction parameter indicates the scrolling direction, which may be one of the following:

Value
Meaning

DISP_ST_UP
Scroll the window up.

DISP_ST_DOWN
Scroll the window down.

DISP_ST_LEFT
Scroll the window left.

DISP_ST_RIGHT
Scroll the window right.

The Units parameter indicates the number of columns or rows to scroll.

Remarks
Scroll the current window.

ScrollText is only legal in Immediate Mode.

If the window size for the scroll direction matches its viewport size, then the window data is scrolled, the last Units rows or columns are set to spaces, and the viewport is updated.

If the window size for the scroll direction is larger than its viewport, then the window data is not changed. Instead, the mapping of the window into the viewport is moved in the specified direction. The window data is not altered, but the viewport is updated. If scrolling by Units would go beyond the beginning of the window data, then the window is scrolled so that the first viewport row or column contains the first window row or column. If scrolling by Units would go beyond the end of the window data, then the window is scrolled so that the last viewport row or column contains the last window row or column.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
Direction is illegal, or in Teletype Mode or Marquee Mode.

Other Values
See ResultCode.

See Also
DisplayText Method

Example 1
 - Assume a 2x20 display.
 - A Visual Basic application has a line display object named LD.
 - The application has performed:

LD.CreateWindow(0, 3, 2, 4, 2, 4) ’ 2x4 viewport of 2x4 window

LD.DisplayText(“abcdABCD”, DISP_DT_NORMAL)

The window contains:

0
1
2
3

0
a
b
c
d

1
A
B
C
D

and the viewport on the display is:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0

a
b
c
d

1

A
B
C
D

If the method

LD.ScrollText (DISP_ST_LEFT, 2)
is called, the window data becomes:

0
1
2
3

0
c
d

1
C
D

and the viewport becomes:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0

c
d

1

C
D

Example 2
 - Assume a 2x20 display.
 - A Visual Basic application has a line display object named LD.
 - The application has performed:

LD.CreateWindow(0, 3, 2, 4, 2, 8) ’ 2x4 viewport of 2x8 window

LD.DisplayText(“abcdefghABCDEFGH”, DISP_DT_NORMAL)

The window contains:

0
1
2
3
4
5
6
7

0
a
b
c
d
e
f
g
h

1
A
B
C
D
E
F
G
H

and the viewport on the display is:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0

a
b
c
d

1

A
B
C
D

If the method

LD.ScrollText (DISP_ST_LEFT, 2)
is called, the window data is unchanged, and the viewport becomes:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0

c
d
e
f

1

C
D
E
F

If the method

LD.ScrollText (DISP_ST_UP, 1)
is called next, the window data becomes:

0
1
2
3
4
5
6
7

0
A
B
C
D
E
F
G
H

1

and the viewport becomes:

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

0

C
D
E
F

1

SetDescriptor Method

Syntax
LONG SetDescriptor (LONG Descriptor, LONG Attribute);
The Descriptor parameter indicates which descriptor to change. The value may range between zero and one less than DeviceDescriptors.

The Attribute parameter indicates the attribute for the descriptor. Values are:

Value
Meaning

DISP_SD_ON
Turns the descriptor on.

DISP_SD_BLINK
Sets the descriptor to blinking.

DISP_SD_OFF
Turns the descriptor off.

Remarks
Sets the state of one of the descriptors, which are small indicators with a fixed label.

This function is illegal if the capability CapDescriptors is FALSE.

The device and its Service Object determine the mapping of Descriptor to its descriptors.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
The device does not support descriptors, or one of the parameters contained an illegal value.

Other Values
See ResultCode.

See Also
ClearDescriptors Method; DeviceDescriptors Property

Chapter 11
MICR - Magnetic Ink Character Recognition Reader

Summary

Properties

Common

Type
Access
Initialized After

AutoDisable
1.2
Boolean
R/W
Open

BinaryConversion
1.2
Long
R/W
Open

CapPowerReporting
1.3
Long
R
Open

CheckHealthText
1.0
String
R
Open

Claimed
1.0
Boolean
R
Open

DataCount
1.2
Long
R
Open

DataEventEnabled
1.0
Boolean
R/W
Open

DeviceEnabled
1.0
Boolean
R/W
Open & Claim

FreezeEvents
1.0
Boolean
R/W
Open

OutputID
1.0
Long
R
Not Supported

PowerNotify
1.3
Long
R/W
Open

PowerState
1.3
Long
R
Open

ResultCode
1.0
Long
R
--

ResultCodeExtended
1.0
Long
R
Open

State
1.0
Long
R
--

ControlObjectDescription
1.0
String
R
--

ControlObjectVersion
1.0
Long
R
--

ServiceObjectDescription
1.0
String
R
Open

ServiceObjectVersion
1.0
Long
R
Open

DeviceDescription
1.0
String
R
Open

DeviceName
1.0
String
R
Open

Specific

Type
Access
Initialized After

CapValidationDevice
1.0
Boolean
R
Open

RawData
1.0
String
R
Open

AccountNumber
1.0
String
R
Open

Amount
1.0
String
R
Open

BankNumber
1.0
String
R
Open

EPC
1.0
String
R
Open

SerialNumber
1.0
String
R
Open

TransitNumber
1.0
String
R
Open

CheckType
1.0
Long
R
Open

CountryCode
1.0
Long
R
Open

Methods

Common

May Use After

Open
1.0
--

Close
1.0
Open

Claim
1.0
Open

Release
1.0
Open & Claim

CheckHealth
1.0
Open, Claim, & Enable

ClearInput
1.0
Open & Claim

ClearOutput
1.0
Not Supported

DirectIO
1.0
Open

Specific

BeginInsertion
1.0
Open, Claim, & Enable

EndInsertion
1.0
Open, Claim, & Enable

BeginRemoval
1.0
Open, Claim, & Enable

EndRemoval
1.0
Open, Claim, & Enable

Events

Name

May Occur After

DataEvent
1.0
Open, Claim, & Enable

DirectIOEvent
1.0
Open, Claim

ErrorEvent
1.0
Open, Claim, & Enable

OutputCompleteEvent
1.0
Not Supported

StatusUpdateEvent
1.3
Open, Claim, & Enable

General Information

The MICR Control’s OLE programmatic ID is “OPOS.MICR”.

Capabilities

The MICR Control has the following minimal set of capabilities:

· Reads magnetic ink characters from a check.

· Has programmatic control of check insertion, reading, and removal. For some MICR devices, this will require no processing in the Control since the device may automate many of these functions.

· Parses the MICR data into the output properties provided by this Control. This release of OPOS specifies parsing of fields specified in the ANSI MICR standard used in North America. For other countries, the application may need to parse the MICR data from the data in RawData.

The MICR may have the following additional capability:

· The MICR device may be physically attached to or incorporated into a check validation print device. If this is the case, once a check is inserted via MICR Control methods, the check can still be used by the Printer Control prior to check removal.

Some MICR devices support exception tables, which cause non-standard parsing of the serial number for specific check routing numbers. Exception tables are not directly supported by this OPOS release. However, a Service Object may choose to support them, and could assign registry entries under its device name key to define the exception entries. (See the appendix “APPENDIX B
OPOS Registry Usage”, page 661.)

Model

The MICR Control follows the general “Input Model” (page 24). One point of difference is that the MICR Control requires the execution of methods to insert and remove the check for processing. Therefore, this Control requires more than simply setting the DataEventEnabled property to TRUE in order to receive data. The basic model is as follows:

· The MICR Control is opened, claimed, and enabled.

· When an application wishes to perform a MICR read, the application calls the BeginInsertion method, specifying a timeout value. This results in the device being made ready to have a check inserted. The method either returns a success status if the check is inserted before the timeout limit was expired, or a timeout status is returned.

In the event of a timeout, the MICR device will remain in a state allowing a check to be inserted while the application provides any additional prompting required and then reissues the BeginInsertion method.

· Once a check is inserted, the method returns successfully and the application calls the EndInsertion method, which results in the MICR device being taken out of check insertion mode and the check, if present, actually being read.

· If the check is successfully read by the Control, it enqueues a DataEvent.

· If the AutoDisable property is TRUE, then the control automatically disables itself when a DataEvent is enqueued.

· An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is TRUE. Just before delivering this event, the Control copies the data into properties, and disables further data events by setting the DataEventEnabled property to FALSE. This causes subsequent input data to be enqueued by the Control while the application processes the current input and associated properties. When the application has finished the current input and is ready for more data, it reenables events by setting DataEventEnabled to TRUE.

· An ErrorEvent (or events) are enqueued if the Control encounters an error while reading the check, and is delivered to the application when the DataEventEnabled property is TRUE.

· The DataCount property may be read to obtain the number of DataEvents enqueued by the Control.

· All input enqueued by the Control may be deleted by calling the ClearInput method.

· After processing a DataEvent, the application should query the CapValidationDevice property to determine if validation printing can be performed on the check prior to check removal. If this property is true, the application may call the Printer Control’s BeginInsertion and EndInsertion methods. This positions the check for validation printing. The Printer Control’s validation printing methods can then be used to perform validation printing. When validation printing is complete, the application should call the Printer Control’s removal methods to remove the check.

· Once the check is no longer needed in the device, the application must call the BeginRemoval method, also specifying a timeout value. This method either returns a success status if the check is removed, or timeout if the check is not removed. If a timeout is returned, the application may perform any additional prompting prior to calling the method again. Once the check is removed, the application should call the EndRemoval method to take the MICR device out of removal mode.

Many models of MICR devices do not require any check handling processing from the application. Such devices may always be capable of receiving a check and require no commands to actually read and eject the check. For these types of MICR devices, the BeginInsertion, EndInsertion, BeginRemoval and EndRemoval methods simply return an OPOS_SUCCESS status, and the Control will enqueue the data until the DataEventEnabled property is set to TRUE. However, applications should still use these methods to ensure application portability across different MICR devices.

Device Sharing

The MICR is an exclusive-use device, as follows:

· The application must claim the device before enabling it.

· The application must claim and enable the device before the device begins reading input, or before calling methods that manipulate the device.

· See the “Summary” table for precise usage prerequisites.

MICR Character Substitution

The E13B MICR format used by the ANSI MICR standard contains 15 possible characters. Ten of these are the numbers 0 through 9. A space character may also be returned. The other four characters are special to MICR data and are known as the Transit, Amount, On-Us, and Dash characters. These character are used to mark the boundaries of certain special fields in MICR data. Since these four characters are not in the ASCII character set, the following lower-case characters will be used to represent them in properties and parameters to methods:

MICR Character
Name
Substitute Character

[image: image2.wmf]
Transit
t

[image: image3.wmf]
Amount
a

[image: image4.wmf]
On-Us
o

Dash
-

Properties

AccountNumber Property

Syntax
BSTR AccountNumber;
Remarks
A string containing the account number parsed from the most recently read MICR data.

This account number will not include a check serial number if a check serial number is able to be separately parsed, even if the check serial number is embedded in the account number portion of the ‘On Us’ field.

If the account number cannot be identified successfully, the string will be empty (“”).

Its value is set prior to a DataEvent being sent to the application.

See Also
RawData Property; DataEvent
Amount Property

Syntax
BSTR Amount;
Remarks
A string containing the amount field parsed from the most recently read MICR data.

The amount field on a check consists of ten digits bordered by Amount symbols. All non space digits will be represented in the test string including leading 0’s.

If the amount is not present, the string will be empty (“”).

Its value is set prior to a DataEvent being sent to the application.

See Also
RawData Property; DataEvent
BankNumber Property

Syntax
BSTR BankNumber;
Remarks
A string containing the bank number portion of the transit field parsed from the most recently read MICR data.

The bank number is contained in digits 4 through 8 of the transit field.

If the bank number or transit field is not present or successfully identified, the string will be empty (“”).

Its value is set prior to a DataEvent being sent to the application.

See Also
RawData Property; TransitNumber Property; DataEvent
CapValidationDevice Property

Syntax
BOOL CapValidationDevice;
Remarks
Indicates if this device also performs validation printing via the POS Printer Control’s slip station.

If its value is TRUE, a check does not have to be removed from the MICR device prior to performing validation printing. For devices that are both a MICR device as well as a POS Printer, the device will automatically position the check for validation printing after successfully performing a MICR read. Either the MICR Control’s or the POS Printer Control’s BeginRemoval and EndRemoval methods may be called to remove the check once processing is complete.

This property is initialized by the Open method.

CheckType Property

Syntax
LONG CheckType;
Remarks
A number that represents the type of check parsed from the most recently read MICR data.

Values are:

Value
Meaning

MICR_CT_PERSONAL
The check is a personal check.

MICR_CT_BUSINESS
The check is a business or commercial check.

MICR_CT_UNKNOWN
Unknown type of check.

Its value is set prior to a DataEvent being sent to the application.

See Also
RawData Property; DataEvent
CountryCode Property

Syntax
LONG CountryCode;
Remarks
A number that represents the country of origin of the check parsed from the most recently read MICR data.

Values are:

Value
Meaning

MICR_CC_USA
The check is from America.

MICR_CC_CANADA
The check is from Canada.

MICR_CC_MEXICO
The check is from Mexico.

MICR_CC_UNKNOWN
Check origination is unknown.

Its value is set prior to a DataEvent being sent to the application.

See Also
RawData Property; DataEvent
EPC Property

Syntax
BSTR EPC;
Remarks
A string containing the Extended Processing Code (“EPC”) field parsed from the most recently read MICR data. The string will contain a single character 0 though 9 if the field is present. If not, the string will be empty (“”).

Its value is set prior to a DataEvent being sent to the application.

See Also
RawData Property; DataEvent
RawData Property

Syntax
BSTR RawData;
Remarks
A string containing the MICR data from the most recent MICR read.

The string contains any of the 15 MICR characters with appropriate substitution to represent non-ASCII characters (see “MICR Character Substitution”, page 369). No parsing or special processing is done to the data returned in this string. A sample value may look like the following:

“2t123456789t123 4 567890o 123 a0000001957a”

Note that the property value will include spaces to represent spaces in the MICR data.

Its value is set prior to a DataEvent being sent to the application.

See Also
AccountNumber Property; Amount Property; BankNumber Property; CheckType Property; CountryCode Property; EPC Property; SerialNumber Property; TransitNumber Property; DataEvent
SerialNumber Property

Syntax
BSTR SerialNumber;
Remarks
A string containing the serial number of the check parsed from the most recently read MICR data.

If the serial number cannot be successfully parsed, the value of this property will be empty (“”).

Its value is set prior to a DataEvent being sent to the application.

See Also
RawData Property; DataEvent

TransitNumber Property

Syntax
BSTR TransitNumber;
Remarks
A string containing the transit field of the check parsed from the most recently read MICR data.

The transmit number consists of all the characters read between the ‘Transit’ symbols on the check. It is a nine character string.

Its value is set prior to a DataEvent being sent to the application.

See Also
RawData Property; DataEvent
Methods

BeginInsertion Method

Syntax
LONG BeginInsertion (LONG Timeout);
The Timeout parameter gives the number of milliseconds before failing the method.
If zero, the method tries to begin insertion mode, then returns the appropriate status immediately.
If OPOS_FOREVER (-1), the method tries to begin insertion mode, then waits as long as needed until either the check is inserted or an error occurs.

Remarks
Called to initiate check insertion processing.

When called, the MICR is made ready to receive a check by opening the MICR’s check handling “jaws” or activating a MICR’s check insertion mode. This method is paired with the EndInsertion method for controlling check insertion. For MICR devices that do not require this sort of processing, these methods will always return OPOS_SUCCESS. However, the application should still use these methods to ensure application portability across different MICR devices.

If the MICR device cannot be placed into insertion mode, an error is returned to the application. Otherwise, the Control continues to monitor check insertion until either:

· The check is successfully inserted. In this case, the Control returns an OPOS_SUCCESS status.

· The check is not inserted before Timeout milliseconds have elapsed, or an error is reported by the MICR device. In this case, the Control either returns OPOS_E_TIMEOUT or another error. The MICR device remains in check insertion mode. This allows an application to perform some user interaction and reissue the BeginInsertion method without altering the MICR check handling mechanism.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was initiated successfully.

OPOS_E_BUSY
If the MICR is a combination device, the peer device may be busy.

OPOS_E_ILLEGAL
An invalid Timeout parameter was specified.

OPOS_E_TIMEOUT
The specified time has elapsed without the check being properly inserted.

Other Values
See ResultCode.

See Also
EndInsertion Method; BeginRemoval Method; EndRemoval Method

BeginRemoval Method

Syntax
LONG BeginRemoval (LONG Timeout);
The Timeout property gives the number of milliseconds before failing the method.
If zero, the method tries to begin removal mode, then returns the appropriate status immediately.
If OPOS_FOREVER (-1), the method tries to begin removal mode, then waits as long as needed until either the check is removed or an error occurs.

Remarks
Called to initiate check removal processing.

When called, the MICR is made ready to remove a check, by opening the MICR’s check handling “jaws” or activating a MICR’s check ejection mode. This method is paired with the EndRemoval method for controlling check removal. For MICR devices that do not require this sort of processing, these methods will always return OPOS_SUCCESS. However, the application should still use these methods to ensure application portability across different MICR devices.

If the MICR device cannot be placed into removal or ejection mode, an error is returned to the application. Otherwise, the Control continues to monitor check removal until either:

· The check is successfully removed. In this case, the Control returns an OPOS_SUCCESS status.

· The check is not removed before Timeout milliseconds have elapsed, or an error is reported by the MICR device. In this case, the Control either returns OPOS_E_TIMEOUT or another error. The MICR device remains in check removal mode. This allows an application to perform some user interaction and reissue the BeginRemoval method without altering the MICR check handling mechanism.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was initiated successfully.

OPOS_E_BUSY
If the MICR is a combination device, the peer device may be busy.

OPOS_E_ILLEGAL
An invalid Timeout parameter was specified.

OPOS_E_TIMEOUT
The specified time has elapsed without the check being properly removed.

Other Values
See ResultCode.

See Also
BeginInsertion Method; EndInsertion Method; EndRemoval Method

EndInsertion Method

Syntax
LONG EndInsertion ();
Remarks
Called to end check insertion processing.

When called, the MICR is taken out of check insertion mode. If a check is detected in the device, a successful status of OPOS_SUCCESS is returned to the application. If no check is present, an extended error status OPOS_EMICR_NOCHECK is returned. Upon completion of this method, the check will be read by the MICR device, and data will be available as soon as the DataEventEnabled property is set to TRUE. This allows an application to prompt the user prior to calling this method to ensure that the form is correctly positioned.

This method is paired with the BeginInsertion method for controlling check insertion. For MICR devices that do not require this sort of processing, these methods will always return OPOS_SUCCESS. However, the application should still use these methods to ensure application portability across different MICR devices.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was initiated successfully.

OPOS_E_ILLEGAL
The printer is not in check insertion mode.

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_EMICR_NOCHECK:
The device was taken out of insertion mode without a check being inserted.

Other Values
See ResultCode.

See Also
BeginInsertion Method; BeginRemoval Method; EndRemoval Method

EndRemoval Method

Syntax
LONG EndRemoval ();
Remarks
Called to end check removal processing.

When called, the MICR is taken out of check removal or ejection mode. If no check is detected in the device, a successful status of OPOS_SUCCESS is returned to the application. If a check is present, an extended error status OPOS_EMICR_CHECK is returned.

This method is paired with the BeginRemoval method for controlling check removal. For MICR devices that do not require this sort of processing, these methods will always return OPOS_SUCCESS. However, the application should still use these methods to ensure application portability across different MICR devices.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was initiated successfully.

OPOS_E_ILLEGAL
The printer is not in check removal mode.

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_EMICR_CHECK:
The device was taken out of removal mode while a check is still present.

Other Values
See ResultCode.

See Also
BeginInsertion Method; EndInsertion Method; BeginRemoval Method

Events

DataEvent Event

Syntax
void DataEvent (LONG Status);
The Status parameter contains zero.

Remarks
Fired when MICR data is read from a check.

Before delivering this event, the MICR Control updates the RawData property and attempts to parse this data into the MICR data fields.

See Also
RawData Property; AccountNumber Property; Amount Property; BankNumber Property; CheckType Property; CountryCode Property; EPC Property; SerialNumber Property; TransitNumber Property

ErrorEvent Event

Syntax
void ErrorEvent (LONG ResultCode, LONG ResultCodeExtended,
LONG ErrorLocus, LONG* pErrorResponse);
Parameter
Description

ResultCode
Result code causing the error event. See ResultCode for values.

ResultCodeExtended
Extended result code causing the error event. See ResultCodeExtended for values.

ErrorLocus
Location of the error. See values below.

pErrorResponse
Pointer to the error event response. See values below.

The ErrorLocus parameter may be one of the following:

Value
Meaning

OPOS_EL_INPUT
Error occurred while gathering or processing event-driven input. No input data is available.

OPOS_EL_INPUT_DATA
Error occurred while gathering or processing event-driven input, and some previously buffered data is available.

The contents at the location pointed to by the pErrorResponse parameter is preset to a default value, based on the ErrorLocus. The application may change it to one of the following:

Value
Meaning

OPOS_ER_CLEAR
Clear the buffered input data. The error state is exited.
Default when locus is OPOS_EL_INPUT.

OPOS_ER_CONTINUEINPUT
Use only when locus is OPOS_EL_INPUT_DATA. Acknowledges the error and directs the Control to continue processing. The Control remains in the error state and will deliver additional DataEvents as directed by the DataEventEnabled property. When all input has been delivered and the DataEventEnabled property is again set to TRUE, then another ErrorEvent is delivered with locus OPOS_EL_INPUT.
Default when locus is OPOS_EL_INPUT_DATA.

Remarks
Fired when an error is detected while trying to read MICR data.

Input error events are not delivered until the DataEventEnabled property is TRUE, so that proper application sequencing occurs.

See Also
“Status, Result Code, and State Model”

Chapter 12
MSR - Magnetic Stripe Reader

Summary

Properties

Common

Type
Access
Initialized After

AutoDisable
1.2
Boolean
R/W
Open

BinaryConversion
1.2
Long
R/W
Open

CapPowerReporting
1.3
Long
R
Open

CheckHealthText
1.0
String
R
Open

Claimed
1.0
Boolean
R
Open

DataCount
1.2
Long
R
Open

DataEventEnabled
1.0
Boolean
R/W
Open

DeviceEnabled
1.0
Boolean
R/W
Open & Claim

FreezeEvents
1.0
Boolean
R/W
Open

OutputID
1.0
Long
R
Not Supported

PowerNotify
1.3
Long
R/W
Open

PowerState
1.3
Long
R
Open

ResultCode
1.0
Long
R
--

ResultCodeExtended
1.0
Long
R
Open

State
1.0
Long
R
--

ControlObjectDescription
1.0
String
R
--

ControlObjectVersion
1.0
Long
R
--

ServiceObjectDescription
1.0
String
R
Open

ServiceObjectVersion
1.0
Long
R
Open

DeviceDescription
1.0
String
R
Open

DeviceName
1.0
String
R
Open

Specific

Type
Access
Initialized After

CapISO
1.0
Boolean
R
Open

CapJISOne
1.0
Boolean
R
Open

CapJISTwo
1.0
Boolean
R
Open

TracksToRead
1.0
Long
R/W
Open

DecodeData
1.0
Boolean
R/W
Open

ParseDecodeData
1.0
Boolean
R/W
Open

ErrorReportingType
1.2
Long
R/W
Open

Track1Data
1.0
String
R
Open

Track2Data
1.0
String
R
Open

Track3Data
1.0
String
R
Open

AccountNumber
1.0
String
R
Open

ExpirationDate
1.0
String
R
Open

Title
1.0
String
R
Open

FirstName
1.0
String
R
Open

MiddleInitial
1.0
String
R
Open

Surname
1.0
String
R
Open

Suffix
1.0
String
R
Open

ServiceCode
1.0
String
R
Open

Track1DiscretionaryData
1.0
String
R
Open

Track2DiscretionaryData
1.0
String
R
Open

Methods

Common

May Use After

Open
1.0
--

Close
1.0
Open

Claim
1.0
Open

Release
1.0
Open & Claim

CheckHealth
1.0
Open, Claim, & Enable

ClearInput
1.0
Open & Claim

ClearOutput
1.0
Not Supported

DirectIO
1.0
Open

Events

Name

May Occur After

DataEvent
1.0
Open, Claim, & Enable

DirectIOEvent
1.0
Open, Claim

ErrorEvent
1.0
Open, Claim, & Enable

OutputCompleteEvent
1.0
Not Supported

StatusUpdateEvent
1.3
Open, Claim, & Enable

General Information

The MSR Control’s OLE programmatic ID is “OPOS.MSR”.

Capabilities

The MSR Control has the following minimal set of capabilities:

· Reads encoded data from a magnetic stripe. Data is obtainable from any combination of tracks 1, 2, and 3.

· The alphanumeric data bytes may be decoded into their corresponding alphanumeric codes. Furthermore, this decoded alphanumeric data may be divided into specific fields accessed as device properties.

The MSR may have the following additional capability:

· Support for specific card types: ISO, JIS Type I, and/or JIS Type 2.

Model

Four writable properties control MSR data handling:

· The TracksToRead property controls which combination of the three tracks should be read. It is not an error to swipe a card containing less than this set of tracks. Rather, this property should be set to the set of tracks that the Application may need to process.

· The DecodeData property controls decoding of track data from raw format into displayable data.

· The ParseDecodeData property controls parsing of decoded data into fields, based on common MSR standards.

· The ErrorReportingType property controls the type of handling that occurs when a track containing invalid data is read.

The MSR Control follows the general input model for event-driven input:

· When input is received by the Control, it enqueues a DataEvent.

· If the AutoDisable property is TRUE, then the control automatically disables itself when a DataEvent is enqueued.

· An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is TRUE. Just before delivering this event, the Control copies the data into properties, and disables further data events by setting the DataEventEnabled property to FALSE. This causes subsequent input data to be enqueued by the Control while the application processes the current input and associated properties. When the application has finished the current input and is ready for more data, it reenables events by setting DataEventEnabled to TRUE.

· An ErrorEvent (or events) are enqueued if the Control encounters an error while gathering or processing input, and is delivered to the application when the DataEventEnabled property is TRUE.

· The DataCount property may be read to obtain the number of DataEvents enqueued by the Control.

· All input enqueued by the Control may be deleted by calling the ClearInput method.

Device Sharing

The MSR is an exclusive-use device, as follows:

· The application must claim the device before enabling it.

· The application must claim and enable the device before the device begins reading input, or before calling methods that manipulate the device.

· See the “Summary” table for precise usage prerequisites.

Properties

AccountNumber Property

Syntax
BSTR AccountNumber;
Remarks
The account number obtained from the most recently swiped card.

Set to the empty string if:

· The field was not included in the track data obtained, or,

· The track data format was not one of those listed in the ParseDecodeData property section of this document, or,

· ParseDecodeData is FALSE.

CapISO Property

Syntax
BOOL CapISO;
Remarks
If TRUE, the MSR device supports ISO cards;
otherwise it is FALSE.

This property is initialized by the Open method.

CapJISOne Property

Syntax
BOOL CapJISOne;
Remarks
If TRUE, the MSR device supports JIS Type-I cards;
otherwise it is FALSE.

JIS-I cards are a superset of ISO cards. Therefore, if CapJISOne is TRUE, then it is implied that CapISO is also TRUE.

This property is initialized by the Open method.

CapJISTwo Property

Syntax
BOOL CapJISTwo;
Remarks
If TRUE, the MSR device supports JIS Type-II cards;
otherwise it is FALSE.

This property is initialized by the Open method.

DecodeData Property R/W

Syntax
BOOL DecodeData;
Remarks
If FALSE, the Track1Data, Track2Data, and Track3Data properties contain the original encoded bit sequence, known as “raw format”.

If TRUE, each byte of track data contained within the Track1Data, Track2Data, and Track3Data properties is mapped from its raw format to its corresponding decoded ASCII bit sequence. This conversion is mainly of relevance for data that is NOT of the 7-bit format, since 7-bit data needs no decoding to decipher its corresponding alphanumeric and/or Katakana characters.

The decoding that takes place is as follows for each card type, track, and track data format:

Card Type
Track
Data Format
Raw Bytes
Decoded Bytes

ISO
Track 1
6-Bit
0x00 - 0x3F
0x20 - 0x5F

Track 2
4-Bit
0x00 - 0x0F
0x30 - 0x3F

Track 3
4-Bit
0x00 - 0x0F
0x30 - 0x3F

JIS-I
Track 1
6-Bit
0x00 - 0x3F
0x20 - 0x5F

Track 1
7-Bit
0x00 - 0x7F
Unchanged

Track 2
4-Bit
0x00 - 0x0F
0x30 - 0x3F

Track 3
4-Bit
0x00 - 0x0F
0x30 - 0x3F

Track 3
7-Bit
0x00 - 0x7F
Unchanged

JIS-II
JIS Track on Front of Card
7-Bit
0x00 - 0x7F
Unchanged

This property is initialized to TRUE by the Open method.

Setting this property to FALSE automatically sets the ParseDecodeData property to FALSE.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

See Also
ParseDecodeData Property
ErrorReportingType Property R/W
Added in Release 1.2
Syntax
LONG ErrorReportingType;
Remarks
An error is reported by an ErrorEvent when a card is swiped, and one or more of the tracks specified by the TracksToRead property contains data with errors.

When the ErrorEvent is fired to the application, two types of error reporting are supported:

· Card level: A general error status is given, with no data returned.
This level should be used when a simple pass/fail of the card data is sufficient.

· Track level: The Control can return an extended status with a separate status for each of the tracks. Also, for those tracks that contain valid data or no data, the track’s properties are updated as with a DataEvent. For those tracks that contain invalid data, the track’s properties are set to empty.
This level should be used when the application may be able to utilize a successfully read track or tracks when another of the tracks contains errors.
For example, suppose TracksToRead is MSR_TR_1_2_3, and a swiped card contains good track 1 and 2 data, but track 3 contains “random noise” that is flagged as an error by the MSR. With track level error reporting, the ErrorEvent sets the track 1 and 2 properties with the valid data, sets the track 3 properties to empty, and returns an error code indicating the status of each track.

Value
Meaning

MSR_ERT_CARD
Report errors at a card level.

MSR_ERT_TRACK
Report errors at a track level.

This property is initialized to MSR_ERT_CARD by the Open method, which is the functionality supported prior to Release 1.2.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An invalid value was specified.

See Also
ErrorEvent
ExpirationDate Property

Syntax
BSTR ExpirationDate;
Remarks
The expiration date obtained from the most recently swiped card, as four ASCII decimal characters in the form YYMM. For example, February 1998 is “9802” and August 2018 is “1808”.

Set to the empty string if:

· The field was not included in the track data obtained, or,

· The track data format was not one of those listed in the ParseDecodeData property section of this document, or,

· ParseDecodeData is FALSE.

FirstName Property

Syntax
BSTR FirstName;
Remarks
The first name obtained from the most recently swiped card.

Set to the empty string if:

· The field was not included in the track data obtained, or,

· The track data format was not one of those listed in the ParseDecodeData property section of this document, or,

· ParseDecodeData is FALSE.

MiddleInitial Property

Syntax
BSTR MiddleInitial;
Remarks
The middle initial obtained from the most recently swiped card.

Set to the empty string if:

· The field was not included in the track data obtained, or,

· The track data format was not one of those listed in the ParseDecodeData property section of this document, or,

· ParseDecodeData is FALSE.

ParseDecodeData Property R/W

Syntax
BOOL ParseDecodeData;
BOOL ParseDecodedData;

(Synonym for ParseDecodeData.
)

Remarks
If TRUE, the decoded data contained within the Track1Data and Track2Data properties is further separated into fields for access via various other properties. Track3Data is not parsed because its data content is of an open format defined by the card issuer. JIS-I Track 1 Format C and ISO Track 1 Format C data are not parsed for similar reasons.

The parsed data properties are the defined possible fields for cards with data consisting of the following formats:

· JIS-I / ISO Track 1 Format A

· JIS-I / ISO Track 1 Format B

· JIS-I / ISO Track 1 VISA Format (a de-facto standard)

· JIS-I / ISO Track 2 Format

This property is initialized to TRUE by the Open method.

Setting this property to TRUE automatically sets the DecodeData property to TRUE.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

See Also
DecodeData Property; Surname Property; Suffix Property; AccountNumber Property; FirstName Property; MiddleInitial Property; Title Property; ExpirationDate Property; ServiceCode Property; Track1DiscretionaryData Property; Track2DiscretionaryData Property

ServiceCode Property

Syntax
BSTR ServiceCode;
Remarks
The service code obtained from the most recently swiped card.

Set to the empty string if:

· The field was not included in the track data obtained, or,

· The track data format was not one of those listed in the ParseDecodeData property section of this document, or,

· ParseDecodeData is FALSE.

Suffix Property

Syntax
BSTR Suffix;
Remarks
The suffix obtained from the most recently swiped card.

Set to the empty string if:

· The field was not included in the track data obtained, or,

· The track data format was not one of those listed in the ParseDecodeData property section of this document, or,

· ParseDecodeData is FALSE.

Surname Property

Syntax
BSTR Surname;
Remarks
The surname obtained from the most recently swiped card.

Set to the empty string if:

· The field was not included in the track data obtained, or,

· The track data format was not one of those listed in the ParseDecodeData property section of this document, or,

· ParseDecodeData is FALSE.

Title Property

Syntax
BSTR Title;
Remarks
The title obtained from the most recently swiped card.

Set to the empty string if:

· The field was not included in the track data obtained, or,

· The track data format was not one of those listed in the ParseDecodeData property section of this document, or,

· ParseDecodeData is FALSE.

Track1Data Property

Syntax
BSTR Track1Data;
Remarks
Contains either the track 1 data from the previous card swipe or an empty string.

This property contains track data between but not including the start and end sentinels.

If DecodeData is TRUE, then the data returned by this property has been decoded from “raw” format. The data may also be parsed into other properties when the ParseDecodeData property is set.

An empty string indicates that the track was not accessible.

See Also
TracksToRead Property

Track1DiscretionaryData Property

Syntax
BSTR Track1DiscretionaryData;
Remarks
The track 1 discretionary data obtained from the most recently swiped card.

Set to the empty string if:

· The field was not included in the track data obtained, or,

· The track data format was not one of those listed in the ParseDecodeData property section of this document, or,

· ParseDecodeData is FALSE.

The amount of data contained in this property varies widely depending upon the format of the track 1 data.

Track2Data Property

Syntax
BSTR Track2Data;
Remarks
Contains either the track 2 data from the previous card swipe or an empty string.

This property contains track data between but not including the start and end sentinels.

If DecodeData is TRUE, then the data returned by this property has been decoded from “raw” format. It may also be parsed into other properties when the ParseDecodeData property is set.

An empty string indicates that the track was not accessible.

See Also
TracksToRead Property

Track2DiscretionaryData Property

Syntax
BSTR Track2DiscretionaryData;
Remarks
The track 2 discretionary data obtained from the most recently swiped card.

Set to the empty string if:

· The field was not included in the track data obtained, or,

· The track data format was not one of those listed in the ParseDecodeData property section of this document, or,

· ParseDecodeData is FALSE.

Track3Data Property

Syntax
BSTR Track3Data;
Remarks
Contains either the track 3 data from the previous card swipe or an empty string.

This property contains track data between but not including the start and end sentinels.

If DecodeData is TRUE, then the data returned by this property has been decoded from “raw” format.

An empty string indicates that the track was not accessible.

See Also
TracksToRead Property

TracksToRead Property R/W

Syntax
LONG TracksToRead;
Remarks
Indicates the track data that the application wishes to have placed into the Track1Data, Track2Data, and Track3Data properties following a card swipe.

Value
Meaning

MSR_TR_1
Obtain Track 1.

MSR_TR_2
Obtain Track 2.

MSR_TR_3
Obtain Track 3.

MSR_TR_1_2
Obtain Tracks 1 and 2.

MSR_TR_1_3
Obtain Tracks 1 and 3.

MSR_TR_2_3
Obtain Tracks 2 and 3.

MSR_TR_1_2_3
Obtain Tracks 1, 2, and 3.

Decreasing the required number of tracks may provide a greater swipe success rate and somewhat greater responsiveness by removing the processing for unaccessed data.

TracksToRead does not indicate a capability of the MSR hardware unit, but instead is an application configurable property representing which track(s) will have their data obtained, potentially decoded, and returned if possible. Cases such as an ISO type card being swiped through a JIS-II read head, cards simply not having data for particular tracks, and other factors may preclude desired data from being obtained.

This property is initialized to MSR_TR_1_2_3 by the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An invalid track value was specified.

Events

DataEvent Event

Syntax
void DataEvent (LONG Status);
The Status parameter is divided into four bytes with three of the bytes representing information about the three tracks, while the fourth byte is unused. The diagram below indicates how the parameter Status is divided:

High Word
Low Word

High Byte
Low Byte
High Byte
Low Byte

Unused
Track 3
Track 2
Track 1

A value of zero (0) for a track byte means that no data was obtained from the swipe for that particular track. This might be due to the hardware device simply not having a read head for the track, or perhaps the application intentionally precluded incoming data from the track via the TracksToRead property.

A value greater than zero (> 0) indicates the length in bytes of the corresponding TrackxData property.

Remarks
Fired to indicate input data from the device to the application.

Before delivering the event, the swiped data is placed into Track1Data, Track2Data, and Track3Data. If DecodeData is TRUE, then this track data is decoded. If ParseDecodeData is TRUE, then the data is parsed into several additional properties.

ErrorEvent Event

Syntax
void ErrorEvent (LONG ResultCode, LONG ResultCodeExtended,
LONG ErrorLocus, LONG* pErrorResponse);
Parameter
Description

ResultCode
Result code causing the error event. See values below.

ResultCodeExtended
Extended result code causing the error event. See values below.

ErrorLocus
Location of the error. See values below.

pErrorResponse
Pointer to the error event response. See values below.

If the ErrorReportingType property is MSR_ERT_CARD, then the ResultCode parameter may be one of the following:

Value
Meaning

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_EMSR_START:
Start sentinel error.

ResultCodeExtended = OPOS_EMSR_END:
End sentinel error.

ResultCodeExtended = OPOS_EMSR_PARITY:
Parity error.

ResultCodeExtended = OPOS_EMSR_LRC:
LRC error.

Other Values
See ResultCode.

If the ErrorReportingType property is MSR_ERT_TRACK, then the ResultCode parameter may be one of the following:

Value
Meaning

OPOS_E_EXTENDED
ResultCodeExtended = Track-level status, broken down as follows:

High Word
Low Word

High Byte
Low Byte
High Byte
Low Byte

Unused
Track 3
Track 2
Track 1

Each of the track status bytes may be one of the following:

OPOS_SUCCESS
No error.
OPOS_EMSR_START
Start sentinel error.
OPOS_EMSR_END
End sentinel error.
OPOS_EMSR_PARITY
Parity error.
OPOS_EMSR_LRC
LRC error.
OPOS_E_FAILURE
Other or general error.

Other Values
See ResultCode.

The ErrorLocus parameter may be one of the following:

Value
Meaning

OPOS_EL_INPUT
Error occurred while gathering or processing event-driven input. No input data is available.

OPOS_EL_INPUT_DATA
Error occurred while gathering or processing event-driven input, and some previously buffered data is available.

The contents at the location pointed to by the pErrorResponse parameter are preset to a default value, based on the ErrorLocus. The application may change it to one of the following:

Value
Meaning

OPOS_ER_CLEAR
Clear the buffered input data. The error state is exited.
Default when locus is OPOS_EL_INPUT.

OPOS_ER_CONTINUEINPUT
Use only when locus is OPOS_EL_INPUT_DATA. Acknowledges the error and directs the Control to continue processing. The Control remains in the error state and will deliver additional DataEvents as directed by the DataEventEnabled property. When all input has been delivered and the DataEventEnabled property is again set to TRUE, then another ErrorEvent is delivered with locus OPOS_EL_INPUT.
Default when locus is OPOS_EL_INPUT_DATA.

Remarks
Fired when an error is detected while trying to read MSR data.

Input error events are not delivered until the DataEventEnabled property is TRUE, so that proper application sequencing occurs.

If the ErrorReportingType property is MSR_ERT_CARD, then the track that caused the fault cannot be determined, and the track data properties are not changed.

If the ErrorReportingType property is MSR_ERT_TRACK, then the ResultCode and ResultCodeExtended parameters may indicate the track-level status. Also, the track data properties are updated as with DataEvent, with the properties for the track or tracks in error set to empty strings. Unlike DataEvent, individual track lengths are not reported. However, the application can determine their lengths by getting the length of each of the TrackxData properties. Also, since this is an ErrorEvent (even though it is reporting partial data), the DataCount property is not incremented and the Control remains enabled, regardless of the AutoDisable property value.

See Also
“Status, Result Code, and State Model”; ErrorReportingType Property

Chapter 13
PIN Pad

Summary

Properties

Common

Type
Access
Initialized After

AutoDisable
1.3
Boolean
R/W
Not Supported

BinaryConversion
1.3
Long
R/W
Not Supported

CapPowerReporting
1.3
Long
R
Open

CheckHealthText
1.3
String
R
Open

Claimed
1.3
Boolean
R
Open

DataCount
1.3
Long
R
Open

DataEventEnabled
1.3
Boolean
R/W
Open

DeviceEnabled
1.3
Boolean
R/W
Open & Claim

FreezeEvents
1.3
Boolean
R/W
Open

OutputID
1.3
Long
R
Not Supported

PowerNotify
1.3
Long
R/W
Open

PowerState
1.3
Long
R
Open

ResultCode
1.3
Long
R
--

ResultCodeExtended
1.3
Long
R
Open

State
1.3
Long
R
--

ControlObjectDescription
1.3
String
R
--

ControlObjectVersion
1.3
Long
R
--

ServiceObjectDescription
1.3
String
R
Open

ServiceObjectVersion
1.3
Long
R
Open

DeviceDescription
1.3
String
R
Open

DeviceName
1.3
String
R
Open

Specific

Type
Access
Initialized After

CapMACCalculation
1.3
Boolean
R
Open

CapDisplay
1.3
Long
R
Open

CapLanguage
1.3
Long
R
Open

CapKeyboard
1.3
Boolean
R
Open

CapTone
1.3
Boolean
R
Open

AvailablePromptsList
1.3
String
R
Open

Prompt
1.3
Long
R/W
Open

AvailableLanguagesList
1.3
String
R
Open

PromptLanguage
1.3
Long
R/W
Open

AccountNumber
1.3
String
R/W
Open

Amount
1.3
Currency
R/W
Open

MerchantID
1.3
String
R/W
Open

TerminalID
1.3
String
R/W
Open

Track1Data
1.3
String
R/W
Open

Track2Data
1.3
String
R/W
Open

Track3Data
1.3
String
R/W
Open

TransactionType
1.3
String
R/W
Open

MinimumPINLength
1.3
Long
R/W
Open

MaximumPINLength
1.3
Long
R/W
Open

PINEntryEnabled
1.3
Boolean
R
Open

EncryptedPIN
1.3
String
R
Open

AdditionalSecurity
 Information
1.3
String
R
Open

Methods

Common

May Use After

Open
1.3
--

Close
1.3
Open

Claim
1.3
Open

Release
1.3
Open & Claim

CheckHealth
1.3
Open, Claim, & Enable

ClearInput
1.3
Open, Claim, & Enable

ClearOutput
1.3
Not Supported

DirectIO
1.3
Open

Specific

BeginEFTTransaction
1.3
Open, Claim, & Enable

EndEFTTransaction
1.3
BeginEFTTransaction

EnablePINEntry
1.3
BeginEFTTransaction

ComputeMAC
1.3
BeginEFTTransaction

VerifyMAC
1.3
BeginEFTTransaction

UpdateKey
1.3
BeginEFTTransaction

Events

Name

May Occur After

DataEvent
1.3
Open, Claim, & Enable

DirectIOEvent
1.3
Open, Claim

ErrorEvent
1.3
Open, Claim, & Enable

OutputCompleteEvent
1.3
Not Supported

StatusUpdateEvent
1.3
Open, Claim, & Enable

General Information

The Pinpad Control’s OLE programmatic ID is “OPOS.PINPad”.

This device was added in OPOS Release 1.3.

A Pinpad

· Provides a mechanism for customers to perform PIN Entry

· Acts as a cryptographic engine for communicating with an EFT Transaction Host.

A Pinpad will perform these functions by implementing one or more Pinpad Management Systems. A Pinpad Management System defines the manner in which the Pinpad will perform functions such as PIN Encryption, Message Authentication Code calculation, and Key Updating. Examples of Pinpad Management Systems include: Master-Session, DUKPT, APACS40, HGEPOS, and AS2805, along with many others.

Capabilities

The Pinpad Control has the following minimal capability:

· Accept a PIN Entry at its keyboard and provide an Encrypted PIN to the application.

The Pinpad Control may have the following additional capabilities:

· Compute Message Authentication Codes.

· Perform Key Updating in accordance with the selected Pinpad Management System.

· Support multiple Pinpad Management Systems.

· Allow use of the Pinpad Keyboard, Display, & Tone Generator for application usage. If one or more of these features are available, then the Application opens and uses the associated POS Keyboard, Line Display, or Tone Indicator Control Objects.

Features Not Supported

This specification does not include support for the following:

· Initial Key Loading. This operation usually requires downloading at least one key in the clear and must be done in a secure location (typically either the factory or at a Financial Institution). Thus, support for initial key loading is outside the scope of this specification. However, this specification does include support for updating keys while a Pinpad unit is installed at a retail site.

· Full EFT functionality. This specification addresses the functionality of a Pinpad that is used solely as a peripheral device by an Electronic Funds Transfer application. It specifically does not define the functionality of an Electronic Funds Transfer application that might execute within an intelligent Pinpad. This specification does not include support for applications in which the Pinpad Application determines that a message needs to be transmitted to the EFT Transaction Host. Consequently, this specification will not apply in Canada, Germany, Netherlands, and possibly other countries. It also does not apply to Pinpads in which the vendor has chosen to provide EFT Functionality in the Pinpad.
· Smartcard Reader. Some Pinpad devices will include a Smartcard reader. Support for this device may be included in a future revision of this specification.

Model

A Pinpad performs encryption functions under control of a Pinpad Management System. Some Pinpads will support multiple Pinpad Management Systems. Some Pinpad Management Systems support multiple keys (sets) for different EFT Transaction Hosts. Thus, for each EFT transaction, the application will need to select the Pinpad Management System and EFT Transaction Host to be used. Depending on the Pinpad Management System, one or more EFT transaction parameters will need to be provided to the Pinpad for use in the encryption functions. The application should set the value of ALL EFT Transaction parameter properties to enable easier migration to EFT Transaction Hosts that require a different Pinpad Management System.

After opening, claiming, and enabling the Pinpad Control, the application should use the following general scenario for each EFT Transaction.

· The application must set the EFT transaction parameters (AccountNumber, Amount, MerchantID, TerminalID, Track1Data, Track2Data, Track3Data and TransactionType properties) and then perform a BeginEFTTransaction method. This will initialize the Service Object and Pinpad for performing the encryption functions for the EFT transaction.

· If PIN Entry is required, call the EnablePINEntry method. Then set the DataEventEnabled property and wait for the DataEvent event.

· If Message Authentication Codes are required, use the ComputeMAC and VerifyMAC methods as needed.

· Perform an EndEFTTransaction method to notify the Control that all operations for the EFT transaction have been completed.

This specification supports 2 models of how the display on the Pinpad is used. The CapDisplay property indicates which model the Pinpad device supports.

· In one model, the Application has complete control of the text that is to be displayed. For this model, there is an associated OPOS Line Display Control that is used by the Application to interact with the display.

· In the other model, the Application cannot supply the text to be displayed. Instead, it can only select from a list of pre-defined messages to be displayed. For this model, there is a set of Pinpad properties that are used to control the display.

Device Sharing

The Pinpad is an exclusive-use device, as follows:

· The application must claim the device before enabling it.

· The application must claim and enable the device before the device begins reading input, or before calling methods that manipulate the device.

· See the “Summary” table for precise usage prerequisites.

Properties

AccountNumber Property R/W

Syntax
BSTR AccountNumber;
Remarks
The account number to be used for the current EFT transaction. The application must set this property before calling the BeginEFTTransaction method. Any attempt to change this property after the BeginEFTTransaction method has been called will result in a value of OPOS_E_ILLEGAL being stored into ResultCode.

AdditionalSecurityInformation Property

Syntax
BSTR AdditionalSecurityInformation;
Remarks
This property may contain additional security/encryption information after a DataEvent event. This property will be formatted as a Hex-ASCII string. The information content and internal format of this string will vary among Pinpad Management Systems. For example, if the Pinpad Management System is DUKPT, then this property will contain the “Pinpad sequence number”. If the PIN Entry was canceled, this property will contain the empty string.

Amount Property R/W

Syntax
CURRENCY Amount;
Remarks
The amount of the current EFT transaction. The application must set this property before calling the BeginEFTTransaction method. Any attempt to change this property after the BeginEFTTransaction method has been called will result in a value of OPOS_E_ILLEGAL being stored into ResultCode.

AvailableLanguagesList Property

Syntax
BSTR AvailableLanguagesList;
Remarks
This property is a comma separated string of the languages supported by the pre-defined prompts in the Pinpad. Languages are numeric values and are Microsoft Language Ids. If CapLanguage = PPAD_LANG_NONE, then this property will be the empty string.

This property is initialized by the Open method.

AvailablePromptsList Property

Syntax
BSTR AvailablePromptsList;
Remarks
This property is a comma-separated string of supported values for the Prompt property.

Value
Meaning

PPAD_MSG_ENTERPIN
The user should enter his pin number on the Pinpad.

PPAD_MSG_PLEASEWAIT
The system is processing. The user should wait.

PPAD_MSG_ENTERVALIDPIN
The pin that was entered is not correct. The user should enter the correct pin number.

PPAD_MSG_RETRIESEXCEEDED
The user has failed to enter the correct pin number and the maximum number of attempts has been exceeded.

PPAD_MSG_APPROVED
The request has been approved.

PPAD_MSG_DECLINED
The EFT Transaction Host has declined to perform the requested function.

PPAD_MSG_CANCELED
The request is canceled.

PPAD_MSG_AMOUNTOK
The customer should enter Yes/No to approve the amount.

PPAD_MSG_NOTREADY
Pinpad is not ready for use by customer.

PPAD_MSG_IDLE
The System is Idle.

PPAD_MSG_SLIDE_CARD
The user should slide their card through the integrated MSR.

PPAD_MSG_INSERTCARD
The customer should insert their (smart)card.

PPAD_MSG_SELECTCARDTYPE
The customer should select the card type (typically credit or debit).

Values 1000 and above are reserved for OEM defined values.

This property is initialized by the Open method.

CapDisplay Property

Syntax
LONG CapDisplay;
Remarks
Defines the operations that the Application may perform on the Pinpad display.

Value
Meaning

PPAD_DISP_UNRESTRICTED
The application can use the Pinpad display in an unrestricted manner to display messages. In this case, an associated Line Display Control Object is the interface to the Pinpad display. The Application must call Line Display methods to manipulate the display.

PPAD_DISP_PINRESTRICTED
The Application can use the Pinpad display in an unrestricted manner except during PIN Entry. The Pinpad will display a pre-defined message during PIN Entry. If an attempt is made to use the associated Line Display Control Object while PIN Entry is enabled, the Line Display Control will return a result of OPOS_E_BUSY.

PPAD_DISP_RESTRICTED_LIST
The Application cannot specify the text of messages to display. It can only select from a list of pre-defined messages. There is no associated Line Display Control Object.

PPAD_DISP_RESTRICTED_ORDER
The application cannot specify the text of messages to display. It can only select from a list of pre-defined messages. The selections must occur in a pre-defined acceptable order. There is no associated Line Display Control object.

This property is initialized by the Open method.

CapLanguage Property

Syntax
LONG CapLanguage;
Remarks
Defines the capabilities that the application has to select the language of pre-defined messages (e.g. English, French, Arabic).

Value
Meaning

PPAD_LANG_NONE
The Pinpad supports no pre-defined prompt messages. The property will be set to this value if CapDisplay = PPAD_DISP_UNRESTRICTED. Any attempt to set the value of the PromptLanguage property will cause the ResultCode property to have a value of OPOS_E_ILLEGAL.

PPAD_LANG_ONE
The Pinpad supports pre-defined prompt messages in one language. Any attempt to set the value of the PromptLanguage property to other than the default value will cause the ResultCode property to have a value of OPOS_E_ILLEGAL.

PPAD_LANG_PINRESTRICTED
The Pinpad cannot change prompt languages during PIN Entry. The application must set the desired value into the PromptLanguage property before calling EnablePINEntry. Any attempt to set the value of the PromptLanguage while PINEntryEnabled is TRUE will cause the ResultCode property to have a value of OPOS_E_BUSY.

PPAD_LANG_UNRESTRICTED
The application can change the language of pre-defined prompt messages at anytime. The currently displayed message will change immediately.

This property is initialized by the Open method.

CapMACCalculation Property

Syntax
BOOL CapMACCalculation;
Remarks
If TRUE, the Pinpad supports MAC calculation.

This property is initialized by the Open method.

CapKeyboard Property

Syntax
BOOL CapKeyboard;
Remarks
Defines whether the application can obtain input from the Pinpad keyboard.

If TRUE, the application can use the Pinpad to obtain input. The application will use an associated POS Keyboard Control object as the interface to the Pinpad keyboard. Note that the associated POS Keyboard Control is effectively disabled while PINEntryEnabled is TRUE.

If FALSE, the application cannot obtain input directly from the Pinpad keyboard.

This property is initialized by the Open method.

CapTone Property

Syntax
BOOL CapTone;
Remarks
If TRUE, the Pinpad has a Tone Indicator. The Tone Indicator may be accessed by use of an associated Tone Indicator Control. If FALSE, there is no Tone Indicator.

This property is initialized by the Open method.

EncryptedPIN Property

Syntax
BSTR EncryptedPIN;
Remarks
This property will contain the value of the Encrypted PIN after a DataEvent event. This property will be formatted as a 16 byte Hex-ASCII string. If the PIN Entry was canceled, this property will contain the empty string.

MaximumPINLength Property R/W

Syntax
LONG MaximumPINLength;
Remarks
The application should set this property to the maximum acceptable number of digits in a PIN. This property must be set by the application before the EnablePINEntry method is executed This property will be set to a default value by the Open method. Note that in some implementations, this value cannot be changed by the application

MerchantID Property R/W

Syntax
BSTR MerchantID;
Remarks
The Merchant ID, as it is known to the EFT Transaction Host. The application must set this property before calling the BeginEFTTransaction method. Any attempt to change this property after the BeginEFTTransaction method has been called will result in a value of OPOS_E_ILLEGAL being stored into ResultCode.

MinimumPINLength Property R/W

Syntax
LONG MinimumPINLength;
Remarks
The application should set this property to the minimum acceptable number of digits in a PIN. This property must be set by the application before the EnablePINEntry method is executed. This property will be set to a default value by the Open method. Note that in some implementations, this value cannot be changed by the application.

PINEntryEnabled Property

Syntax
BOOL PINEntryEnabled;
Remarks
The Pinpad Control object sets this property to TRUE when an EnablePINEntry method is executed. It will be set to FALSE when the user has completed the PIN Entry operation or an EndEFTTransaction is executed.

Prompt Property R/W

Syntax
LONG Prompt;

Remarks
This property identifies a pre-defined message to be displayed on the Pinpad. This property is used if CapDisplay has a value of PPAD_DISP_RESTRICTED_LIST or PPAD_DISP_RESTRICTED_ORDER. It is also used during PIN Entry if CapDisplay has a value of PPAD_DISP_PINRESTRICTED. The AvailablePromptsList property lists the values for this property that the Service Object will accept.

This property is initialized by the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
One of the following occurred:

· An attempt was made to set the property to a value that is not supported by the Pinpad Service object

· An attempt was made to select prompt messages in an unacceptable order (CapDisplay = PPAD_DISP_RESTRICTED_ORDER)

Other Values
See ResultCode.

See Also
PromptLanguage

PromptLanguage Property R/W

Syntax
LONG PromptLanguage;

Remarks
This property specifies the language of the message to be displayed (as specified by the Prompt property). This property is used if the Prompt property is being used. The exact effect of changing this property depends on the value of the CapLanguage property.

The values for this property are MS Windows Language IDs. The property is initialized to a default value by the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An attempt was made to set the property to a value that is not supported by the Pinpad Service object.

Other Values
See ResultCode.

See Also
CapLanguage, AvailableLanguagesList
TerminalID Property R/W

Syntax
BSTR TerminalID;
Remarks
The terminal ID, as it is known to the EFT Transaction Host. The application must set this property before calling the BeginEFTTransaction method. Any attempt to change this property after the BeginEFTTransaction method has been called will result in a value of OPOS_E_ILLEGAL being stored into ResultCode.

Track1Data Property R/W

Syntax
BSTR Track1Data;
Remarks
Contains either the track 1 data from the previous card swipe or an empty string. An empty string indicates that the track was not physically read. The application must set this property before calling the BeginEFTTransaction method Any attempt to change this property after the BeginEFTTransaction method has been called will result in a value of OPOS_E_ILLEGAL being stored into ResultCode.

Track2Data Property R/W

Syntax
BSTR Track2Data;
Remarks
Contains either the track 2 data from the previous card swipe or an empty string. An empty string indicates that the track was not physically read. The application must set this property before calling the BeginEFTTransaction method Any attempt to change this property after the BeginEFTTransaction method has been called will result in a value of OPOS_E_ILLEGAL being stored into ResultCode.

Track3Data Property R/W

Syntax
BSTR Track3Data;
Remarks
Contains either the track 3 data from the previous card swipe or an empty string. An empty string indicates that the track was not physically read. The application must set this property before calling the BeginEFTTransaction method Any attempt to change this property after the BeginEFTTransaction method has been called will result in a value of OPOS_E_ILLEGAL being stored into ResultCode.

TransactionType Property R/W

Syntax
LONG TransactionType;
Remarks
The type of the current EFT transaction. The application must set this property before calling the BeginEFTTransaction method. Any attempt to change this property after the BeginEFTTransaction method has been called will result in a value of OPOS_E_ILLEGAL being stored into ResultCode.

TransactionType can have one of the following values:

Value
Meaning

PPAD_TRANS_DEBIT
Debit (decrease) the specified account

PPAD_TRANS_CREDIT
Credit (increase) the specified account.

PPAD_TRANS_INQ
(Balance) Inquiry

PPAD_TRANS_RECONCILE
Reconciliation/Settlement

PPAD_TRANS_ADMIN
Administrative Transaction

Methods

BeginEFTTransaction Method

Syntax
LONG BeginEFTTransaction (BSTR PINPadSystem,
LONG TransactionHost);

Parameter
Description

PINPadSystem
Name of the desired Pinpad Management System.
See below for the Pinpad Management System names defined by this standard. The Service Object implementer may define names for other Pinpad Management systems.

TransactionHost
Identifies the particular EFT Transaction Host to be used for this transaction.

The defined PINPadSystem parameter values are:

Value
Meaning

“M/S”
Master/Session. (USA, Latin America)

“DUKPT”
Derived Unique Key Per Transaction (USA, Latin America)

“APACS40”
Standard 40 (UK and other countries)

“AS2805”
Australian Standard 2805

“HGEPOS”
(Italian)

Remarks
This method must be called by the application to inform the Pinpad Control of the beginning of an EFT Transaction. The Pinpad Control will perform initialization functions (such as computing session keys). No other Pinpad functions can be performed until this method is called.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_NOSERVICE
The requested Pinpad Management System is not supported by the service object.

OPOS_E_ILLEGAL
The requested EFT Transaction Host is an illegal value for the selected Pinpad Management System.

OPOS_E_BUSY
The Pinpad is already performing an EFT transaction.

Other Values
See ResultCode.

ComputeMAC Method

Syntax
LONG ComputeMAC (BSTR InMsg, BSTR* pOutMsg);

Parameter
Description

InMsg
The message that the Application intends to send to an EFT Transaction Host.
The format of this data depends upon the value of the BinaryConversion property. See page 37.

pOutMsg
Pointer to the result of applying the MAC calculation to InMsg. This output parameter will contain a reformatted message that may actually be transmitted to an EFT Transaction Host.
The format of this data depends upon the value of the BinaryConversion property. See page 37.

Remarks
This method is called by the application to have the Pinpad compute a MAC value and append it to the designated message. Depending on the selected Pinpad Management System, the Pinpad may also insert other fields into the message. Note that the ComputeMAC method cannot be used while Pinpad input (PIN Entry) is enabled.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_DISABLED
A BeginEFTTransaction method has not been performed.

OPOS_E_BUSY
PINEntryEnabled is TRUE. The Pinpad cannot perform a MAC calculation during PIN Entry.

Other Values
See ResultCode.

EnablePINEntry Method

Syntax
LONG EnablePINEntry ();

Remarks
This method is called by the application to enable PIN Entry at the Pinpad device. When this method is called, the PINEntryEnabled property will be changed to TRUE. If the Pinpad uses pre-defined prompts for PIN Entry, then the value of the Prompt property will be changed to PPAD_MSG_ENTERPIN.

When the user has completed the PIN entry operation (either by entering their PIN or by hitting Cancel), the PINEntryEnabled property will be changed to FALSE. A DataEvent event will be fired to provide the encrypted PIN to the application when DataEventEnabled is set to TRUE. Note that any data entered at the Pinpad while PINEntryEnabled is TRUE will be supplied in encrypted form to this Control Object and will NOT be provided to any associated Keyboard Control Object.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_DISABLED
A BeginEFTTransaction method has not been performed.

Other Values
See ResultCode.

EndEFTTransaction Method

Syntax
LONG EndEFTTransaction (LONG CompletionCode);

CompletionCode is one of the following values:

Value
Meaning

PPAD_EFT_NORMAL
The EFT transaction completed normally. Note that this does not mean that the EFT transaction was approved. It merely means that the proper sequence of messages was transmitted and received.

PPAD_EFT_ABNORMAL
The proper sequence of messages was not transmitted & received.

Remarks
This method must be called by the application to inform the Pinpad Control of the end of an EFT Transaction. The Pinpad Control will perform termination functions (such as computing next transaction keys).

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

Other Values
See ResultCode.

UpdateKey Method

Syntax
LONG UpdateKey (LONG KeyNum, BSTR Key);

Parameter
Description

KeyNum
A key number.

Key
A Hex-ASCII value for a new key.

Remarks
This method is used to provide a new encryption key to the Pinpad. It is used only for those Pinpad Management Systems in which new key values are sent to the terminal as a field in standard messages from the EFT Transaction Host.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The specified key has been updated was successful.

OPOS_E_BUSY
The Pinpad cannot accept a new key at this time.

OPOS_E_ILLEGAL
One of the following conditions occurred:

· The selected Pinpad Management System does not support this function

· KeyNum specifies an unacceptable key number.

· Key contains a bad key (not Hex-ASCII or wrong length or bad parity).

Other Values
See ResultCode.

VerifyMAC Method

Syntax
BOOL VerifyMAC (BSTR Message);

Message contains a message received from an EFT Transaction Host.

Remarks
This method is called by the application to have the Pinpad verify the MAC value in a message received from an EFT Transaction Host. This method returns TRUE if it can verify the message; otherwise, it returns FALSE. Note that the VerifyMAC method cannot be used while PIN Entry is enabled.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_DISABLED
A BeginEFTTransaction method has not been performed.

OPOS_E_BUSY
PINEntryEnabled is TRUE. The Pinpad cannot perform a MAC verification during PIN Entry.

Other Values
See ResultCode.

Events

DataEvent Event

Syntax
void DataEvent (LONG Status);
The Status parameter is one of the following values:.

Value
Meaning

PPAD_SUCCESS
PIN Entry has occurred and values have been stored into the EncryptedPIN and AdditionalSecurityInformation properties.

PPAD_CANCEL
The user hit the cancel button on the Pinpad.

PPAD_TIMEOUT
A timeout condition occurred in the Pinpad. (Not all Pinpads will report this condition)

Remarks
Fired to indicate the completion of a PIN Entry operation.

ErrorEvent Event

Syntax
void ErrorEvent (LONG ResultCode, LONG ResultCodeExtended,
LONG ErrorLocus, LONG* pErrorResponse);
Parameter
Description

ResultCode
Result code causing the error event. See values below.

ResultCodeExtended
Extended result code causing the error event. See values below.

ErrorLocus
Location of the error. See values below.

pErrorResponse
Pointer to the error event response. See values below.

The ResultCode parameter may be one of the following:

Value
Meaning

OPOS_E_EXTENDED
ResultCodeExtended = PPAD_BAD_KEY:
An Encryption Key is corrupted or missing.

Other Values
See ResultCode.

The ErrorLocus parameter may be one of the following:

Value
Meaning

OPOS_EL_INPUT
Error occurred while gathering or processing event-driven input. No input data is available.

The contents at the location pointed to by the pErrorResponse parameter are preset to a default value, based on the ErrorLocus:

Value
Meaning

OPOS_ER_CLEAR
Clear the buffered input data. The error state is exited.
Default when locus is OPOS_EL_INPUT.

Remarks
Fired when an error is detected while trying to perform a PIN encryption function. The Pinpad service object may optionally provide more detailed diagnostic information via a CheckHealth or DirectIO mechanism.

Chapter 14
POS Keyboard

Summary

Properties

Common

Type
Access
Initialized After

AutoDisable
1.2
Boolean
R/W
Open

BinaryConversion
1.2
Long
R/W
Open

CapPowerReporting
1.3
Long
R
Open

CheckHealthText
1.1
String
R
Open

Claimed
1.1
Boolean
R
Open

DataCount
1.2
Long
R
Open

DataEventEnabled
1.1
Boolean
R/W
Open

DeviceEnabled
1.1
Boolean
R/W
Open & Claim

FreezeEvents
1.1
Boolean
R/W
Open

OutputID
1.1
Long
R
Not Supported

PowerNotify
1.3
Long
R/W
Open

PowerState
1.3
Long
R
Open

ResultCode
1.1
Long
R
--

ResultCodeExtended
1.1
Long
R
Open

State
1.1
Long
R
--

ControlObjectDescription
1.1
String
R
--

ControlObjectVersion
1.1
Long
R
--

ServiceObjectDescription
1.1
String
R
Open

ServiceObjectVersion
1.1
Long
R
Open

DeviceDescription
1.1
String
R
Open

DeviceName
1.1
String
R
Open

Specific

Type
Access
Initialized After

CapKeyUp
1.2
Boolean
R
Open

EventTypes
1.2
Long
R/W
Open

POSKeyData
1.1
Long
R
Open

POSKeyEventType
1.2
Long
R
Open

Methods

Common

May Use After

Open
1.1
--

Close
1.1
Open

Claim
1.1
Open

Release
1.1
Open & Claim

CheckHealth
1.1
Open, Claim, & Enable

ClearInput
1.1
Open & Claim

ClearOutput
1.1
Not Supported

DirectIO
1.1
Open

Events

Name

May Occur After

DataEvent
1.1
Open, Claim, & Enable

DirectIOEvent
1.1
Open, Claim

ErrorEvent
1.1
Open, Claim, & Enable

OutputCompleteEvent
1.1
Not Supported

StatusUpdateEvent
1.3
Open, Claim, & Enable

General Information

The POS Keyboard Control’s OLE programmatic ID is “OPOS.POSKeyboard”.

This device was added in OPOS Release 1.1.

Capabilities

The POS Keyboard Control has the following capability:

· Reads keys from a POS keyboard. A POS keyboard may be an auxiliary keyboard, or it may be a virtual keyboard consisting of some or all of the keys on the system keyboard.

Model

The POS Keyboard Control follows the general “Input Model” for event-driven input:

· When input is received by the Control, it enqueues a DataEvent.

· If the AutoDisable property is TRUE, then the control automatically disables itself when a DataEvent is enqueued.

· An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is TRUE. Just before delivering this event, the Control copies the data into properties, and disables further data events by setting the DataEventEnabled property to FALSE. This causes subsequent input data to be enqueued by the Control while the application processes the current input and associated properties. When the application has finished the current input and is ready for more data, it reenables events by setting DataEventEnabled to TRUE.

· An ErrorEvent (or events) are enqueued if the Control encounters an error while gathering or processing input, and is delivered to the application when the DataEventEnabled property is TRUE.

· The DataCount property may be read to obtain the number of DataEvents enqueued by the Control.

· All input enqueued by the Control may be deleted by calling the ClearInput method.

Keyboard Translation

The POS Keyboard Control must supply a method for translating its internal key codes into user-defined codes which are returned by the data events. Note that this translation must be end-user configurable.

Device Sharing

The POS keyboard is an exclusive-use device, as follows:

· The application must claim the device before enabling it.

· The application must claim and enable the device before the device begins reading input.

· See the “Summary” table for precise usage prerequisites.

Properties

CapKeyUp Property
Added in Release 1.2
Syntax
LONG CapKeyUp;

Remarks
If TRUE, then the Control is able to generate both key down and key up events, depending upon the setting of the EventTypes.

If FALSE, then the Control is only able to generate the key down event.

EventTypes Property R/W
Added in Release 1.2
Syntax
LONG EventTypes;

Remarks
Select the type of events that the application wants to receive.

Values are:

Value
Meaning

KBD_ET_DOWN
Generate key down events.

KBD_ET_DOWN_UP
Generate key down and key up events.

Release 1.1: Only key down events can be delivered.
Release 1.2 and later: Key down and key up events can be delivered.

This property is initialized to KBD_ET_DOWN by the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An invalid property value was used, or the Control does not support the selected value.

POSKeyData Property

Syntax
LONG POSKeyData;

Remarks
The value of the key from the last DataEvent.

The Application may treat this value as device independent, assuming that the system installer has configured the POSKeyboard Service Object to translate internal key codes to the codes expected by the Application. Such configuration is inherently Service Object-specific.

Release 1.1: POSKeyData was defined as a logical key code in the upper 16 bits and a scan code in the lower 16 bits, where the values need not match a standard PC keyboard's values.

Release 1.2 and later: Added the requirement for an end-user configurable translation into arbitrary keycodes.

This property is set by the Control just before delivering the DataEvent.

POSKeyEventType Property
Added in Release 1.2
Syntax
LONG POSKeyEventType;

Remarks
This property holds the type of the last keyboard event: Is the key being pressed or released?

Values are:

Value
Meaning

KBD_KET_KEYDOWN
The key in POSKeyData was pressed.

KBD_KET_KEYUP
The key in POSKeyData was released.

This property is set by the Control just before delivering the DataEvent.

Events

DataEvent Event

Syntax
void DataEvent (LONG Status);
The Status parameter contains zero.

Remarks
Fired to present input data from the device to the application. The logical key number is placed in the POSKeyData property and the event type is placed in the POSKeyEventType property before this event is delivered.

ErrorEvent Event

Syntax
void ErrorEvent (LONG ResultCode, LONG ResultCodeExtended,
LONG ErrorLocus, LONG* pErrorResponse);
Parameter
Description

ResultCode
Result code causing the error event. See ResultCode for values.

ResultCodeExtended
Extended result code causing the error event. See ResultCodeExtended for values.

ErrorLocus
Location of the error. See values below.

pErrorResponse
Pointer to the error event response. See values below.

The ErrorLocus parameter may be one of the following:

Value
Meaning

OPOS_EL_INPUT
Error occurred while gathering or processing event-driven input. No input data is available.

OPOS_EL_INPUT_DATA
Error occurred while gathering or processing event-driven input, and some previously buffered data is available.

The contents at the location pointed to by the pErrorResponse parameter is preset to a default value, based on the ErrorLocus. The application may change it to one of the following:

Value
Meaning

OPOS_ER_CLEAR
Clear the buffered input data. The error state is exited.
Default when locus is OPOS_EL_INPUT.

OPOS_ER_CONTINUEINPUT
Use only when locus is OPOS_EL_INPUT_DATA. Acknowledges the error and directs the Control to continue processing. The Control remains in the error state and will deliver additional DataEvents as directed by the DataEventEnabled property. When all input has been delivered and the DataEventEnabled property is again set to TRUE, then another ErrorEvent is delivered with locus OPOS_EL_INPUT.
Default when locus is OPOS_EL_INPUT_DATA.

Remarks
Fired when an error is detected while trying to read POS Keyboard data.

Input error events are not delivered until the DataEventEnabled property is TRUE, so that proper application sequencing occurs.

See Also
“Status, Result Code, and State Model”

Chapter 15
POS Printer

Summary

Properties

Common

Type
Access
Initialized After

AutoDisable
1.2
Boolean
R/W
Not Supported

BinaryConversion
1.2
Long
R/W
Open

CapPowerReporting
1.3
Long
R
Open

CheckHealthText
1.0
String
R
Open

Claimed
1.0
Boolean
R
Open

DataCount
1.2
Long
R
Not Supported

DataEventEnabled
1.0
Boolean
R/W
Not Supported

DeviceEnabled
1.0
Boolean
R/W
Open & Claim

FreezeEvents
1.0
Boolean
R/W
Open

OutputID
1.0
Long
R
Open

PowerNotify
1.3
Long
R/W
Open

PowerState
1.3
Long
R
Open

ResultCode
1.0
Long
R
--

ResultCodeExtended
1.0
Long
R
Open

State
1.0
Long
R
--

ControlObjectDescription
1.0
String
R
--

ControlObjectVersion
1.0
Long
R
--

ServiceObjectDescription
1.0
String
R
Open

ServiceObjectVersion
1.0
Long
R
Open

DeviceDescription
1.0
String
R
Open

DeviceName
1.0
String
R
Open

Specific

Type
Access
Initialized After

CapCharacterSet

CapConcurrentJrnRec

CapConcurrentJrnSlp

CapConcurrentRecSlp

CapCoverSensor

CapTransaction
1.1

1.0

1.0

1.0

1.0

1.1
Long
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R
Open

Open

Open

Open

Open

Open

CapJrnPresent

CapJrn2Color

CapJrnBold

CapJrnDhigh

CapJrnDwide

CapJrnDwideDhigh

CapJrnEmptySensor

CapJrnItalic

CapJrnNearEndSensor

CapJrnUnderline
1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0
Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R
Open

Open

Open

Open

Open

Open

Open

Open

Open

Open

Specific (continued)

Type
Access
Initialized After

CapRecPresent

CapRec2Color

CapRecBarCode

CapRecBitmap

CapRecBold

CapRecDhigh

CapRecDwide

CapRecDwideDhigh

CapRecEmptySensor

CapRecItalic

CapRecLeft90

CapRecNearEndSensor

CapRecPapercut

CapRecRight90

CapRecRotate180

CapRecStamp

CapRecUnderline
1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0
Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R
Open

Open

Open

Open

Open

Open

Open

Open

Open

Open

Open

Open

Open

Open

Open

Open

Open

Specific (continued)

Type
Access
Initialized After

CapSlpPresent

CapSlpFullslip

CapSlp2Color

CapSlpBarCode

CapSlpBitmap

CapSlpBold

CapSlpDhigh

CapSlpDwide

CapSlpDwideDhigh

CapSlpEmptySensor

CapSlpItalic

CapSlpLeft90

CapSlpNearEndSensor

CapSlpRight90

CapSlpRotate180

CapSlpUnderline
1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0
Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R

Boolean
R
Open

Open

Open

Open

Open

Open

Open

Open

Open

Open

Open

Open

Open

Open

Open

Open

AsyncMode
1.0
Boolean
R/W
Open

CharacterSet
1.0
Long
R/W
Open, Claim, & Enable

CharacterSetList
1.0
String
R
Open

CoverOpen
1.0
Boolean
R
Open, Claim, & Enable

ErrorLevel
1.1
Long
R
Open

ErrorStation
1.0
Long
R
Open

ErrorString
1.1
String
R
Open

FontTypefaceList
1.1
String
R
Open

FlagWhenIdle
1.0
Boolean
R/W
Open

MapMode
1.0
Long
R/W
Open

RotateSpecial
1.1
Long
R/W
Open

Specific (continued)

Type
Access
Initialized After

JrnLineChars
1.0
Long
R/W
Open, Claim, & Enable

JrnLineCharsList
1.0
String
R
Open

JrnLineHeight
1.0
Long
R/W
Open, Claim, & Enable

JrnLineSpacing
1.0
Long
R/W
Open, Claim, & Enable

JrnLineWidth
1.0
Long
R
Open, Claim, & Enable

JrnLetterQuality
1.0
Boolean
R/W
Open, Claim, & Enable

JrnEmpty
1.0
Boolean
R
Open, Claim, & Enable

JrnNearEnd
1.0
Boolean
R
Open, Claim, & Enable

RecLineChars
1.0
Long
R/W
Open, Claim, & Enable

RecLineCharsList
1.0
String
R
Open

RecLineHeight
1.0
Long
R/W
Open, Claim, & Enable

RecLineSpacing
1.0
Long
R/W
Open, Claim, & Enable

RecLineWidth
1.0
Long
R
Open, Claim, & Enable

RecLetterQuality
1.0
Boolean
R/W
Open, Claim, & Enable

RecEmpty
1.0
Boolean
R
Open, Claim, & Enable

RecNearEnd
1.0
Boolean
R
Open, Claim, & Enable

RecSidewaysMaxLines
1.0
Long
R
Open, Claim, & Enable

RecSidewaysMaxChars
1.0
Long
R
Open, Claim, & Enable

RecLinesToPaperCut
1.0
Long
R
Open, Claim, & Enable

RecBarCodeRotationList
1.1
String
R
Open

SlpLineChars
1.0
Long
R/W
Open, Claim, & Enable

SlpLineCharsList
1.0
String
R
Open

SlpLineHeight
1.0
Long
R/W
Open, Claim, & Enable

SlpLineSpacing
1.0
Long
R/W
Open, Claim, & Enable

SlpLineWidth
1.0
Long
R
Open, Claim, & Enable

SlpLetterQuality
1.0
Boolean
R/W
Open, Claim, & Enable

SlpEmpty
1.0
Boolean
R
Open, Claim, & Enable

SlpNearEnd
1.0
Boolean
R
Open, Claim, & Enable

SlpSidewaysMaxLines
1.0
Long
R
Open, Claim, & Enable

SlpSidewaysMaxChars
1.0
Long
R
Open, Claim, & Enable

SlpMaxLines
1.0
Long
R
Open, Claim, & Enable

SlpLinesNearEndToEnd
1.0
Long
R
Open, Claim, & Enable

SlpBarCodeRotationList
1.1
String
R
Open

Methods

Common

May Use After

Open
1.0
--

Close
1.0
Open

Claim
1.0
Open

Release
1.0
Open & Claim

CheckHealth
1.0
Open, Claim, & Enable

ClearInput
1.0
Not Supported

ClearOutput
1.0
Open & Claim

DirectIO
1.0
Open

Specific

PrintNormal
1.0
Open, Claim, & Enable

PrintTwoNormal
1.0
Open, Claim, & Enable

PrintImmediate
1.0
Open, Claim, & Enable

BeginInsertion
1.0
Open, Claim, & Enable

EndInsertion
1.0
Open, Claim, & Enable

BeginRemoval
1.0
Open, Claim, & Enable

EndRemoval
1.0
Open, Claim, & Enable

CutPaper
1.0
Open, Claim, & Enable

RotatePrint
1.0
Open, Claim, & Enable

PrintBarCode
1.0
Open, Claim, & Enable

PrintBitmap
1.0
Open, Claim, & Enable

TransactionPrint
1.1
Open, Claim, & Enable

ValidateData
1.1
Open, Claim, & Enable

SetBitmap
1.0
Open, Claim, & Enable

SetLogo
1.0
Open, Claim, & Enable

Events

Name

May Occur After

DataEvent
1.0
Not Supported

DirectIOEvent
1.0
Open, Claim

ErrorEvent
1.0
Open, Claim, & Enable

OutputCompleteEvent
1.0
Open, Claim, & Enable

StatusUpdateEvent
1.0
Open, Claim, & Enable

General Information

The POS Printer Control’s OLE programmatic ID is “OPOS.POSPrinter”.

The printer OLE Control does not attempt to encapsulate the generic Windows graphics printer. Rather, for performance and ease of use considerations, the interfaces are defined to directly control a printer. Usually, an application will print one line to one station per method, for ease of use and accuracy in recovering from errors.

The printer model defines three stations with the following general uses:

· Journal Used for simple text to log transaction and activity information. Kept by the store for audit and other purposes.

· Receipt Used to print transaction information. Usually given to the customer. Also often used for store reports. Contains either a knife to cut the paper between transactions, or a tear bar to manually cut the paper.

· Slip Used to print information on a form. Usually given to the customer.

Also used to print “validation” information on a form. The form type is typically a check or credit card slip.

Sometimes, limited forms-handling capability is integrated with the receipt or journal station to permit validation printing. Often this limits the number of print lines, due to the station’s forms-handling throat depth. The Printer Control nevertheless addresses this printer functionality as a slip station.

Capabilities

The POS printer has the following capability:

· The default character set can print the ASCII characters 0x20 through 0x7F, which includes space, digits, uppercase, lowercase, and some special characters. (If the printer does not support all of these, then it should translate them to close approximations – such as lowercase to uppercase.)

The POS printer may have several additional capabilities. See the capabilities properties for specific information.

The following capabilities are not addressed in this version of the OPOS specification. A Service Object may choose to support them through the DirectIO mechanism.

· Downloadable character sets.

· Character substitution.

· General graphics printing, where each pixel of the printer line may be specified.

Model

The POS Printer follows the general output model, with some enhancements:

· The following methods are always performed synchronously: BeginInsertion, EndInsertion, BeginRemoval, EndRemoval, and CheckHealth. These methods will fail if asynchronous output is outstanding.

· The following method is also always performed synchronously: PrintImmediate. This method tries to print its data immediately (that is, as the very next printer operation). It may be called when asynchronous output is outstanding. PrintImmediate is primarily intended for use in exception conditions when asynchronous output is outstanding.

· The following methods are performed either synchronously or asynchronously, depending on the value of the AsyncMode property: PrintNormal, PrintTwoNormal, CutPaper, RotatePrint, PrintBarCode, and PrintBitmap. When AsyncMode is FALSE, then these methods print synchronously and return their completion status to the application.

· When AsyncMode is TRUE, then these methods operate as follows:

· The Control buffers the request, sets the OutputID property to an identifier for this request, and returns as soon as possible. When the device completes the request successfully, then the Control fires an OutputCompleteEvent. A parameter of this event contains the OutputID of the completed request.

Asynchronous printer methods will not return an error status due to a printing problem, such as out of paper or printer fault. These errors will only be reported by an ErrorEvent. An error status is returned only if the printer is not claimed and enabled, a parameter is invalid, or the request cannot be enqueued. The first two error cases are due to an application error, while the last is a serious system resource exception.

· If an error occurs while performing an asynchronous request, an ErrorEvent is enqueued and delivered. The ErrorStation property is set to the station or stations that were printing when the error occurred. Release 1.1 and later: The ErrorLevel and ErrorString properties are also set.

The event handler may call synchronous print methods (but not asynchronous methods), then can either retry the outstanding output or clear it.

· The Control guarantees that asynchronous output is performed on a first-in first-out basis.

· All output buffered by OPOS may be deleted by calling the ClearOutput method. OutputCompleteEvents will not be fired for cleared output. This method also stops any output that may be in progress (when possible).

· The property FlagWhenIdle may be set to cause the Control to fire a StatusUpdateEvent when all outstanding outputs have finished, whether successfully or because they were cleared.

· Release 1.1 and later -- Transaction Mode

A transaction is a sequence of print operations that are printed to a station as a unit. Print operations which may be included in a transaction are PrintNormal, CutPaper, RotatePrint, PrintBarCode, and PrintBitmap. During a transaction, the print operations are first validated. If valid, they are added to the transaction but not printed yet. Once the application has added as many operations as required, then the transaction print method is called.

If the transaction is printed synchronously, then the returned status indicates either that the entire transaction printing successfully or that an error occurred during the print. If the transaction is printed asynchronously, then the asynchronous print rules listed above are followed. If an error occurs and the Error Event handler causes a retry, the entire transaction is retried.

The printer error reporting model is as follows:

· Printer out-of-paper and cover open conditions are reported by setting the ResultCode to OPOS_E_EXTENDED and then setting ResultCodeExtended to one of the following error conditions:
OPOS_EPTR_JRN_EMPTY,
OPOS_EPTR_REC_EMPTY,
OPOS_EPTR_SLP_EMPTY, or
OPOS_EPTR_COVER_OPEN.

· Other printer errors are reported by setting the ResultCode to OPOS_E_FAILURE or another standard error status. These failures are typically due to a printer fault or jam, or to a more serious error.

Device Sharing

The POS Printer is an exclusive-use device, as follows:

· The application must claim the device before enabling it.

· The application must claim and enable the device before accessing many printer-specific properties.

· The application must claim and enable the device before calling methods that manipulate the device.

· See the “Summary” table for precise usage prerequisites.

Data Characters and Escape Sequences

The default character set of all POS printers is assumed to support at least the ASCII characters 20-hex through 7F-hex, which include spaces, digits, uppercase, lowercase, and some special characters. If the printer does not support lowercase characters, then the Service Object may translate them to uppercase.

Every escape sequence begins with the escape character ESC, whose value is 27 decimal, followed by a vertical bar (‘|’). This is followed by zero or more digits and/or lowercase alphabetic characters. The escape sequence is terminated by an uppercase alphabetic character. Sequences that do not begin with ESC “|” are passed through to the printer. Also, sequences that begin with ESC “|” but which are not valid OPOS escape sequences are passed through to the printer.

To determine if escape sequences or data can be performed on a printer station, the application can call the ValidateData method. (For some escape sequences, corresponding capability properties can also be used.)

The following escape sequences are recognized. If an escape sequence specifies an operation that is not supported by the printer station, then it is ignored.

One Shots Perform indicated action.

Name
Data
Remarks

Paper cut
ESC |#P
Cuts receipt paper. The character ‘#’ is replaced by an ASCII decimal string telling the percentage cut desired. If ‘#’ is omitted, then a full cut is performed. For example: The C string “\x1B|75P” requests a 75% partial cut.

Feed and Paper cut
ESC |#fP
Cuts receipt paper, after feeding the paper by the RecLinesToPaperCut lines. The character ‘#’ is defined by the “Paper cut” escape sequence.

Feed, Paper cut, and Stamp
ESC |#sP
Cuts and stamps receipt paper, after feeding the paper by the RecLinesToPaperCut lines. The character ‘#’ is defined by the “Paper cut” escape sequence.

Fire stamp
ESC |sL
Fires the stamp solenoid, which usually contains a graphical store emblem.

Print bitmap
ESC |#B
Prints the pre-stored bitmap. The character ‘#’ is replaced by the bitmap number.

Print top logo
ESC |tL
Prints the pre-stored top logo.

Print bottom logo
ESC |bL
Prints the pre-stored bottom logo.

Feed lines
ESC |#lF
Feed the paper forward by lines. The character ‘#’ is replaced by an ASCII decimal string telling the number of lines to be fed. If ‘#’ is omitted, then one line is fed.

Feed units
ESC |#uF
Feed the paper forward by mapping mode units. The character ‘#’ is replaced by an ASCII decimal string telling the number of units to be fed. If ‘#’ is omitted, then one unit is fed.

Feed reverse
ESC |#rF
Feed the paper backward. The character ‘#’ is replaced by an ASCII decimal string telling the number of lines to be fed. If ‘#’ is omitted, then one line is fed.

Print Mode Characteristics that are remembered until explicitly changed.

Name
Data
Remarks

Font typeface selection
ESC |#fT
Selects a new typeface for the following data. Values for the character ‘#’ are:

0 = Default typeface.
1 = Select first typeface from the FontTypefaceList property.
2 = Select second typeface from the FontTypefaceList property.
And so on.

Print Line Characteristics that are reset at the end of each print method or by a “Normal” sequence.

Name
Data
Remarks

Bold
ESC |bC
Prints in bold or double-strike.

Underline
ESC |#uC
Prints with underline. The character ‘#’ is replaced by an ASCII decimal string telling the width of the underline in printer dot units. If ‘#’ is omitted, then a printer-specific default width is used.

Italic
ESC |iC
Prints in italics.

Alternate color (Red)
ESC |rC
Prints in alternate color.

Reverse video
ESC |rvC
Prints in a reverse video format.

Shading
ESC |#sC
Prints in a shaded manner. The character ‘#’ is replaced by an ASCII decimal string telling the percentage shading desired. If ‘#’ is omitted, then a printer-specific default level of shading is used.

Single high & wide
ESC |1C
Prints normal size.

Double wide
ESC |2C
Prints double-wide characters.

Double high
ESC |3C
Prints double-high characters.

Double high & wide
ESC |4C
Prints double-high/double-wide characters.

Scale horizontally
ESC |#hC
Prints with the width scaled ‘#’ times the normal size, where ‘#’ is replaced by an ASCII decimal string.

Scale vertically
ESC |#vC
Prints with the height scaled ‘#’ times the normal size, where ‘#’ is replaced by an ASCII decimal string.

Center
ESC |cA
Aligns following text in the center.

Right justify
ESC |rA
Aligns following text at the right.

Normal
ESC |N
Restores printer characteristics to normal condition.

Properties

AsyncMode Property R/W

Syntax
BOOL AsyncMode;
Remarks
If TRUE, then the print methods PrintNormal, PrintTwoNormal, CutPaper, RotatePrint, PrintBarCode, and PrintBitmap will be performed asynchronously.
If FALSE, they will be printed synchronously.

This property is initialized to FALSE by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

CapCharacterSet Property
Added in Release 1.1
Syntax
LONG CapCharacterSet;

Remarks
Holds the default character set capability. It may be one of the following:

Value
Meaning

PTR_CCS_ALPHA
The default character set supports uppercase alphabetic plus numeric, space, minus, and period.

PTR_CCS_ASCII
The default character set supports all ASCII characters between 20-hex and 7F-hex.

PTR_CCS_KANA
The default character set supports partial code page 932, including ASCII characters 20-hex through 7F-hex and the Japanese Kana characters A1-hex through DF-hex, but excluding the Japanese Kanji characters.

PTR_CCS_KANJI
The default character set supports code page 932, including the Shift-JIS Kanji characters, Levels 1 and 2.

The default character set may contain a superset of these ranges. The initial CharacterSet property may be examined for additional information.

This property is initialized by the Open method.

CapConcurrentJrnRec Property

Syntax
BOOL CapConcurrentJrnRec;

Remarks
If TRUE, then the Journal and Receipt stations can print at the same time. The PrintTwoNormal method may be used with the PTR_TWO_RECEIPT_JOURNAL and PTR_S_JOURNAL_RECEIPT station parameters.

If FALSE, the application should print to only one of the stations at a time, and minimize transitions between the stations. Non-concurrent printing may be required for reasons such as:

· Higher likelihood of error, such as greater chance of paper jams when moving between the stations.

· Higher performance when each station is printed separately.

This property is initialized by the Open method.

CapConcurrentJrnSlp Property

Syntax
BOOL CapConcurrentJrnSlp;

Remarks
If TRUE, then the Journal and Slip stations can print at the same time. The PrintTwoNormal method may be used with the PTR_TWO_SLIP_JOURNAL and PTR_S_JOURNAL_SLIP station parameters.

If FALSE, the application must use the sequence BeginInsertion/EndInsertion followed by print requests to the Slip followed by BeginRemoval/EndRemoval before printing on the Journal. Non-concurrent printing may be required for reasons such as:

· Physical constraints, such as the Slip form being placed in front of the Journal station.

· Higher likelihood of error, such as greater chance of paper jams when moving between the stations.

· Higher performance when each station is printed separately.

This property is initialized by the Open method.

CapConcurrentRecSlp Property

Syntax
BOOL CapConcurrentRecSlp;

Remarks
If TRUE, then the Receipt and Slip stations can print at the same time. The PrintTwoNormal method may be used with the PTR_TWO_SLIP_RECEIPT and PTR_S_RECEIPT_SLIP station parameters.

If FALSE, the application must use the sequence BeginInsertion/EndInsertion followed by print requests to the Slip followed by BeginRemoval/EndRemoval before printing on the Receipt. Non-concurrent printing may be required for reasons such as:

· Physical constraints, such as the Slip form being placed in front of the Receipt station.

· Higher likelihood of error, such as greater chance of paper jams when moving between the stations.

· Higher performance when each station is printed separately.

This property is initialized by the Open method.

CapCoverSensor Property

Syntax
BOOL CapCoverSensor;

Remarks
If TRUE, then the printer has a “cover open” sensor;
otherwise it is FALSE.

This property is initialized by the Open method.

CapJrn2Color Property

Syntax
BOOL CapJrn2Color;

Remarks
If TRUE, then the journal can print dark plus an alternate color;
otherwise it is FALSE.

This property is initialized by the Open method.

CapJrnBold Property

Syntax
BOOL CapJrnBold;

Remarks
If TRUE, then the journal can print bold characters;
otherwise it is FALSE.

This property is initialized by the Open method.

CapJrnDhigh Property

Syntax
BOOL CapJrnDhigh;

Remarks
If TRUE, then the journal can print double high characters;
otherwise it is FALSE.

This property is initialized by the Open method.

CapJrnDwide Property

Syntax
BOOL CapJrnDwide;

Remarks
If TRUE, then the journal can print double wide characters;
otherwise it is FALSE.

This property is initialized by the Open method.

CapJrnDwideDhigh Property

Syntax
BOOL CapJrnDwideDhigh;

Remarks
If TRUE, then the journal can print double high / double wide characters;
otherwise it is FALSE.

This property is initialized by the Open method.

CapJrnEmptySensor Property

Syntax
BOOL CapJrnEmptySensor;

Remarks
If TRUE, then the journal has an out-of-paper sensor;
otherwise it is FALSE.

This property is initialized by the Open method.

CapJrnItalic Property

Syntax
BOOL CapJrnItalic;

Remarks
If TRUE, then the journal can print italic characters;
otherwise it is FALSE.

This property is initialized by the Open method.

CapJrnNearEndSensor Property

Syntax
BOOL CapJrnNearEndSensor;

Remarks
If TRUE, then the journal has a low paper sensor;
otherwise it is FALSE.

This property is initialized by the Open method.

CapJrnPresent Property

Syntax
BOOL CapJrnPresent;

Remarks
If TRUE, then the journal print station is present;
otherwise it is FALSE.

This property is initialized by the Open method.

CapJrnUnderline Property

Syntax
BOOL CapJrnUnderline;

Remarks
If TRUE, then the journal can underline characters;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRec2Color Property

Syntax
BOOL CapRec2Color;

Remarks
If TRUE, then the receipt can print dark plus an alternate color;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRecBarCode Property

Syntax
BOOL CapRecBarCode;

Remarks
If TRUE, then the receipt has bar code printing capability;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRecBitmap Property

Syntax
BOOL CapRecBitmap;

Remarks
If TRUE, then the receipt can print bitmaps;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRecBold Property

Syntax
BOOL CapRecBold;

Remarks
If TRUE, then the receipt can print bold characters;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRecDhigh Property

Syntax
BOOL CapRecDhigh;

Remarks
If TRUE, then the receipt can print double high characters;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRecDwide Property

Syntax
BOOL CapRecDwide;

Remarks
If TRUE, then the receipt can print double wide characters;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRecDwideDhigh Property

Syntax
BOOL CapRecDwideDhigh;

Remarks
If TRUE, then the receipt can print double high / double wide characters;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRecEmptySensor Property

Syntax
BOOL CapRecEmptySensor;

Remarks
If TRUE, then the receipt has an out-of-paper sensor;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRecItalic Property

Syntax
BOOL CapRecItalic;

Remarks
If TRUE, then the receipt can print italic characters;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRecLeft90 Property

Syntax
BOOL CapRecLeft90;

Remarks
If TRUE, then the receipt can print in rotated 90(left mode;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRecNearEndSensor Property

Syntax
BOOL CapRecNearEndSensor;

Remarks
If TRUE, then the receipt has a low paper sensor;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRecPapercut Property

Syntax
BOOL CapRecPapercut;

Remarks
If TRUE, then the receipt can perform paper cuts;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRecPresent Property

Syntax
BOOL CapRecPresent;

Remarks
If TRUE, then the receipt print station is present;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRecRight90 Property

Syntax
BOOL CapRecRight90;

Remarks
If TRUE, then the receipt can print in a rotated 90(right mode;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRecRotate180 Property

Syntax
BOOL CapRecRotate180;

Remarks
If TRUE, then the receipt can print in a rotated upside down mode;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRecStamp Property

Syntax
BOOL CapRecStamp;

Remarks
If TRUE, then the receipt has a stamp capability;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRecUnderline Property

Syntax
BOOL CapRecUnderline;

Remarks
If TRUE, then the receipt can underline characters;
otherwise it is FALSE.

This property is initialized by the Open method.

CapSlp2Color Property

Syntax
BOOL CapSlp2Color;

Remarks
If TRUE, then the slip can print dark plus an alternate color;
otherwise it is FALSE.

This property is initialized by the Open method.

CapSlpBarCode Property

Syntax
BOOL CapSlpBarCode;

Remarks
If TRUE, then the slip has bar code printing capability;
otherwise it is FALSE.

This property is initialized by the Open method.

CapSlpBitmap Property

Syntax
BOOL CapSlpBitmap;

Remarks
If TRUE, then the slip can print bitmaps;
otherwise it is FALSE.

This property is initialized by the Open method.

CapSlpBold Property

Syntax
BOOL CapSlpBold;

Remarks
If TRUE, then the slip can print bold characters;
otherwise it is FALSE.

This property is initialized by the Open method.

CapSlpDhigh Property

Syntax
BOOL CapSlpDhigh;

Remarks
If TRUE, then the slip can print double high characters;
otherwise it is FALSE.

This property is initialized by the Open method.

CapSlpDwide Property

Syntax
BOOL CapSlpDwide;

Remarks
If TRUE, then the slip can print double wide characters;
otherwise it is FALSE.

This property is initialized by the Open method.

CapSlpDwideDhigh Property

Syntax
BOOL CapSlpDwideDhigh;

Remarks
If TRUE, then the slip can print double high / double wide characters;
otherwise it is FALSE.

This property is initialized by the Open method.

CapSlpEmptySensor Property

Syntax
BOOL CapSlpEmptySensor;

Remarks
If TRUE, then the slip has a “slip in” sensor;
otherwise it is FALSE.

This property is initialized by the Open method.

CapSlpFullslip Property

Syntax
BOOL CapSlpFullslip;

Remarks
If TRUE, then the slip is a full slip station. It can print full-length forms..

If FALSE, then the slip is a “validation” type station. This usually limits the number of print lines, and disables access to the receipt and/or journal stations while the validation slip is being used.

This property is initialized by the Open method.

CapSlpItalic Property

Syntax
BOOL CapSlpItalic;

Remarks
If TRUE, then the slip can print italic characters;
otherwise it is FALSE.

This property is initialized by the Open method.

CapSlpLeft90 Property

Syntax
BOOL CapSlpLeft90;

Remarks
If TRUE, then the slip can print in a rotated 90(left mode;
otherwise it is FALSE.

This property is initialized by the Open method.

CapSlpNearEndSensor Property

Syntax
BOOL CapSlpNearEndSensor;

Remarks
If TRUE, then the slip has a “slip near end” sensor;
otherwise it is FALSE.

This property is initialized by the Open method.

CapSlpPresent Property

Syntax
BOOL CapSlpPresent;

Remarks
If TRUE, then the slip print station is present;
otherwise it is FALSE.

This property is initialized by the Open method.

CapSlpRight90 Property

Syntax
BOOL CapSlpRight90;

Remarks
If TRUE, then the slip can print in a rotated 90(right mode;
otherwise it is FALSE.

This property is initialized by the Open method.

CapSlpRotate180 Property

Syntax
BOOL CapSlpRotate180;

Remarks
If TRUE, then the slip can print in a rotated upside down mode;
otherwise it is FALSE.

This property is initialized by the Open method.

CapSlpUnderline Property

Syntax
BOOL CapSlpUnderline;

Remarks
If TRUE, then the slip can underline characters;
otherwise it is FALSE.

This property is initialized by the Open method.

CapTransaction Property
Added in Release 1.1
Syntax
BOOL CapTransaction;

Remarks
If TRUE, then printer transactions are supported by each station;
otherwise it is FALSE.

This property is initialized by the Open method.

CharacterSet Property R/W

Syntax
LONG CharacterSet;

Remarks
The character set for printing characters.

This property is initialized when the device is first enabled following the Open method.

Values are:

Value
Meaning

Range 101 - 199
Device-specific character sets that do not match a code page or the ASCII or Windows ANSI character sets.

Range 400 - 990
Code page; matches one of the standard values.

PTR_CS_ASCII
The ASCII character set, supporting the ASCII characters between 0x20 and 0x7F. The value of this constant is 998.

PTR_CS_WINDOWS
The Windows ANSI character set. The value of this constant is 999. This is exactly equivalent to the Windows code page 1252.

Range 1000 and higher
Windows code page; matches one of the standard values.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An invalid property value was used.

Other Values
See ResultCode.

See Also
CharacterSetList Property

CharacterSetList Property

Syntax
BSTR CharacterSetList;

Remarks
A string of character set numbers.

This property is initialized by the Open method. The string consists of ASCII numeric set numbers separated by commas.

For example, if the string is “101,850,999”, then the device supports a device-specific character set, code page 850, and the Windows ANSI character set.

See Also
CharacterSet Property

CoverOpen Property

Syntax
BOOL CoverOpen;

Remarks
If TRUE, then the printer’s cover is open;
otherwise it is FALSE.

If the CapCoverSensor property is FALSE, then the printer does not have a cover open sensor, and this property always returns FALSE.

This property is initialized and kept current while the device is enabled.

ErrorLevel Property
Added in Release 1.1
Syntax
LONG ErrorLevel;

Remarks
The severity of the error condition.

Values are:

Value
Meaning

PTR_EL_NONE
No error condition is present.

PTR_EL_RECOVERABLE
A recoverable error has occurred.
(Example: Out of paper.)

PTR_EL_FATAL
A non-recoverable error has occurred.
(Example: Internal printer failure.)

This property is set by the Control just before delivering an ErrorEvent. When the error is cleared, then the property is changed to PTR_EL_NONE.

ErrorStation Property

Syntax
LONG ErrorStation;

Remarks
Holds the station or stations that were printing when an error was detected.

This property will be set to one of the following values:
PTR_S_JOURNAL, PTR_S_RECEIPT, PTR_S_SLIP, PTR_S_JOURNAL_RECEIPT, PTR_S_JOURNAL_SLIP,

PTR_S_RECEIPT_SLIP,
PTR_TWO_RECEIPT_JOURNAL, PTR_TWO_SLIP_JOURNAL,

PTR_TWO_SLIP_RECEIPT.

This property is set just before an ErrorEvent is delivered.

ErrorString Property
Added in Release 1.1
Syntax
BSTR ErrorString;

Remarks
A vendor-supplied description of the current error.

This property is set by the Control just before delivering an ErrorEvent. If no description is available, the property is set to an empty string. When the error is cleared, then the property is changed to an empty string.

FlagWhenIdle Property R/W

Syntax
BOOL FlagWhenIdle;
Remarks
If TRUE, the Control will fire a StatusUpdateEvent if it is in the idle state.
If FALSE, this event will not be fired.

FlagWhenIdle is automatically reset to FALSE when the status event is fired.

The main use of idle status event that is controlled by this property is to give the application control when all outstanding asynchronous outputs have been processed. The event will be fired if the outputs were completed successfully or if they were cleared by the ClearOutput method or by an ErrorEvent handler.

If the State is already set to OPOS_S_IDLE when the FlagWhenIdle property is set to TRUE, then a StatusUpdateEvent is fired immediately. The application can therefore depend upon the event, with no race condition between the starting of its last asynchronous output and the setting of this flag.

This property is initialized to FALSE by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

FontTypefaceList Property
Added in Release 1.1
Syntax
BSTR FontTypefaceList;

Remarks
A string that specifies the fonts and/or typefaces that are supported by the printer.

This property is initialized by the Open method. The string consists of font or typeface names separated by commas. The application selects a font or typeface for a printer station by using the font typeface selection escape sequence (ESC |#fT). The “#” character is replaced by the number of the font or typeface within the list: 1, 2, and so on.

In Japan, this property will frequently include the fonts “Mincho” and “Gothic”. Other fonts or typefaces may be commonly supported in other countries.

An empty string indicates that only the default typeface is supported.

See Also
“Data Characters and Escape Sequences”

JrnEmpty Property

Syntax
BOOL JrnEmpty;

Remarks
If TRUE, the journal is out of paper.
If FALSE, journal paper is present.

If the capability CapJrnEmptySensor is FALSE, then the value of this property is always FALSE.

This property is initialized and kept current while the device is enabled.

See Also
JrnNearEnd Property

JrnLetterQuality Property R/W

Syntax
BOOL JrnLetterQuality;
Remarks
If TRUE, prints in high quality mode.
If FALSE, prints in high speed mode.

This property advises the Service Object that either high quality or high speed printing is desired. For example, printers with bi-directional print capability may be placed in unidirectional mode for high quality, so that column alignment is more precise.

Setting JrnLetterQuality may also update JrnLineWidth, JrnLineHeight, and JrnLineSpacing if MapMode is PTR_MM_DOTS. (See the footnote at MapMode.)

This property is initialized to FALSE by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

JrnLineChars Property R/W

Syntax
LONG JrnLineChars;

Remarks
The number of characters that may be printed on a journal line.

If changed to a line character width that can be supported, then the width is set to the specified value. If the exact width cannot be supported, then subsequent lines will be printed with a character size that most closely supports the specified characters per line. (For example, if set to 36 and the printer can print either 30 or 40 characters per line, then the Service Object should select the character size “40” and print up to 36 characters on each line.)

If the character width cannot be supported, then an error is returned. (For example, if set to 42 and the printer can print either 30 or 40 characters per line, then the Service Object cannot support the request.)

Setting JrnLineChars may also update JrnLineWidth, JrnLineHeight, and JrnLineSpacing, since the character pitch or font may be changed.

The value of JrnLineChars is initialized to the printer’s default line character width when the device is first enabled following the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An invalid line character width was specified.

See Also
JrnLineCharsList Property

JrnLineCharsList Property

Syntax
BSTR JrnLineCharsList;

Remarks
A string containing the line character widths supported by the journal station.

This property is initialized by the Open method. The string consists of ASCII numeric set numbers separated by commas.

For example, if the string is “32,36,40”, then the station supports line widths of 32, 36, and 40 characters.

See Also
JrnLineChars Property

JrnLineHeight Property R/W

Syntax
LONG JrnLineHeight;

Remarks
The journal print line height. Expressed in the unit of measure given by MapMode.

If changed to a height that can be supported with the current character width, then the line height is set to this value. If the exact height cannot be supported, then the height is set to the closest supported value.

When JrnLineChars is changed, JrnLineHeight is updated to the default line height for the selected width.

The value of JrnLineHeight is initialized to the printer’s default line height when the device is first enabled following the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

JrnLineSpacing Property R/W

Syntax
LONG JrnLineSpacing;

Remarks
The spacing of each single-high print line, including both the printed line height plus the whitespace between each pair of lines. Depending upon the printer and the current line spacing, a multi-high print line might exceed this value. Line spacing is expressed in the unit of measure given by MapMode.

If changed to a spacing that can be supported by the printer, then the line spacing is set to this value. If the spacing cannot be supported, then the spacing is set to the closest supported value.

When JrnLineChars or JrnLineHeight is changed, JrnLineSpacing is updated to the default line spacing for the selected width or height.

The value of JrnLineSpacing is initialized to the printer’s default line spacing when the device is first enabled following the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

JrnLineWidth Property

Syntax
LONG JrnLineWidth;

Remarks
The width of a line of JrnLineChars characters. Expressed in the unit of measure given by MapMode.

Setting JrnLineChars may also update JrnLineWidth.

The value of JrnLineWidth is initialized to the printer’s default line width when the device is first enabled following the Open method.

JrnNearEnd Property

Syntax
BOOL JrnNearEnd;

Remarks
If TRUE, the journal paper is low.
If FALSE, journal paper is not low.

If the capability CapJrnNearEndSensor is FALSE, then the value of this property is always FALSE.

This property is initialized and kept current while the device is enabled.

See Also
JrnEmpty Property

MapMode Property R/W

Syntax
LONG MapMode;

Remarks
Contains the mapping mode of the printer. The mapping mode defines the unit of measure used for other properties, such as line heights and line spacings.

The following map modes are supported:

Value
Meaning

PTR_MM_DOTS
The printer’s dot width. This width may be different for each printer station.

PTR_MM_TWIPS
1/1440 of an inch.

PTR_MM_ENGLISH
0.001 inch.

PTR_MM_METRIC
0.01 millimeter.

Setting MapMode may also change JrnLineHeight, JrnLineSpacing, JrnLineWidth, RecLineHeight, RecLineSpacing, RecLineWidth, SlpLineHeight, SlpLineSpacing, and SlpLineWidth.

The value of MapMode is initialized to PTR_MM_DOTS when the device is first enabled following the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An invalid mapping mode was specified.

RecBarCodeRotationList Property
Added in Release 1.1
Syntax
BSTR RecBarCodeRotationList;

Remarks
A string that specifies the directions in which a receipt barcode may be rotated.

This property is initialized by the Open method. The string consists of rotation strings separated by commas. An empty string indicates that bar code printing is not supported. The legal rotation strings are:

Value
Meaning

0
Bar code may be printed in the normal orientation.

R90
Bar code may be rotated 90(to the right.

L90
Bar code may be rotated 90(to the left.

180
Bar code may be rotated 180(‑ upside down.

For example, if the string is “0,180”, then the printer can print normal bar codes and upside down bar codes.

See Also
RotateSpecial Property; PrintBarCode Method

RecEmpty Property

Syntax
BOOL RecEmpty;

Remarks
If TRUE, the receipt is out of paper.
If FALSE, receipt paper is present.

If the capability CapRecEmptySensor is FALSE, then the value of this property is always FALSE.

This property is initialized and kept current while the device is enabled.

See Also
RecNearEnd Property

RecLetterQuality Property R/W

Syntax
BOOL RecLetterQuality;

Remarks
If TRUE, prints in high quality mode.
If FALSE, prints in high speed mode.

This property advises the Service Object that either high quality or high speed printing is desired.

For example:

· Printers with bi-directional print capability may be placed in unidirectional mode for high quality, so that column alignment is more precise.

· Bitmaps may be printed in a high-density graphics mode for high-quality, and in a low-density mode for high speed.

Setting RecLetterQuality may also update RecLineWidth, RecLineHeight, and RecLineSpacing if MapMode is PTR_MM_DOTS. (See the footnote at MapMode.)

This property is initialized to FALSE by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

RecLineChars Property R/W

Syntax
LONG RecLineChars;

Remarks
The number of characters that may be printed on a receipt line.

If changed to a line character width that can be supported, then the width is set to the specified value. If the exact width cannot be supported, then subsequent lines will be printed with a character size that most closely supports the specified characters per line. (For example, if set to 36 and the printer can print either 30 or 40 characters per line, then the Service Object should select the character size “40” and print up to 36 characters on each line.)

If the character width cannot be supported, then an error is returned. (For example, if set to 42 and the printer can print either 30 or 40 characters per line, then the Service Object cannot support the request.)

Setting RecLineChars may also update RecLineWidth, RecLineHeight, and RecLineSpacing, since the character pitch or font may be changed.

The value of RecLineChars is initialized to the printer’s default line character width when the device is first enabled following the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An invalid line character width was specified.

See Also
RecLineCharsList Property

RecLineCharsList Property

Syntax
BSTR RecLineCharsList;

Remarks
A string containing the line character widths supported by the receipt station.

This property is initialized by the Open method. The string consists of ASCII numeric set numbers, separated by commas.

For example, if the string is “32,36,40”, then the station supports line widths of 32, 36, and 40 characters.

See Also
RecLineChars Property

RecLineHeight Property R/W

Syntax
LONG RecLineHeight;
Remarks
The receipt print line height. Expressed in the unit of measure given by MapMode.

If changed to a height that can be supported with the current character width, then the line height is set to this value. If the exact height cannot be supported, then the height is set to the closest supported value.

When RecLineChars is changed, RecLineHeight is updated to the default line height for the selected width.

The value of RecLineHeight is initialized to the printer’s default line height when the device is first enabled following the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

See Also
RecLineChars Property

RecLineSpacing Property R/W

Syntax
LONG RecLineSpacing;
Remarks
The spacing of each single-high print line, including both the printed line height plus the whitespace between each pair of lines. Depending upon the printer and the current line spacing, a multi-high print line might exceed this value. Line spacing is expressed in the unit of measure given by MapMode.

If changed to a spacing that can be supported by the printer, then the line spacing is set to this value. If the spacing cannot be supported, then the spacing is set to the closest supported value.

When RecLineChars or RecLineHeight are changed, RecLineSpacing is updated to the default line spacing for the selected width or height.

The value of RecLineSpacing is initialized to the printer’s default line spacing when the device is first enabled following the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

RecLinesToPaperCut Property

Syntax
LONG RecLinesToPaperCut;

Remarks
Holds the number of lines that must be advanced before the receipt paper is cut.

If the capability CapRecPapercut is TRUE, then this is the line count before reaching the paper cut mechanism. Otherwise, this is the line count before the manual tear-off bar.

Changing the properties RecLineChars, RecLineHeight, and RecLineSpacing may cause this property to change.

This property is initialized when the device is first enabled following the Open method.

RecLineWidth Property

Syntax
LONG RecLineChars;

Remarks
The width of a line of RecLineChars characters. Expressed in the unit of measure given by MapMode.

Setting RecLineChars may also update RecLineWidth.

The value of RecLineWidth is initialized to the printer’s default line width when the device is first enabled following the Open method.

RecNearEnd Property

Syntax
BOOL RecNearEnd;

Remarks
If TRUE, the receipt paper is low.
If FALSE, receipt paper is not low.

If the capability CapRecNearEndSensor is FALSE, then the value of this property is always FALSE.

This property is initialized and kept current while the device is enabled.

See Also
RecEmpty Property

RecSidewaysMaxChars Property

Syntax
LONG RecSidewaysMaxChars;

Remarks
Holds the maximum number of characters that may be printed on each line in sideways mode.

If the capabilities CapRecLeft90 and CapRecRight90 are both FALSE, then RecSidewaysMaxChars is zero.

Changing the properties RecLineHeight, RecLineSpacing, and RecLineChars may cause this property to change.

This property is initialized when the device is first enabled following the Open method.

See Also
RecSidewaysMaxLines Property

RecSidewaysMaxLines Property

Syntax
LONG RecSidewaysMaxLines;

Remarks
Holds the maximum number of lines that may be printed in sideways mode.

If the capabilities CapRecLeft90 and CapRecRight90 are both FALSE, then RecSidewaysMaxLines is zero.

Changing the properties RecLineHeight, RecLineSpacing, and RecLineChars may cause this property to change.

This property is initialized when the device is first enabled following the Open method.

See Also
RecSidewaysMaxChars Property

RotateSpecial Property R/W
Added in Release 1.1
Syntax
LONG RotateSpecial;

Remarks
The rotation orientation for bar codes.

This property is initialized to PTR_RP_NORMAL by the Open method.

Values are:

Value
Meaning

PTR_RP_NORMAL
Print subsequent bar codes in normal orientation.

PTR_RP_RIGHT90
Rotate printing 90º to the right (clockwise).

PTR_RP_LEFT90
Rotate printing 90º to the left (counter-clockwise).

PTR_RP_ROTATE180
Rotate printing 180º, that is, print upside-down.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An invalid property value was used.

See Also
PrintBarCode Method

SlpBarCodeRotationList Property
Added in Release 1.1
Syntax
BSTR SlpBarCodeRotationList;

Remarks
A string that specifies the directions in which a slip barcode may be rotated.

This property is initialized by the Open method. The string consists of rotation strings separated by commas. An empty string indicates that bar code printing is not supported. The legal rotation strings are:

Value
Meaning

0
Bar code may be printed in the normal orientation.

R90
Bar code may be rotated 90(to the right.

L90
Bar code may be rotated 90(to the left.

180
Bar code may be rotated 180(‑ upside down.

For example, if the string is “0,180”, then the printer can print normal bar codes and upside down bar codes.

See Also
RotateSpecial Property; PrintBarCode Method

SlpEmpty Property

Syntax
BOOL SlpEmpty;

Remarks
If TRUE, a slip form is not present.
If FALSE, a slip form is present.

If the capability CapSlpEmptySensor is FALSE, then the value of this property is always FALSE.

This property is initialized and kept current while the device is enabled.

Note

The “slip empty” sensor should be used primarily to determine whether a form has been inserted before printing, and can be monitored to determine whether a form is still in place. This sensor is usually placed one or more print lines above the slip print head.

However, the “slip near end” sensor (when present) should be used to determine when nearing the end of the slip. This sensor is usually placed one or more print lines below the slip print head.

See Also
SlpNearEnd Property

SlpLetterQuality Property R/W

Syntax
BOOL SlpLetterQuality;

Remarks
If TRUE, prints in high quality mode.
If FALSE, prints in high speed mode.

This property advises the Service Object that either high quality or high speed printing is desired.

For example:

· Printers with bi-directional print capability may be placed in unidirectional mode for high quality, so that column alignment is more precise.

· Bitmaps may be printed in a high-density graphics mode for high-quality, and in a low-density mode for high speed.

Setting SlpLetterQuality may also update SlpLineWidth, SlpLineHeight, and SlpLineSpacing if MapMode is PTR_MM_DOTS. (See the footnote at MapMode.)

This property is initialized to FALSE by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

SlpLineChars Property R/W

Syntax
LONG SlpLineChars;

Remarks
The number of characters that may be printed on a slip line.

If changed to a line character width that can be supported, then the width is set to the specified value. If the exact width cannot be supported, then subsequent lines will be printed with a character size that most closely supports the specified characters per line. (The Service Object should print the requested characters in the column positions closest to the side of the slip table at which the slip is aligned. For example, if the operator inserts the slip with the right edge against the table side, and if SlpLineChars is set to 36 and the printer prints 60 characters per line, then the Service Object should add 24 spaces at the left margin, and print the characters in columns 25 through 60.)

If the character width cannot be supported, then an error is returned. (For example, if set to 65 and the printer can print 60 characters per line, then the Service Object cannot support the request.)

Setting SlpLineChars may also update SlpLineWidth, SlpLineHeight, and SlpLineSpacing, since the character pitch or font may be changed.

The value of SlpLineChars is initialized to the printer’s default line character width when the device is first enabled following the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An invalid line character width was specified.

See Also
SlpLineCharsList Property

SlpLineCharsList Property

Syntax
BSTR SlpLineCharsList;

Remarks
A string containing the line character widths supported by the slip station.

This property is initialized by the Open method. The string consists of ASCII numeric set numbers, separated by commas.

For example, if the string is “32,36,40”, then the station supports line widths of 32, 36, and 40 characters.

See Also
SlpLineChars Property

SlpLineHeight Property R/W

Syntax
LONG SlpLineHeight;

Remarks
The slip print-line height. Expressed in the unit of measure given by MapMode.

If changed to a height that can be supported with the current character width, then the line height is set to this value. If the exact height cannot be supported, then the height is set to the closest supported value.

When SlpLineChars is changed, SlpLineHeight is updated to the default line height for the selected width.

The value of SlpLineHeight is initialized to the printer’s default line height when the device is first enabled following the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

See Also
SlpLineChars Property

SlpLinesNearEndToEnd Property

Syntax
LONG SlpLinesNearEndToEnd;
Remarks
Holds the number of lines that may be printed after the “slip near end” sensor is TRUE but before the printer reaches the end of the slip.

This property may be used to optimize the use of the slip, so that the maximum number of lines may be printed.

Changing the SlpLineHeight, SlpLineSpacing, or SlpLineChars properties may cause this property to change.

This property is initialized when the device is first enabled following the Open method.

See Also
SlpEmpty Property; SlpNearEnd Property

SlpLineSpacing Property R/W

Syntax
LONG SlpLineSpacing;

Remarks
The spacing of each single-high print line, including both the printed line height plus the whitespace between each pair of lines. Depending upon the printer and the current line spacing, a multi-high print line might exceed this value. Line spacing is expressed in the unit of measure given by MapMode.

If changed to a spacing that can be supported by the printer, then the line spacing is set to this value. If the spacing cannot be supported, then the spacing is set to the closest supported value.

The value of SlpLineSpacing is initialized to the printer’s default line spacing when the device is first enabled following the Open method. Also, when SlpLineChars or SlpLineHeight are changed, SlpLineSpacing is updated to the default line spacing for the selected width or height.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

SlpLineWidth Property

Syntax
LONG SlpLineWidth;

Remarks
The width of a line of SlpLineChars characters. Expressed in the unit of measure given by MapMode.

Setting SlpLineChars may also update SlpLineWidth.

The value of SlpLineWidth is initialized to the printer’s default line width when the device is first enabled following the Open method.

SlpMaxLines Property

Syntax
LONG SlpMaxLines;

Remarks
Holds the maximum number of lines that can be printed on a form.

When the capability CapSlpFullslip is TRUE, then this value will be zero, indicating an unlimited maximum slip length.

When the capability is FALSE, then this value will be non-zero.

Changing the SlpLineHeight, SlpLineSpacing, or SlpLineChars properties may cause this property to change.

The value of SlpMaxLines is initialized when the device is first enabled following the Open method.

SlpNearEnd Property

Syntax
BOOL SlpNearEnd;

Remarks
If TRUE, the slip form is near its end.
If FALSE, the slip form is not near its end.

The “near end” sensor is also sometimes called the “trailing edge” sensor, referring to the bottom edge of the slip.

If the capability CapSlpNearEndSensor is FALSE, then the value of this property is always FALSE.

This property is initialized and kept current while the device is enabled.

Note

The “slip empty” sensor should be used primarily to determine whether a form has been inserted before printing, and can be monitored to determine whether a form is still in place. This sensor is usually placed one or more print lines above the slip print head.

However, the “slip near end” sensor (when present) should be used to determine when nearing the end of the slip. This sensor is usually placed one or more print lines below the slip print head.

See Also
SlpEmpty Property; SlpLinesNearEndToEnd Property

SlpSidewaysMaxChars Property

Syntax
LONG SlpSidewaysMaxChars;

Remarks
Holds the maximum number of characters that may be printed on each line in sideways mode.

If the capabilities CapSlpLeft90 and CapSlpRight90 are both FALSE, then SlpSidewaysMaxChars is zero.

Changing the properties SlpLineHeight, SlpLineSpacing, and SlpLineChars may cause this property to change.

This property is initialized when the device is first enabled following the Open method.

See Also
SlpSidewaysMaxLines Property

SlpSidewaysMaxLines Property

Syntax
LONG SlpSidewaysMaxLines;

Remarks
Holds the maximum number of lines that may be printed in sideways mode.

If the capabilities CapSlpLeft90 and CapSlpRight90 are both FALSE, then SlpSidewaysMaxLines is zero.

Changing the properties SlpLineHeight, SlpLineSpacing, and SlpLineChars may cause this property to change.

This property is initialized when the device is first enabled following the Open method.

See Also
SlpSidewaysMaxChars Property

Methods

BeginInsertion Method

Syntax
LONG BeginInsertion (LONG Timeout);
The Timeout parameter gives the number of milliseconds before failing the method.
If zero, the method tries to begin insertion mode, then returns the appropriate status immediately.
If OPOS_FOREVER (-1), the method tries to begin insertion mode, then waits as long as needed until either the form is inserted or an error occurs.

Remarks
Called to initiate slip processing.

When called, the slip station is made ready to receive a form by opening the form’s handling “jaws” or activating a form insertion mode. This method is paired with the EndInsertion method for controlling form insertion.

If the printer device cannot be placed into insertion mode, an error is returned to the application. Otherwise, the Control continues to monitor form insertion until either:

· The form is successfully inserted. In this case, the Control returns an OPOS_SUCCESS status.

· The form is not inserted before Timeout milliseconds have elapsed, or an error is reported by the printer device. In this case, the Control either returns OPOS_E_TIMEOUT or another error. The printer device remains in form insertion mode. This allows an application to perform some user interaction and reissue the BeginInsertion method without altering the form handling mechanism.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was initiated successfully.

OPOS_E_BUSY
Cannot perform while output is in progress.

OPOS_E_ILLEGAL
The slip station does not exist (see the CapSlpPresent property) or an invalid Timeout parameter was specified..

OPOS_E_TIMEOUT
The specified time has elapsed without the form being properly inserted.

Other Values
See ResultCode.

See Also
EndInsertion Method; BeginRemoval Method; EndRemoval Method

BeginRemoval Method

Syntax
LONG BeginRemoval (LONG Timeout);
The Timeout property gives the number of milliseconds before failing the method.
If zero, the method tries to begin removal mode, then returns the appropriate status immediately.
If OPOS_FOREVER (-1), the method tries to begin removal mode, then waits as long as needed until either the form is removed or an error occurs.

Remarks
Called to initiate form removal processing.

When called, the printer is made ready to remove a form by opening the form handling “jaws” or activating a form ejection mode. This method is paired with the EndRemoval method for controlling form removal.

If the printer device cannot be placed into removal or ejection mode, an error is returned to the application. Otherwise, the Control continues to monitor form removal until either:

· The form is successfully removed. In this case, the Control returns an OPOS_SUCCESS status.

· The form is not removed before Timeout milliseconds have elapsed, or an error is reported by the printer device. In this case, the Control either returns OPOS_E_TIMEOUT or another error. The printer device remains in form removal mode. This allows an application to perform some user interaction and reissue the BeginRemoval method without altering the form handling mechanism.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was initiated successfully.

OPOS_E_BUSY
Cannot perform while output is in progress.

OPOS_E_ILLEGAL
The printer does not have a slip station (see the CapSlpPresent property) or an invalid Timeout parameter was specified..

OPOS_E_TIMEOUT
The specified time has elapsed without the form being properly removed.

Other Values
See ResultCode.

See Also
BeginInsertion Method; EndInsertion Method; EndRemoval Method

CutPaper Method

Syntax
LONG CutPaper (LONG Percentage);
The Percentage parameter indicates the percentage of paper to cut. The constant identifier PTR_CP_FULLCUT or the value 100 causes a full paper cut. Other values request a partial cut percentage.

Remarks
Call to cut the receipt paper.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Many printers with paper cut capability can perform both full and partial cuts. Some offer gradations of partial cuts, such as a perforated cut and an almost-full cut. Although the exact type of cut will vary by printer capabilities, the following general guide may be used:

Value
Meaning

100
Full cut.

90
Leave only a small portion of paper for very easy final separation.

70
Perforate the paper for final separation that is somewhat more difficult and unlikely to occur by accidental handling.

50
Partial perforation of the paper.

The Service Object will select an appropriate type of cut based on the capabilities of its device and these general guidelines.

An escape sequence embedded in a PrintNormal or PrintImmediate method call may also be used to cause a paper cut.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress. (Can only be returned if AsyncMode is FALSE.)

OPOS_E_ILLEGAL
An invalid percentage was specified, the receipt station does not exist (see the CapRecPresent property), or the receipt printer does not have paper cutting ability (see the CapRecPapercut property).

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_EPTR_COVER_OPEN:
The printer cover is open.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EPTR_REC_EMPTY:
The receipt station is out of paper.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
“Data Characters and Escape Sequences”

EndInsertion Method

Syntax
LONG EndInsertion ();
Remarks
Called to end form insertion processing.

When called, the printer is taken out of form insertion mode. If the slip device has forms “jaws,” they are closed by this method. If a form is detected in the device, a successful status of OPOS_SUCCESS is returned to the application. If no form is present, an extended error status OPOS_EPTR_SLP_EMPTY is returned.

This method is paired with the BeginInsertion method for controlling form insertion. The application may choose to call this method immediately after a successful BeginInsertion if it wants to use the printer sensors to determine when a form is positioned within the slip printer. Alternatively, the application may prompt the user and wait for a key press before calling this method.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was initiated successfully.

OPOS_E_ILLEGAL
The printer is not in slip insertion mode.

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_EPTR_COVER_OPEN:
The device was taken out of insertion mode while the printer cover was open.

ResultCodeExtended = OPOS_EPTR_SLP_EMPTY:
The device was taken out of insertion mode without a form being inserted.

Other Values
See ResultCode.

See Also
BeginInsertion Method; BeginRemoval Method; EndRemoval Method

EndRemoval Method

Syntax
LONG EndRemoval ();
Remarks
Called to end form removal processing.

When called, the printer is taken out of form removal or ejection mode. If no form is detected in the device, a successful status of OPOS_SUCCESS is returned to the application. If a form is present, an extended error status OPOS_EPTR_SLP_FORM is returned.

This method is paired with the BeginRemoval method for controlling form removal. The application may choose to call this method immediately after a successful BeginRemoval if it wants to use the printer sensors to determine when the form has been removed. Alternatively, the application may prompt the user and wait for a key press before calling this method.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was initiated successfully.

OPOS_E_ILLEGAL
The printer is not in slip removal mode.

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_EPTR_SLP_FORM:
The device was taken out of removal mode while a form was still present.

Other Values
See ResultCode.

See Also
BeginInsertion Method; EndInsertion Method; BeginRemoval Method

PrintBarCode Method

Syntax
LONG PrintBarCode (LONG Station, BSTR Data,
LONG Symbology, LONG Height, LONG Width,
LONG Alignment, LONG TextPosition);
Parameter
Description

Station
The printer station to be used. May be either PTR_S_RECEIPT or PTR_S_SLIP.

Data
Character string to be bar coded.
The format of this data depends upon the value of the BinaryConversion property. See page 37.

Symbology
Bar code symbol type to use. See values below.

Height
Bar code height. Expressed in the unit of measure given by MapMode.

Width
Bar code width. Expressed in the unit of measure given by MapMode.

Alignment
Placement of the bar code. See values below.

TextPosition
Placement of the readable character string. See values below.

The Alignment parameter values are:

Value
Meaning

PTR_BC_LEFT
Align with the left-most print column.

PTR_BC_CENTER
Align in the center of the station.

PTR_BC_RIGHT
Align with the right-most print column.

Other Values
Distance from the left-most print column to the start of the bar code. Expressed in the unit of measure given by MapMode.

The TextPosition parameter values are:

Value
Meaning

PTR_BC_TEXT_NONE
No text is printed. Only print the bar code.

PTR_BC_TEXT_ABOVE
Print the text above the bar code.

PTR_BC_TEXT_BELOW
Print the text below the bar code.

The Symbology parameter values for this release are:

Value
Meaning

One Dimensional Symbologies

PTR_BCS_UPCA
UPC-A

PTR_BCS_UPCA_S
UPC-A with supplemental barcode

PTR_BCS_UPCE
UPC-E

PTR_BCS_UPCE_S
UPC-E with supplemental barcode

PTR_BCS_UPCD1
UPC-D1

PTR_BCS_UPCD2
UPC-D2

PTR_BCS_UPCD3
UPC-D3

PTR_BCS_UPCD4
UPC-D4

PTR_BCS_UPCD5
UPC-D5

PTR_BCS_EAN8
EAN 8 (= JAN 8)

PTR_BCS_JAN8
JAN 8 (= EAN 8)

PTR_BCS_EAN8_S
EAN 8 with supplemental barcode

PTR_BCS_EAN13
EAN 13 (= JAN 13)

PTR_BCS_JAN13
JAN 13 (= EAN 13)

PTR_BCS_EAN13_S
EAN 13 with supplemental barcode

PTR_BCS_EAN128
EAN-128

PTR_BCS_TF
Standard (or discrete) 2 of 5

PTR_BCS_ITF
Interleaved 2 of 5

PTR_BCS_Codabar
Codabar

PTR_BCS_Code39
Code 39

PTR_BCS_Code93
Code 93

PTR_BCS_Code128
Code 128

PTR_BCS_OCRA
OCR “A”

PTR_BCS_OCRB
OCR “B”

Two Dimensional Symbologies

PTR_BCS_PDF417
PDF 417

PTR_BCS_MAXICODE
MAXICODE

Special Cases

PTR_BCS_OTHER
If a Service Object defines additional symbologies, they will be greater or equal to this value.

Remarks
Call to print a bar code on the specified printer station.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

If the property RotateSpecial indicates that the bar code is to be rotated, then perform the rotation. The Height, Width, and TextPosition parameters are applied to the bar code before the rotation. For example, if PTR_BC_TEXT_BELOW is specified and the bar code is rotated left, then the text will appear on the paper to the right of the bar code.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· Station does not exist

· Station does not support bar code printing

· Height or Width are zero or too big

· Symbology is not supported

· Alignment is invalid or too big

· TextPosition is invalid

· The RotateSpecial rotation is not supported

OPOS_E_BUSY
Cannot perform while output is in progress.
(Can only be returned if AsyncMode is FALSE.)

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_EPTR_COVER_OPEN:
The printer cover is open.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

PrintBitmap Method

Syntax
LONG PrintBitmap (LONG Station, BSTR FileName,
LONG Width, LONG Alignment);
Parameter
Description

Station
The printer station to be used. May be either PTR_S_RECEIPT or PTR_S_SLIP.

FileName
Name of Windows bitmap file. The file must be in uncompressed format.

Width
Printed width of the bitmap to be performed. See values below.

Alignment
Placement of the bitmap. See values below.

The Width parameter values are:

Value
Meaning

PTR_BM_ASIS
Print the bitmap with one bitmap pixel per printer dot.

Other Values
Bitmap width expressed in the unit of measure given by MapMode.

The Alignment parameter values are:

Value
Meaning

PTR_BM_LEFT
Align with the left-most print column.

PTR_BM_CENTER
Align in the center of the station.

PTR_BM_RIGHT
Align with the right-most print column.

Other Values
Distance from the left-most print column to the start of the bitmap. Expressed in the unit of measure given by MapMode.

Remarks
Call to print a bitmap on the specified printer station.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

The Width parameter controls transformation of the bitmap. If Width is PTR_BM_ASIS, then no transformation is performed. The bitmap is printed with one bitmap pixel per printer dot. Advantages of this option are that it:

· Provides the highest performance bitmap printing.

· Works well for bitmaps tuned for a specific printer’s aspect ratio between horizontal dots and vertical dots.

If Width is non-zero, then the bitmap will be transformed by stretching or compressing the bitmap such that its width is the specified width and the aspect ratio is unchanged. Advantages of this option are that it:

· Sizes a bitmap to fit a variety of printers.

· Maintains the bitmap’s aspect ratio.

Disadvantages are:

· Lower performance than untransformed data.

· Some lines and images that are “smooth” in the original bitmap may show some “ratcheting.”

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_BUSY
Cannot perform while output is in progress. (Can only be returned if AsyncMode is FALSE.)

OPOS_E_ILLEGAL
One of the following errors occurred:

· Station does not exist

· Station does not support bitmap printing

· Width is too big

· Alignment is invalid or too big

OPOS_E_NOEXIST
FileName was not found.

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_EPTR_TOOBIG:
The bitmap is either too wide to print without transformation, or it is too big to transform.

ResultCodeExtended = OPOS_EPTR_COVER_OPEN:
The printer cover is open.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EPTR_BADFORMAT:
The specified file is either not a bitmap file, or it is in an unsupported format.

ResultCodeExtended = OPOS_EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

PrintImmediate Method

Syntax
LONG PrintImmediate (LONG Station, BSTR Data);
Station The printer station to be used. May be PTR_S_JOURNAL, PTR_S_RECEIPT, or PTR_S_SLIP.

Data The characters to be printed. May consist of printable characters, escape sequences, carriage returns (13 decimal), and line feeds (10 decimal).
The format of this data depends upon the value of the BinaryConversion property. See page 37.

Remarks
Call to print Data on the printer Station immediately.

This method tries to print its data immediately – that is, as the very next printer operation. It may be called when asynchronous output is outstanding. PrintImmediate is primarily intended for use in exception conditions when asynchronous output is outstanding, such as within an error event handler.

Special character values within Data are:

Value
Meaning

Line Feed (10)
Print any data in the line buffer, and feed to the next print line. (A Carriage Return is not required in order to cause the line to be printed.)

Carriage Return (13)
If a Carriage Return immediately precedes a Line Feed, or if the line buffer is empty, then it is ignored.

Otherwise, the line buffer is printed and the printer does not feed to the next print line.
On some printers, print without feed may be directly supported.
On others, a print may always feed to the next line, in which case the Service Object will print the line buffer and perform a reverse line feed if supported.
If the printer does not support either of these features, then Carriage Return acts like a Line Feed.

The ValidateData method may be used to determine whether a Carriage Return without Line Feed is possible, and whether a reverse line feed is required to support it.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
The specified Station does not exist. (See the CapJrnPresent, CapRecPresent, and CapSlpPresent properties.)

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_EPTR_COVER_OPEN:
The printer cover is open.

ResultCodeExtended = OPOS_EPTR_JRN_EMPTY:
The journal station was specified but is out of paper.

ResultCodeExtended = OPOS_EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.

ResultCodeExtended = OPOS_EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.

Other Values
See ResultCode.

See Also
PrintNormal Method; PrintTwoNormal Method

PrintNormal Method

Syntax
LONG PrintNormal (LONG Station, BSTR Data);
Station The printer station to be used. May be PTR_S_JOURNAL, PTR_S_RECEIPT, or PTR_S_SLIP.

Data The characters to be printed. May consist of printable characters, escape sequences, carriage returns (13 decimal), and line feeds (10 decimal).
The format of this data depends upon the value of the BinaryConversion property. See page 37.

Remarks
Call to print Data on the printer Station.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Special character values within Data are:

Value
Meaning

Line Feed (10)
Print any data in the line buffer, and feed to the next print line. (A Carriage Return is not required in order to cause the line to be printed.)

Carriage Return (13)
If a Carriage Return immediately precedes a Line Feed, or if the line buffer is empty, then it is ignored.

Otherwise, the line buffer is printed and the printer does not feed to the next print line.
On some printers, print without feed may be directly supported.
On others, a print may always feed to the next line, in which case the Service Object will print the line buffer and perform a reverse line feed if supported.
If the printer does not support either of these features, then Carriage Return acts like a Line Feed.

The ValidateData method may be used to determine whether a Carriage Return without Line Feed is possible, and whether a reverse line feed is required to support it.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
The specified Station does not exist. (See the CapJrnPresent, CapRecPresent, and CapSlpPresent properties.)

OPOS_E_BUSY
Cannot perform while output is in progress. (Can only be returned if AsyncMode is FALSE.)

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_EPTR_COVER_OPEN:
The printer cover is open.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
PrintImmediate Method; PrintTwoNormal Method

PrintTwoNormal Method

Syntax
LONG PrintTwoNormal (LONG Stations, BSTR Data1, BSTR Data2);
Parameter
Description

Stations
The printer stations to be used.

OPOS Release 1.3 and later:
Select one of the following:
Stations Parameter
First Station
Second Station

PTR_TWO_RECEIPT_JOURNAL
Receipt
Journal

PTR_TWO_SLIP_JOURNAL
Slip
Journal

PTR_TWO_SLIP_RECEIPT
Slip
Receipt

OPOS Release 1.0 - 1.2:
Select one of the following:

PTR_S_JOURNAL_RECEIPT,
PTR_S_JOURNAL_SLIP, or
PTR_S_RECEIPT_SLIP.
Data1
The characters to be printed on the first station. May consist of printable characters and escape sequences. The characters must all fit on one printed line, so that the printer may attempt to print on both stations simultaneously.
The format of this data depends upon the value of the BinaryConversion property. See page 37.

Data2
The characters to be printed on the second station. (Restrictions are the same as Data1.)
If this string is the empty string (“”), then print the same data as Data1. On some printers, using this format may give additional increased print performance.
The format of this data depends upon the value of the BinaryConversion property. See page 37.

Remarks
Call to print two strings on two print stations simultaneously. When supported, this may give increased print performance.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Release 1.0 – 1.2

Documentation releases prior to 1.3 were not sufficiently clear as to the meaning of “first” and “second” station, so implementations varied between the following:

· Assign stations based on order within the constants. For example, PTR_S_JOURNAL_RECEIPT prints Data1 on the journal and Data2 on the receipt.

· Assign stations based upon physical device characteristics or internal print order.

Due to this inconsistency, the application should use the new constants if the Control Object and Service Object versions indicate Release 1.3 or later.

Release 1.3 and later

Service Objects for Release 1.3 or later should support both sets of constants. The vendor should define and document the behavior of the obsolete constants.

The sequence of stations in the constants does not imply the physical printing sequence on the stations. The physical sequence depends on the printer, and may be different based on bi-directional printing, multiple print heads, and so on.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
The specified Stations do not support concurrent printing. (See the CapConcurrentJrnRec, CapConcurrentJrnSlp, and CapConcurrentRecSlp properties.)

OPOS_E_BUSY
Cannot perform while output is in progress. (Can only be returned if AsyncMode is FALSE.)

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_EPTR_COVER_OPEN:
The printer cover is open.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
PrintNormal Method

RotatePrint Method

Syntax
LONG RotatePrint (LONG Station, LONG Rotation);
Parameter
Description

Station
The printer station to be used. May be PTR_S_RECEIPT or PTR_S_SLIP.

Rotation
Direction of rotation. See values below.

Value
Meaning

PTR_RP_RIGHT90
Rotate printing 90º to the right (clockwise).

PTR_RP_LEFT90
Rotate printing 90º to the left (counter-clockwise).

PTR_RP_ROTATE180
Rotate printing 180º, that is, print upside-down.

PTR_RP_NORMAL
End rotated printing.

Remarks
Enters or exits rotated print mode.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

If Rotation is PTR_RP_ROTATE180, then upside-down print mode is entered. Subsequent calls to PrintNormal or PrintImmediate will print the data upside-down until RotatePrint is called with the Rotation parameter set to PTR_RP_NORMAL.
Each print line is rotated by 180(. Lines are printed in the order that they are sent to the Control, with the start of each line justified at the right margin of the printer station. Only print methods PrintNormal and PrintImmediate may be used while in upside-down print mode.

If Rotation is PTR_RP_RIGHT90 or PTR_RP_LEFT90, then sideways print mode is entered. Subsequent calls to PrintNormal will buffer the print data (either at the printer or the Service Object, depending on the printer capabilities) until RotatePrint is called with the Rotation parameter set to PTR_RP_NORMAL. (In this case, PrintNormal only buffers the data – it does not initiate printing. Also, the value of the AsyncMode property does not affect its operation: No OutputID will be assigned to the request, nor will an OutputCompleteEvent be fired.)
Each print line is rotated by 90(. If the lines are not all the same length, then they are justified at the start of each line. Only PrintNormal may be used while in sideways print mode.

If Rotation is PTR_RP_NORMAL, then rotated print mode is exited. If sideways-rotated print mode was in effect and some data was buffered by calls to the PrintNormal method, then the buffered data is printed. The entire rotated block of lines are treated as one message.

Changing the rotation mode may also change the station’s line height, line spacing, line width, and other metrics.

Calling the ClearOutput method cancels rotated print mode. Any buffered sideways rotated print lines are also cleared.

Return
One of the values in the following table is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
The specified Station does not exist (see the CapJrnPresent, CapRecPresent, and CapSlpPresent properties), or the Station does not support the specified rotation (see the station’s rotation capability properties).

OPOS_E_BUSY
Cannot perform while output is in progress. (Can only be returned if AsyncMode is FALSE.)

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_EPTR_COVER_OPEN:
The printer cover is open.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only be returned if AsyncMode is FALSE.)

ResultCodeExtended = OPOS_EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
“Data Characters and Escape Sequences”

SetBitmap Method

Syntax
LONG SetBitmap (LONG BitmapNumber, LONG Station, BSTR FileName,
LONG Width, LONG Alignment);
Parameter
Description

BitmapNumber
The number to be assigned to this bitmap. Two bitmaps, numbered 1 and 2, may be set.

Station
The printer station to be used. May be either PTR_S_RECEIPT or PTR_S_SLIP.

FileName
Name of Windows bitmap file. The file must be in uncompressed format.
If set to an empty string (“”), then the bitmap is unset.

Width
Printed width of the bitmap to be performed. See PrintBitmap for values.

Alignment
Placement of the bitmap. See PrintBitmap for values.

Remarks
Call to save information about a bitmap for later printing.

The bitmap may then be printed by calling the PrintNormal or PrintImmediate method with the print bitmap escape sequence in the print data. The print bitmap escape sequence will typically be included in a string for printing top and bottom transaction headers.

A Service Object may choose to cache the bitmap for later use to provide better performance. Regardless, the bitmap file and parameters are validated for correctness by this method.

The application must ensure that the printer station metrics, such as character width, line height, and line spacing are set for the Station before calling this method. The Service Object may perform transformations on the bitmap in preparation for later printing based upon the current values.

Release 1.0 – 1.1

Only 2 bitmaps may be set, and each bitmap number may only be used for one station at a time.

Release 1.2 and later

The application may set bitmaps numbered 1 and 2 for each of the two valid Stations. If desired, the same bitmap FileName may be set to the same BitmapNumber for each station, so that the same print bitmap escape sequence may be used for either station.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· BitmapNumber is invalid

· Station does not exist

· Station does not support bitmap printing

· Width is too big

· Alignment is invalid or too big

OPOS_E_NOEXIST
FileName was not found.

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_EPTR_TOOBIG:
The bitmap is either too wide to print without transformation, or it is too big to transform.

ResultCodeExtended = OPOS_EPTR_BADFORMAT:
The specified file is either not a bitmap file, or it is in an unsupported format.

Other Values
See ResultCode.

See Also
“Data Characters and Escape Sequences”; PrintBitmap Method

SetLogo Method

Syntax
LONG SetLogo (LONG Location, BSTR Data);
Parameter
Description

Location
The logo to be set. May be PTR_L_TOP or PTR_L_BOTTOM.

Data
The characters that produce the logo. May consist of printable characters, escape sequences, carriage returns (13 decimal), and line feeds (10 decimal).
The format of this data depends upon the value of the BinaryConversion property. See page 37.

Remarks
Call to save a data string as the top or bottom logo.

A logo may then be printed by calling the PrintNormal, PrintTwoNormal, or PrintImmediate method with the print top logo or print bottom logo escape sequence in the print data.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
An invalid Location was specified.

Other Values
See ResultCode.

See Also
“Data Characters and Escape Sequences”

TransactionPrint Method
Added in Release 1.1
Syntax
LONG TransactionPrint (LONG Station, LONG Control);
Parameter
Description

Station
The printer station to be used. May be PTR_S_JOURNAL, PTR_S_RECEIPT, or PTR_S_SLIP.

Control
Transaction control. See values below.

Value
Meaning

PTR_TP_TRANSACTION
Begin a transaction.

PTR_TP_NORMAL

End a transaction by printing the buffered data.

Remarks
Enters or exits transaction mode.

If Control is PTR_TP_TRANSACTION, then transaction mode is entered. Subsequent calls to PrintNormal, CutPaper, RotatePrint, PrintBarCode, and PrintBitmap will buffer the print data (either at the printer or the Service Object, depending on the printer capabilities) until TransactionPrint is called with the Control parameter set to PTR_TP_NORMAL. (In this case, the print methods only validate the method parameters and buffer the data – they do not initiate printing. Also, the value of the AsyncMode property does not affect their operation: No OutputID will be assigned to the request, nor will an OutputCompleteEvent be fired.)

If Control is PTR_TP_NORMAL, then transaction mode is exited. If some data was buffered by calls to the methods PrintNormal, CutPaper, RotatePrint, PrintBarCode, and PrintBitmap, then the buffered data is printed. The entire transaction is treated as one message. This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Calling the ClearOutput method cancels transaction mode. Any buffered print lines are also cleared.

Return
One of the values in the following table is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
The specified Station does not exist (see the CapJrnPresent, CapRecPresent, and CapSlpPresent properties), or CapTransaction is FALSE.

OPOS_E_BUSY
Cannot perform while output is in progress. (Can only be returned if AsyncMode is FALSE and Control is PTR_TP_NORMAL.)

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_EPTR_COVER_OPEN:
The printer cover is open.
(Can only be returned if AsyncMode is FALSE and Control is PTR_TP_NORMAL.)

ResultCodeExtended = OPOS_EPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
(Can only be returned if AsyncMode is FALSE and Control is PTR_TP_NORMAL.)

ResultCodeExtended = OPOS_EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only be returned if AsyncMode is FALSE and Control is PTR_TP_NORMAL.)

ResultCodeExtended = OPOS_EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only be returned if AsyncMode is FALSE and Control is PTR_TP_NORMAL.)

Other Values
See ResultCode.

ValidateData Method
Added in Release 1.1
Syntax
LONG ValidateData (LONG Station, BSTR Data);
Parameter
Description

Station
The printer station to be used. May be PTR_S_JOURNAL, PTR_S_RECEIPT, or PTR_S_SLIP.

Data
The data to be validated. May include printable data and escape sequences.
The format of this data depends upon the value of the BinaryConversion property. See page 37.

Remarks
Call to determine whether a data sequence, possibly including one or more escape sequences, is valid for the specified station, before calling the PrintImmediate, PrintNormal, or PrintTwoNormal methods.

This method does not cause any printing, but is used to determine the capabilities of the station.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The data is valid.

OPOS_E_ILLEGAL
Some of data is not precisely supported by the printer station, but the Control can select valid alternatives.

OPOS_E_FAILURE
Some of the data is not supported. No alternatives can be selected.

Cases which cause OPOS_E_ILLEGAL to be returned are:

Escape Sequence
Condition

Paper cut
The percentage ‘#’ is not precisely supported: Control will select the closest supported value.

Feed and Paper cut
The percentage ‘#’ is not precisely supported: Control will select the closest supported value.

Feed, Paper cut, and Stamp
The percentage ‘#’ is not precisely supported: Control will select the closest supported value.

Feed units
The unit count ‘#’ is not precisely supported: Control will select the closest supported value.

Feed reverse
The line count ‘#’ is too large: Control will select the maximum supported value.

Underline
The thickness ‘#’ is not precisely supported: Control will select the closest supported value.

Shading
The percentage ‘#’ is not precisely supported: Control will select the closest supported value.

Scale horizontally
The scaling factor ‘#’ is not supported: Control will select the closest supported value.

Scale vertically
The scaling factor ‘#’ is not supported: Control will select the closest supported value.

Data
Condition

data1CRdata2LF
(Where CR is a Carriage Return and LF is a Line Feed)
In order to print data data1 and remain on the same line, the Service Object will print with a line advance, then perform a reverse line feed. The data data2 will then overprint data1.

Cases which will cause OPOS_E_FAILURE to be returned are:

Escape Sequence
Condition

(General)
The escape sequence format is not valid.

Paper cut
Not supported.

Feed and Paper cut
Not supported.

Feed, Paper cut, and Stamp
Not supported.

Fire stamp
Not supported.

Print bitmap
Bitmap printing is not supported, or the bitmap number ‘#’ is out of range.

Feed reverse
Not supported.

Font typeface
The typeface ‘#’ is not supported:

Bold
Not supported.

Underline
Not supported.

Italic
Not supported.

Alternate color
Not supported.

Reverse video
Not supported.

Shading
Not supported.

Single high & wide
Not supported.

Double wide
Not supported.

Double high
Not supported.

Double high & wide
Not supported.

Data
Condition

data1CRdata2LF
(Where CR is a Carriage Return and LF is a Line Feed)
Not able to print data and remain on the same line. The data data1 will print on one line, and the data data2 will print on the next line.

See Also
“Data Characters and Escape Sequences”

Events

ErrorEvent Event

Syntax
void ErrorEvent (LONG ResultCode, LONG ResultCodeExtended,
LONG ErrorLocus, LONG* pErrorResponse);
Parameter
Description

ResultCode
Result code causing the error event. See ResultCode for values.

ResultCodeExtended
Extended result code causing the error event. See values below.

ErrorLocus
Set to OPOS_EL_OUTPUT: Error occurred while processing asynchronous output.

pErrorResponse
Pointer to the error event response. See values below.

If ResultCode is OPOS_E_EXTENDED, then ResultCodeExtended is set to one of the following values:

Value
Meaning

OPOS_EPTR_COVER_OPEN
The printer cover is open.

OPOS_EPTR_JRN_EMPTY
The journal station is out of paper.

OPOS_EPTR_REC_EMPTY
The receipt station is out of paper.

OPOS_EPTR_SLP_EMPTY
A form is not inserted in the slip station.

The contents at the location pointed to by the pErrorResponse parameter are preset to the default value of OPOS_ER_RETRY. The application may set the value to one of the following:

Value
Meaning

OPOS_ER_RETRY
Retry the asynchronous output. The error state is exited.

OPOS_ER_CLEAR
Clear the asynchronous output. The error state is exited.

Remarks
Fired when an error is detected and the Control’s State transitions into the error state.

See Also
“Status, Result Code, and State Model”

StatusUpdateEvent Event

Syntax
void StatusUpdateEvent (LONG Status);
The Status parameter may be one of the following:

Value
Meaning

PTR_SUE_COVER_OPEN
Printer cover is open.

PTR_SUE_COVER_OK
Printer cover is closed.

PTR_SUE_JRN_EMPTY
No journal paper.

PTR_SUE_JRN_NEAREMPTY
Journal paper is low.

PTR_SUE_JRN_PAPEROK
Journal paper is ready.

PTR_SUE_REC_EMPTY
No receipt paper.

PTR_SUE_REC_NEAREMPTY
Receipt paper is low.

PTR_SUE_REC_PAPEROK
Receipt paper is ready.

PTR_SUE_SLP_EMPTY
No slip form.

PTR_SUE_SLP_NEAREMPTY
Almost at the bottom of the slip form.

PTR_SUE_SLP_PAPEROK
Slip form is inserted.

PTR_SUE_IDLE
All asynchronous output has finished, either successfully or because output has been cleared. The printer State is now OPOS_S_IDLE. The FlagWhenIdle property must be TRUE for this event to be fired, and the Control automatically resets the property to FALSE just before delivering the event.

Power reporting StatusUpdateEvent values
See StatusUpdateEvent description on page 68.

Remarks
Fired when a significant status change has occurred.

Chapter 16
Remote Order Display

Summary

Properties

Common

Type
Access
Initialized After

AutoDisable
1.3
Boolean
R/W
Not Supported

BinaryConversion
1.3
Long
R/W
Open

CapPowerReporting
1.3
Long
R
Open

CheckHealthText
1.3
String
R
Open

Claimed
1.3
Boolean
R
Open

DataCount
1.3
Long
R
Open

DataEventEnabled
1.3
Boolean
R/W
Open

DeviceEnabled
1.3
Boolean
R/W
Open; Claim

FreezeEvents
1.3
Boolean
R/W
Open

OutputID
1.3
Long
R
Open

PowerNotify
1.3
Long
R/W
Open

PowerState
1.3
Long
R
Open

ResultCode
1.3
Long
R
--

ResultCodeExtended
1.3
Long
R
Open

State
1.3
Long
R
--

ControlObjectDescription
1.3
String
R
--

ControlObjectVersion
1.3
Long
R
--

ServiceObjectDescription
1.3
String
R
Open

ServiceObjectVersion
1.3
Long
R
Open

DeviceDescription
1.3
String
R
Open

DeviceName
1.3
String
R
Open

Properties (continued)

Specific

Type
Access
Initialized After

CapTransaction
1.3
Boolean
R
Open

AsyncMode
1.3
Boolean
R/W
Open, Claim, & Enable

EventType
1.3
Long
R/W
Open

SystemClocks
1.3
Long
R
Open. Claim, Enable

SystemVideoSaveBuffers
1.3
Long
R
Open, Claim, & Enable

Timeout
1.3
Long
R/W
Open

UnitsOnline
1.3
Long
R
Open, Claim, & Enable

CurrentUnitID
1.3
Long
R/W
Open, Claim, & Enable

CapSelectCharacterSet
1.3
Boolean
R
Open, Claim, & Enable (*)

CapTone
1.3
Boolean
R
Open, Claim, & Enable (*)

CapTouch
1.3
Boolean
R
Open, Claim, & Enable (*)

AutoToneDuration
1.3
Long
R/W
Open, Claim, & Enable

AutoToneFrequency
1.3
Long
R/W
Open, Claim, & Enable

CharacterSet
1.3
Long
R
Open, Claim, & Enable

CharacterSetList
1.3
String
R
Open, Claim, & Enable

Clocks
1.3
Long
R
Open, Claim, & Enable (*)

VideoDataCount
1.3
Long
R
Open, Claim, & Enable (*)

VideoMode
1.3
Long
R/W
Open, Claim, & Enable (*)

VideoModesList
1.3
String
R
Open, Claim, & Enable (*)

VideoSaveBuffers
1.3
Long
R
Open, Claim, & Enable (*)

ErrorUnits
1.3
Long
R
Open

ErrorString
1.3
String
R
Open

EventUnitID
1.3
Long
R
Open, Claim

EventUnits
1.3
Long
R
Open, Claim

EventString
1.3
String
R
Open, Claim

Methods

Common

Prerequisites

Open
1.3
None

Close
1.3
Open

Claim
1.3
Open

Release
1.3
Open, Claim

CheckHealth
1.3
Open, Claim, & Enable

ClearInput
1.3
Open, Claim

ClearOutput
1.3
Open, Claim

DirectIO
1.3
Open

Specific

ControlClock
1.3
Open, Claim, & Enable

ControlCursor
1.3
Open, Claim, & Enable

FreeVideoRegion
1.3
Open, Claim, & Enable

ResetVideo
1.3
Open, Claim, & Enable

SelectChararacterSet
1.3
Open, Claim, & Enable

SetCursor
1.3
Open, Claim, & Enable

ClearVideo
1.3
Open, Claim, & Enable

ClearVideoRegion
1.3
Open, Claim, & Enable

CopyVideoRegion
1.3
Open, Claim, & Enable

DisplayData
1.3
Open; Claim; Enable

DrawBox
1.3
Open, Claim, & Enable

RestoreVideoRegion
1.3
Open, Claim, & Enable

SaveVideoRegion
1.3
Open, Claim, & Enable

UpdateVideoRegion
 Attribute
1.3
Open, Claim, & Enable

VideoSound
1.3
Open, Claim, & Enable

TransactionDisplay
1.3
Open, Claim, & Enable

Events

Name

May Occur After

DataEvent
1.3
Open, Claim, & Enable

DirectIOEvent
1.3
Open, Claim

ErrorEvent
1.3
Open, Claim, & Enable

OutputCompleteEvent
1.3
Open, Claim, & Enable

StatusUpdateEvent
1.3
Open, Claim, & Enable

General Information

The Remote Order Display Control’s OLE Programmatic ID is “OPOS.RemoteOrderDisplay”.

This device was added in OPOS Release 1.3.

Capabilities

The Remote Order Display Control has the following minimal set of capabilities:

· Supports color or monochrome text character displays.

· Supports 8 foreground colors (or gray scale on monochrome display) with the option of using the intensity attribute.

· Supports 8 background colors (or gray scale on monochrome display) with the option of using only a blinking attribute.

· The individual event types can be disabled such that the application only receives a subset of data events if requested.

· Supports video region buffering.

· Supports cursor functions.

· Supports clock functions.

· Supports resetting a video unit to power on state.

The Remote Order Display Control may also have the following additional capabilities:

· Supports multiple video displays each with possibly different video modes.

· Supports touch video input for a touch screen display unit.

· Supports video enunciator output with frequency and duration.

· Supports tactile feedback via an automatic tone when a video display unit is touched (for touch screen only).

· Supports downloading alternate character sets to one or many video units.

· Support transaction mode display output to one or many video units.

The following capability is not addressed in this version of the OPOS specification:

· Support for graphical displays, where the video display is addressable by individual pixels or dots. The addition of this support is under investigation for future revisions.

Model

The general model of a remote order display:

· The remote order display device class is a subsystem of video units. The initial targeted environment is food service, to display order preparation and fulfillment information. Remote order displays are often used in conjunction with bump bars.

The subsystem can support up to 32 video units.

One Application on one PC or POS Terminal will typically manage and control the entire subsystem of video units. If Applications on the same or other PCs and POS Terminals will need to access the subsystem, then this Application must act as a subsystem server and expose interfaces to other Applications.

· All specific methods are broadcast methods. This means that the method can apply to one unit, a selection of units or all online units. The Units parameter is a Long, with each bit identifying an individual video unit. (One or more of the constants ROD_UID_1 through ROD_UID_32 are bitwise ORed to form the bitmask.) The service object will attempt to satisfy the method for all units specified by the Units parameter. If an error is received from one or more units, the ErrorUnits property is updated with the appropriate units in error. The ErrorString property is updated with a description of the error or errors received. The method will then return with the corresponding OPOS error. In the case where two or more units encounter different errors, the service object should determine the most severe OPOS error to return.

· The common methods CheckHealth, ClearInput, and ClearOutput are not broadcast methods and use the unit ID specified by the CurrentUnitID property. (One of the constants ROD_UID_1 through ROD_UID_32 are selected.) See the description of these common methods to understand how the current unit ID property is used.

· When the current unit ID property is set by the application, all the corresponding properties are updated to reflect the settings for that unit.

If the current unit ID property is set to a unit ID that is not online, the dependent properties will contain non-initialized values.

The CurrentUnitID uniquely represents a single video unit. The definitions range from ROD_UID_1 to ROD_UID_32. These definitions are also used to create the bitwise parameter, Units, used in the broadcast methods. See the Examples section below for usage.

· The rows and columns are numbered beginning with (0,0) at the top-left corner of the video display. The dimensions are defined by the height and width parameters. The region depicted below would have the parameters Row = 1, Column = 2, Height = 3, and Width = 4.

0
1
2
3
4
5
6

0

1

2

3

4

All position parameters are expressed in text characters.

· The VGA-like Attribute parameter, that is used in various methods, is a Long. Bits 7-0 define the text attribute and bits 31-8 are reserved and must be 0, otherwise an OPOS_E_ILLEGAL error will be returned. The following table defines bits 7-0:

Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0

Blinking
Background Color
Intensity
Foreground Color

If a foreground or background color is requested, but the service object does not support that color, it chooses the best fit from the colors supported.

The following constants may be used, with up to one constant selected from each category:

· Blinking: ROD_ATTR_BLINK

· Background Color: ROD_ATTR_BG_color, where color is replaced by BLACK, BLUE, GREEN, CYAN, RED, MAGENTA, BROWN, or GRAY

· Intensity: ROD_ATTR_INTENSITY

· Foreground Color: ROD_ATTR_FG_color, where color is replaced by BLACK, BLUE, GREEN, CYAN, RED, MAGENTA, BROWN, or GRAY

See the examples section below for usage.

Input – Touch Video

The Remote Order Display Control follows the general “Input Model” for event-driven input with some differences:

· When input is received by the Control, it enqueues a DataEvent.

· This device does not support the AutoDisable property, so the control will not automatically disable itself when a DataEvent is enqueued.

· An enqueued DataEvent is delivered to the application when the DataEventEnabled property is TRUE and other event delivery requirements are met. Just before delivering this event, the Control copies the data into properties, and disables further data events by setting the DataEventEnabled property to FALSE. This causes subsequent input data to be enqueued by the Control while the application processes the current input and associated properties. When the application has finished the current input and is ready for more data, it reenables events by setting DataEventEnabled to TRUE.

· An ErrorEvent (or events) are enqueued if the Control encounters an error while gathering or processing input, and is delivered to the application when the DataEventEnabled property is TRUE and other event delivery requirements are met.

· The VideoDataCount property may be read to obtain the number of video DataEvents for a specific unit ID enqueued by the Control. The DataCount property can be read to obtain the total number of data events enqueued by the Control.

· Input enqueued by the Control may be deleted by calling the ClearInput method. See ClearInput method description for more details.

Output – Video and Tone

The Remote Order Display Control follows the general “Output Model”, with some enhancements:

· The following methods are always performed synchronously: ControlClock, ControlCursor, SelectChararacterSet, ResetVideo, and SetCursor. These methods will fail if asynchronous output is outstanding. The following method is also always performed synchronously but without regard to outstanding asynchronous output: FreeVideoRegion.

· The following methods are performed either synchronously or asynchronously, depending on the value of the AsyncMode property: ClearVideo, ClearVideoRegion, CopyVideoRegion, DisplayData, DrawBox, RestoreVideoRegion, SaveVideoRegion, TransactionDisplay, UpdateVideoRegionAttribute, and VideoSound. When AsyncMode is FALSE, then these methods operate synchronously and return their completion status to the application.

When AsyncMode is TRUE, then these methods operate as follows:

· The Control buffers the request, sets the OutputID property to an identifier for this request, and returns as soon as possible. When the device completes the request successfully, then the Control updates the EventUnits property and fires an OutputCompleteEvent. A parameter of this event contains the output ID of the completed request.

Asynchronous display methods will not return an error status due to a display problem, such as communications failure. These errors will only be reported by an ErrorEvent. An error status is returned only if the display is not claimed and enabled, a parameter is invalid, or the request cannot be enqueued. The first two error cases are due to an application error, while the last is a serious system resource exception.

· If an error occurs while performing an asynchronous request, an ErrorEvent is enqueued and delivered. The EventUnits property is set to the unit or units in error. The EventString property is also set.
Note: ErrorEvent updates EventUnits and EventString. If an error is reported by a broadcast method, then ErrorUnits and ErrorString are set instead.
The event handler may call synchronous display methods (but not asynchronous methods), then can either retry the outstanding output or clear it.

· The Control guarantees that asynchronous output is performed on a first-in first-out basis.

· All unit output buffered by the Control may be deleted by setting the CurrentUnitID property and calling the ClearOutput method. OutputCompleteEvents will not be fired for cleared output. This method also stops any output that may be in progress (when possible).

· The Remote Order Display Control device may support transaction mode. A transaction is a sequence of display operations that are sent to a video unit as a single unit. Display operations which may be included in a transaction are ClearVideo, ClearVideoRegion, CopyVideoRegion, DisplayData, DrawBox, RestoreVideoRegion, SaveVideoRegion, and UpdateVideoRegionAttribute. During a transaction, the display operations are first validated. If valid, they are added to the transaction but not displayed yet. Once the application has added as many operations as required, then the transaction display method is called.

If the transaction is displayed synchronously, then the returned status indicates either that the entire transaction displayed successfully or that an error occurred during the display. If the transaction is displayed asynchronously, then the asynchronous display rules listed above are followed. If an error occurs and the Error Event handler causes a retry, the entire transaction is retried.

Examples
Set up an attribute variable and initializes it for various uses.

’ Standard white foreground on black background

lAttribute = ROD_ATTR_BG_BLACK | ROD_ATTR_FG_GRAY

’ Turn Blinking on

lAttribute = lAttribute | ROD_ATTR_BLINK

Draws a box with a solid border on unit ID 1 and unit ID 4. The box is located at the top left corner (0,0) with a height of 80 and a width of 25.

ROD.DrawBox(ROD_UID_1 | ROD_UID_4, 0, 0, 80, 25, lAttribute,
 ROD_BDR_SOLID)

Device Sharing

The remote order display is an exclusive-use device. Its device sharing rules are:

· The application must claim the device before enabling it.

· The application must claim and enable the device before accessing many remote order display specific properties.

· The application must claim and enable the device before calling methods that manipulate the device.

· When a Claim method is called again, settable device characteristics are restored to their condition at Release. Examples of restored characteristics are character set, video mode, and tone frequency. Region memory buffers, clock and cursor settings are considered state characteristics and are not restored.

· See the “Summary” table for precise usage prerequisites.

Properties

AsyncMode Property R/W

Syntax
BOOL AsyncMode;
Remarks
If TRUE, then the ClearVideo, ClearVideoRegion, CopyVideoRegion, DisplayData, DrawBox, RestoreVideoRegion, SaveVideoRegion, TransactionDisplay, UpdateVideoRegionAttribute, and VideoSound methods will be performed asynchronously.
If FALSE, they will be performed synchronously.

This property is initialized to FALSE by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

AutoToneDuration Property R/W

Syntax
LONG AutoToneDuration;

Remarks
Sets the duration (in milliseconds) of the automatic tone for the video unit specified by the CurrentUnitID property.

This property is initialized to the default value for each online video unit when the device is first enabled following the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An illegal value was specified. The ErrorString property is updated before return.

See Also
CurrentUnitID Property

AutoToneFrequency Property R/W

Syntax
LONG AutoToneFrequency;

Remarks
Sets the frequency (in Hertz) of the automatic tone for the video unit specified by the CurrentUnitID property.

This property is initialized to the default value for each online video unit when the device is first enabled following the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An illegal value was specified. The ErrorString property is updated before return.

See Also
CurrentUnitID Property

CapSelectCharacterSet Property

Syntax
BOOL CapSelectCharacterSet;

Remarks
If TRUE, the video unit specified by the CurrentUnitID property may be loaded with an alternate, user supplied character set; otherwise it is FALSE.

This property is initialized for each video unit online when the device is first enabled following the Open method.

See Also
CurrentUnitID Property

CapTone Property

Syntax
BOOL CapTone;

Remarks
If TRUE, the video unit specified by the CurrentUnitID property supports an enunciator; otherwise it is FALSE

This property is initialized for each video unit online when the device is first enabled following the Open method.

See Also
CurrentUnitID Property

CapTouch Property

Syntax
BOOL CapTouch;

Remarks
If TRUE, the video unit specified by the CurrentUnitID property supports the ROD_DE_TOUCH_UP, ROD_DE_TOUCH_DOWN, and ROD_DE_TOUCH_MOVE event types; otherwise it is FALSE.

This property is initialized for each video unit online when the device is first enabled following the Open method.

See Also
CurrentUnitID Property; DataEvent Event

CapTransaction Property

Syntax
BOOL CapTransaction;

Remarks
If TRUE, then transactions are supported by each video unit;
otherwise it is FALSE.

This property is initialized by the Open method.

CharacterSet Property

Syntax
LONG CharacterSet;

Remarks
Contains the character set for displaying characters for the video unit specified by the CurrentUnitID property. When CapSelectCharacterSet is TRUE, this property can be set with one of the character set numbers found in the CharacterSetList property.

This property is initialized to the default video character set used by each video unit online when the device is first enabled following the Open method.

This is updated during the SelectCharacterSet method.

See Also
CurrentUnitID Property; CharacterSetList Property; CapSelectCharacterSet Property, SelectCharacterSet Method

CharacterSetList Property

Syntax
BSTR CharacterSetList;

Remarks
A string of character set numbers for the video unit specified by the CurrentUnitID property.

If CapSelectCharacterSet is TRUE, this property is initialized for each video unit online when the device is first enabled following the Open method; otherwise, this property is initialized with the string “[Error]”.

The character set number string consists of an ASCII numeric set of numbers, separated by commas.

For example, if the string is “101, 850, 999”, the video unit supports a device-specific character set, code page 850, and the Windows ANSI character set.

The character set number is one of the following ranges or values:

Value
Meaning

Range 101 - 199
A device-specific character set that does not match a code page, nor the ASCII or Windows ANSI character sets.

Range 400 - 990
Code page; matches one of the standard values.

ROD_CS_ASCII
The ASCII character set, supporting the ASCII characters between 20-hex and 7F-hex. The value of this constant is 998.

ROD_CS_WINDOWS
The Windows ANSI character set. The value of this constant is 999. This is exactly equivalent to the Windows code page 1252.

Range 1000 and higher
Windows code page; matches one of the standard values.

See Also
CurrentUnitID Property; CharacterSet Property; CapSelectCharacterSet Property, SelectCharacterSet Method

Clocks Property

Syntax
LONG Clocks;

Remarks
Indicates the number of clocks the video unit, specified by the CurrentUnitID property, can support.

This property is initialized for each online video unit when the device is first enabled following the Open method.

See Also
CurrentUnitID Property

CurrentUnitID Property R/W

Syntax
LONG CurrentUnitID;

Remarks
Selects the current video unit ID. Up to 32 units are allowed on one remote order display device. The unit ID definitions range from ROD_UID_1 to ROD_UID_32.

The following properties and methods apply only to the selected video unit ID:

· Properties: AutoToneDuration, AutoToneFrequency, CapSelectCharacterSet, CapTone, CapTouch, CharacterSet, CharacterSetList, Clocks, VideoDataCount, VideoMode, VideoModesList, VideoSaveBuffers.
Setting CurrentUnitID will update these properties to the current values for the specified unit.

· Methods: CheckHealth, ClearInput, ClearOutput.
This property is initialized to ROD_UID_1 when the device is first enabled following the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An illegal unit id was specified. The ErrorString property is updated before return.

DataCount Property (Common)

Syntax
LONG DataCount;

Remarks
Indicates the total number of DataEvents enqueued at the control. All units online are included in this value. The number of enqueued events for a specific unit ID is stored in the VideoDataCount property.

The application may interrogate DataCount to determine whether additional input is enqueued from a device, but has not yet been delivered because of other application processing, freezing of events, or other causes.

This property is initialized to zero by the Open method.

See Also
“Input Model”; VideoDataCount Property; DataEvent Event

ErrorString Property

Syntax
BSTR ErrorString;

Remarks
When an error occurs for any method that acts on a bitwise set of video units, the ErrorString is set to a description of the error which occurred to the unit(s) specified by the ErrorUnits property.

If an error occurs during processing of an asynchronous request, the ErrorEvent updates the property EventString instead.

This property is initialized to an empty string by the Open method.

See Also
ErrorUnits Property

ErrorUnits Property

Syntax
LONG ErrorUnits;

Remarks
When an error occurs for any method that acts on a bitwise set of video units, the ErrorUnits will contain a bitwise mask of the unit(s) that encountered an error.

If an error occurs during processing of an asynchronous request, the ErrorEvent updates the property EventUnits instead.

This property is initialized to zero by the Open method.

See Also
ErrorString Property

EventString Property

Syntax
BSTR EventString;

Remarks
When an ErrorEvent is delivered, this property is set to a description of the error which occurred to the unit(s) specified by the EventUnits property.

This property is initialized to an empty string by the Open method.

See Also
EventUnits Property; ErrorEvent

EventType Property R/W

Syntax
LONG EventType;

Remarks
A bitwise mask that is used to selectively indicate which event types are to be fired by the DataEvent, for all video units online. See the DataEvent description for event type definitions.

For example if the ROD_DE_TOUCH_MOVE event is not desired:

ROD.EventType = ROD_DE_TOUCH_UP | ROD_DE_TOUCH_DOWN

This property is initialized to all defined event types by the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An illegal event type value was specified. The ErrorString property is updated before return.

See Also
DataEvent Event

EventUnitID Property

Syntax
LONG EventUnitID;

Remarks
Just before the Control delivers a DataEvent to the Application, it sets this property to the video unit ID causing the event. The unit ID definitions range from ROD_UID_1 to ROD_UID_32.

See Also
DataEvent

EventUnits Property

Syntax
LONG EventUnits;

Remarks
When an OutputCompleteEvent, output ErrorEvent, or StatusUpdateEvent is fired, the EventUnits property will contain a bitwise mask of the unit(s).

This property is initialized to zero by the Open method.

See Also
OutputCompleteEvent, ErrorEvent, StatusUpdateEvent

SystemClocks Property

Syntax
LONG SystemClocks;

Remarks
Indicates the total number of clocks the remote order display device can support at one time.

This property is initialized when the device is first enabled following the Open method.

See Also
Clocks Property

SystemVideoSaveBuffers Property

Syntax
LONG SystemVideoSaveBuffers;

Remarks
Indicates the total number of video save buffers the remote order display device can support at one time.

This property is initialized when the device is first enabled following the Open method.

See Also
VideoSaveBuffers Property

Timeout Property R/W

Syntax
LONG Timeout;

Remarks
Timeout value in milliseconds used by the remote order display device to complete all output methods supported. If the device cannot successfully complete an output method within the timeout value, then the method returns a failure status if AsyncMode is FALSE, or enqueues an ErrorEvent if AsyncMode is TRUE.

This property is initialized to a Service Object dependent default timeout following the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An illegal timeout value was specified. The ErrorString property is updated before return.

See Also
AsyncMode Property

UnitsOnline Property

Syntax
LONG UnitsOnline;

Remarks
Bitwise mask indicating the video units online, where zero or more of the unit constants ROD_UID_1 (bit 0 on) through ROD_UID_32 (bit 31 on) are bitwise ORed.

This property is initialized when the device is first enabled following the Open method. This property is updated as changes are detected, such as before a StatusUpdateEvent is fired and during the CheckHealth method.

See Also
CheckHealth Method; StatusUpdateEvent Event

VideoDataCount Property

Syntax
LONG VideoDataCount;

Remarks
Indicates the number of DataEvents enqueued for the video unit specified by the CurrentUnitID property.

The application may interrogate VideoDataCount to determine whether additional input is enqueued by a video unit, but has not yet been delivered because of other application processing, freezing of events, or other causes.

This property is initialized to zero by the Open method.

See Also
CurrentUnitID Property; DataEvent Event

VideoMode Property R/W

Syntax
LONG VideoMode;

Remarks
Indicates the video ModeId selected for the video unit specified by the CurrentUnitID property. The ModeId represents one of the selections in the VideoModesList property.

This property is initialized to the Service Object dependent default video ModeId used by each video unit online when the device is first enabled following the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
The desired video mode is not supported. The ErrorString property is updated before return.

OPOS_E_FAILURE
An error occurred while communicating with the video unit specified by the CurrentUnitID property. The ErrorString property is updated before return.

See Also
CurrentUnitID Property; VideoModesList Property

VideoModesList Property

Syntax
BSTR VideoModesList;

Remarks
The video modes supported for the video unit specified by the CurrentUnitID property. The video modes are listed in a comma delineated string with the following format:

<ModeId>:<Height>x<Width>x<NumberOfColors><M|C>.
The ModeId values are determined by the remote order display system.
M = Monochrome (and gray scales) and C = Color.

For example, if the string is “1:40x25x16C,2:80x25x16C”, then the video unit supports two video modes, ModeId 1 and ModeId 2. ModeId 1 has 40 rows, 25 columns, 16 colors, and is Color. ModeId 2 has 80 rows, 25 columns, 16 colors, and is Color.

The ModeId is used to initialize the VideoMode property for each video unit online.

This property is initialized to the video modes list supported by each video unit online when the device is first enabled following the Open method.

See Also
CurrentUnitID Property; VideoMode Property

VideoSaveBuffers Property

Syntax
LONG VideoSaveBuffers;

Remarks
Indicates the number of save buffers for the video unit specified by the CurrentUnitID property. This property should be consulted when using the SaveVideoRegion, RestoreVideoRegion and FreeVideoRegion methods. When set to 0, this indicates that buffering for the selected unit is not supported. When VideoSaveBuffers is greater than 0, the remote order display device can save at minimum one entire video screen for the selected video unit.

This property is initialized for each video unit online when the device is first enabled following the Open method.

See Also
CurrentUnitID Property; SaveVideoRegion Method; RestoreVideoRegion Method; FreeVideoRegion Method

Methods

CheckHealth Method (Common)

Syntax
LONG CheckHealth (LONG Level);
The Level parameter indicates the type of health check to be performed on the device. The following values may be specified:

Value
Meaning

OPOS_CH_INTERNAL
Perform a health check that does not physically change the device. The device is tested by internal tests to the extent possible.

OPOS_CH_EXTERNAL
Perform a more thorough test that may change the device. For example, a pattern may be displayed on the video.

OPOS_CH_INTERACTIVE
Perform an interactive test of the device. The Service Object will typically display a modal dialog box to present test options and results.

Remarks
When OPOS_CH_INTERNAL or OPOS_CH_EXTERNAL level is requested, the method will check the health of the unit specified by the CurrentUnitID property. When the current unit ID property is set to a unit that is not currently online, the device will attempt to check the health of the video unit and report a communication error if necessary. The OPOS_CH_INTERACTIVE health check operation is up to the service object designer.

A text description of the results of this method is placed in the CheckHealthText property.

The UnitsOnline property will be updated with any changes before returning to the application.

The CheckHealth method is always synchronous.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
Indicates that the health check procedure was initiated properly, and when possible to determine, indicates that the device is healthy. However, the health of many devices can only be determined by a visual inspection of the test results.

OPOS_E_ILLEGAL
The specified health check level is not supported by the Service Object.

OPOS_E_FAILURE
An error occurred while communicating with the video unit specified by the CurrentUnitID property.

Other Values
See ResultCode.

See Also
CurrentUnitID Property; UnitsOnline Property

ClearInput Method (Common)

Syntax
LONG ClearInput ();
Remarks
Called to clear the device input that has been buffered for the unit specified by the CurrentUnitID property.

Any data events that are enqueued – usually waiting for DataEventEnabled to be set to TRUE and FreezeEvents to be set to FALSE – are also cleared.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_CLAIMED
The device is claimed by another process.

OPOS_E_NOTCLAIMED
The device must be claimed before this method can be used.

See Also
CurrentUnitID Property; “Input Model”

ClearOutput Method (Common)

Syntax
LONG ClearOutput ();
Remarks
Called to clear all outputs that have been buffered for the unit specified by the CurrentUnitID property, including video and tone outputs.

Any output complete and output error events that are enqueued – usually waiting for DataEventEnabled to be set to TRUE and FreezeEvents to be set to FALSE – are also cleared.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_CLAIMED
The device is claimed by another process.

OPOS_E_NOTCLAIMED
The device must be claimed before this method can be used.

See Also
CurrentUnitID Property; “Output Model”

ClearVideo Method

Syntax
LONG ClearVideo (LONG Units, LONG Attribute);
Parameter
Description

Units
Bitwise mask indicating which video unit(s) to operate on.
Attribute
See “Model” discussion in the General Information section.

Remarks
This method will clear the entire display area for the video unit(s) specified by the Units parameter. The display area will be cleared using the attribute placed in the Attribute parameter.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· Attribute is illegal.

· Units is zero or a non-existent unit was specified.

OPOS_E_FAILURE
An error occurred while communicating with one of the video units specified by Units. The ErrorUnits and ErrorString properties are updated before return. (Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
AsyncMode Property; “Model” discussion

ClearVideoRegion Method

Syntax
LONG ClearVideoRegion (LONG Units, LONG Row, LONG Column, LONG Height, LONG Width, LONG Attribute);
Parameter
Description

Units
Bitwise mask indicating which video unit(s) to operate on.
Row
The region’s start row.

Column
The region’s start column.
Height
The number of rows in the region.

Width
The number of columns in the region.

Attribute
See “Model” discussion in the General Information section.

Remarks
This method will clear the specified video region for the video unit(s) specified by the Units parameter. The display area will be cleared using the attribute placed in the Attribute parameter.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· Row, Column, Height, or Width are out of range.

· Attribute is illegal.

· Units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties may be updated before return.

OPOS_E_FAILURE
An error occurred while communicating with one of the video units specified by Units. The ErrorUnits and ErrorString properties are updated before return. (Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
AsyncMode Property; ErrorString Property; ErrorUnits Property; “Model” discussion

ControlClock Method

Syntax
LONG ControlClock (LONG Units, LONG Function, LONG ClockId,
LONG Hour, LONG Min, LONG Sec, LONG Row, LONG Column,
LONG Attribute, LONG Mode);
Parameter
Description

Units
Bitwise mask indicating which video unit(s) to operate on.
Function
The requested clock command. See values below.

ClockId
Clock identification number. The valid values can be from 1 - Clocks. When the Function parameter is
 ROD_CLK_PAUSE, ROD_CLK_RESUME,
 or ROD_CLK_STOP
then ClockId can be ROD_CLK_ALL to specify all clocks started on the specified video unit(s).

Hour
The initial hours for the clock display.

Min
The initial minutes for the clock display.

Sec
The initial seconds for the clock display.

Row
The clock’s row.

Column
The clock’s start column.
Attribute
See “Model” discussion in the General Information section.

Mode
The type of clock to display. See values below.

The Function parameter values are:

Value
Meaning

ROD_CLK_START
Starts a clock display assigned to the given ClockId.

ROD_CLK_PAUSE
Temporarily stops a clock from updating the display until a ROD_CLK_RESUME requested.

ROD_CLK_RESUME
Resumes a clock that was previously paused, such that display updates continue.

ROD_CLK_STOP
Permanently stops the clock from updating the display and the ClockId becomes free.

ROD_CLK_MOVE
Moves an instantiated clock to a new position.

The Mode parameter values are:

Value
Meaning

ROD_CLK_SHORT
Displays a clock with “M:SS” format.

ROD_CLK_NORMAL
Displays a clock with “MM:SS” format.

ROD_CLK_12_LONG
Displays a 12 hour clock with “HH:MM:SS” format.

ROD_CLK_24_LONG
Displays a 24 hour clock with “HH:MM:SS” format.

Remarks
This method will carryout the clock command requested in the Function parameter on the video unit(s) specified by the Units parameter. The clock will be displayed in the requested Mode format at the location found in the Row and Column parameters.

The clock will start at the specified Hour, Min, and Sec, time values and will be updated every second until a ROD_CLK_PAUSE or ROD_CLK_STOP is requested for this ClockId.

When a ROD_CLK_PAUSE, ROD_CLK_RESUME, or ROD_CLK_STOP command is issued, the Hour, Min, Sec, Left, Top, Attribute, and Mode parameters are ignored. During a ROD_CLK_PAUSE command, the clock display updates are suspended. During a ROD_CLK_RESUME command, the clock updates continue.

If a ROD_CLK_PAUSE, ROD_CLK_RESUME, ROD_CLK_STOP or ROD_CLK_MOVE command is requested on an uninitialized ClockId for any of the video units specified by the Units parameter, an OPOS_EROD_BADCLK is returned. If a ROD_CLK_RESUME command is requested without doing a ROD_CLK_PAUSE, this has no effect and no error is returned.

When a ROD_CLK_MOVE command is issued, the clock is moved to the new location found in the Row and Column parameters. The Hour, Min, Sec, Attribute and Mode parameters are ignored for this command function.

Generally a video unit can support the number of clocks specified by the Clocks property. However, the ROD_CLK_START command will return OPOS_EROD_NOCLOCKS if it exceeds the number of SystemClocks even though the Clocks property may indicated the unit can support more clocks than allocated for that unit.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· ClockId, Hour, Min, Sec, Row, or Column are out of range.

· Function, Attribute or Mode is illegal.

· Units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are updated before return.

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_EROD_BADCLK: A ROD_CLK_PAUSE, ROD_CLK_RESUME, ROD_CLK_START, ROD_CLK_MOVE command was requested and the specified ClockId has not been initialized by the ROD_CLK_START command.

ResultCodeExtended = OPOS_EROD_NOCLOCKS: The ROD_CLK_START failed because the number of SystemClocks has been reached.

The ErrorUnits and ErrorString properties are updated before return.

OPOS_E_FAILURE
An error occurred while communicating with one of the video units specified by the Units parameter. The ErrorUnits and ErrorString properties are updated before return.

OPOS_E_BUSY
A ROD_CLK_START command was requested but the specified ClockId is in use. The ErrorUnits and ErrorString properties are updated before return.

Other Values
See ResultCode.

See Also
Clocks Property; ErrorString Property; ErrorUnits Property; “Model” discussion

ControlCursor Method

Syntax
LONG ControlCursor (LONG Units, LONG Function);
Parameter
Description

Units
Bitwise mask indicating which video unit(s) to operate on.
Function
The cursor command, indicating the type of cursor to display. See values below.

Value
Meaning

ROD_CRS_LINE
Enable a solid underscore line.

ROD_CRS_LINE_BLINK
Enable a blinking solid underscore cursor.

ROD_CRS_BLOCK
Enable a solid block cursor.

ROD_CRS_BLOCK_BLINK
Enable a blinking solid block cursor.

ROD_CRS_OFF
Disable cursor.

Remarks
This method will enable or disable the cursor depending on the Function parameter, for the video unit(s) specified by the Units parameter.

When the Function is ROD_CRS_OFF, the cursor is disabled, otherwise the cursor is enabled as the requested cursor type. If the video unit cannot support the requested cursor type, the service object will use the next closest cursor type.

The cursor attribute is taken from the current cursor location.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· Function is illegal.

· Units is zero or a non-existent unit was specified.

OPOS_E_FAILURE
An error occurred communicating with one of the video units specified by Units. The ErrorUnits and ErrorString properties are updated before return.

Other Values
See ResultCode.

See Also
ErrorString Property; ErrorUnits Property

CopyVideoRegion Method

Syntax
LONG CopyVideoRegion (LONG Units, LONG Row, LONG Column, LONG Height, LONG Width, LONG TargetRow, LONG TargetColumn);
Parameter
Description

Units
Bitwise mask indicating which video unit(s) to operate on.
Row
The region’s start row.

Column
The region’s start column.
Height
The number of rows in the region.

Width
The number of columns in the region.

TargetRow
The start row of the target location.

TargetColumn
The start column of the target location.

Remarks
This method will copy a region of the display area to a new location on the display area for the video unit(s) specified by the Units parameter. The source area is defined by the Row, Column, Height, and Width parameters. The top-left corner of the target location is defined by the TargetRow and TargetColumn parameters. If the ranges overlap the copy is done such that all original data is preserved.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· Row, Column, Height, Width, TargetRow, or TargetColumn are out of range.

· Units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are updated before return.

OPOS_E_FAILURE
An error occurred while communicating with one of the video units specified by Units. The ErrorUnits and ErrorString properties are updated before return. (Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
AsyncMode Property; ErrorString Property; ErrorUnits Property; “Model” discussion

DisplayData Method

Syntax
LONG DisplayData (LONG Units, LONG Row, LONG Column,
LONG Attribute, BSTR Data);
Parameter
Description

Units
Bitwise mask indicating which video unit(s) to operate on.
Row
The start row for the text.

Column
The start column for the text.

Attribute
The video attribute. See “Model” discussion in the General Information section.

Data
The string of characters to display.
The format of this data depends upon the value of the BinaryConversion property. See page 31.

Remarks
The characters in Data are processed beginning at the location specified by Row and Column, and continue in succeeding columns on the video unit(s) specified by the Units parameter. Any characters that extend beyond the last column will be discarded.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· Row or Column parameters are out of range.

· Attribute is illegal.Units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are updated before return.

OPOS_E_FAILURE
An error occurred while communicating with one of the video units specified by Units. The ErrorUnits and ErrorString properties are updated before return. (Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
AsyncMode Property; ErrorString Property; ErrorUnits Property; “Model” discussion

DrawBox Method

Syntax
LONG DrawBox (LONG Units, LONG Row, LONG Column, LONG Height, LONG Width, LONG Attribute, LONG BorderType);
Parameter
Description

Units
Bitwise mask indicating which video unit(s) to operate on.
Row
The box’s start row.

Column
The box’s start column.
Height
The number of rows in the box.

Width
The number of columns in the box.

Attribute
The video attribute. See “Model” discussion in the General Information section.

BorderType
The border type to be drawn. Can be any printable character or a defined border type. See values below.

Value
Meaning

ROD_BDR_SINGLE
A single line border.

ROD_BDR_DOUBLE
A double line border.

ROD_BDR_SOLID
A solid block border.

Remarks
This method will draw a box on the video units(s) specified by the Units parameter.

The remote order display will attempt to draw a box with the border type specified. If the character set does not support the chosen border type, the service object will choose the best fit from the given character set.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· Row, Column, Height, or Width are out of range.

· Attribute or BorderType are illegal.

· Units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are updated before return.

OPOS_E_FAILURE
An error occurred while communicating with one of the displays specified by Units. The ErrorUnits and ErrorString properties are updated before return.

Other Values
See ResultCode.

See Also
AsyncMode Property; ErrorString Property; ErrorUnits Property; “Model” discussion

FreeVideoRegion Method

Syntax
LONG FreeVideoRegion (LONG Units, LONG BufferId);
Parameter
Description

Units
Bitwise mask indicating which video unit(s) to operate on.
BufferId
Number identifying the video buffer to free. Valid values range from 1 to the VideoSaveBuffers property for a selected unit(s).

Remarks
This method will free any buffer memory allocated for the video unit(s) specified by the Units parameter. The number of video buffers supported is stored in the VideoSaveBuffers property for each video unit online. If the BufferId was never used in a previous SaveVideoRegion method, no action is take and OPOS_SUCCESS is returned.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· BufferId is out of range.

· Units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are updated before return.

OPOS_E_FAILURE
An error occurred communicating with one of the video units specified by Units. The ErrorUnits and ErrorString properties are updated before return.

Other Values
See ResultCode.

See Also
ErrorString Property; ErrorUnits Property; VideoSaveBuffers Property; SaveVideoRegion Method

ResetVideo Method

Syntax
LONG ResetVideo (LONG Units);

Units is a bitwise mask indicating which video unit(s) to operate on.
Remarks
Sets the video unit(s) specified by the Units parameter to a power on state. All internal service object buffers and clocks associated with the unit(s) are released. All settable characteristics are set to default values.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_FAILURE
An error occurred while communicating with one of the video units specified by Units. The ErrorUnits and ErrorString properties are updated before return.

Other Values
See ResultCode.

See Also
ErrorString Property; ErrorUnits Property

RestoreVideoRegion Method

Syntax
LONG RestoreVideoRegion (LONG Units, LONG TargetRow,
LONG TargetColumn, LONG BufferId);
Parameter
Description

Units
Bitwise mask indicating which video unit(s) to operate on.
TargetRow
The start row of the target location.
TargetColumn
The start column of the target location.

BufferId
Number identifying the source video buffer to use. Valid values range from 1 to the VideoSaveBuffers property for the selected unit(s).

Remarks
This method will restore a previously saved video region of the display area from the requested BufferId for the video unit(s) specified by the Units parameter. A region can be saved using the SaveVideoRegion method. The number of video buffers supported is stored in the VideoSaveBuffers property for each video unit online. The target location is defined by the TargetRow and TargetColumn parameters. This method doesn’t free the memory after restoring, therefore, this method can be used to copy a video region to multiple locations on the display. Use the FreeVideoRegion method to free any memory allocated for a video buffer.

If the BufferId does not contain a previously saved video region for the Units selected, an OPOS_EROD_NOREGION error is returned.

Video regions cannot be restored between video units. For example, the SaveVideoRegion method is called with Units = 0000 1000 and BufferId = 1. This will save a video region for the Unit Id 4, in to Buffer 1 for that unit. If RestoreVideoRegion is called with Units = 0000 0100 and BufferId = 1 with the intention of restoring the previously saved buffer to Unit Id 3, the return status could either be OPOS_EROD_NOREGION or an unwanted region is restored.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· BufferId, TargetRow, or TargetColumn are out of range.

· Units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are updated before return.

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_EROD_NOREGION: The BufferId does not contain a previously saved video region.

OPOS_E_FAILURE
An error occurred while communicating with one of the video units specified by Units. The ErrorUnits and ErrorString properties are updated before return. (Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
AsyncMode Property; ErrorString Property; ErrorUnits Property; VideoSaveBuffers Property; SaveVideoRegion Method

SaveVideoRegion Method

Syntax
LONG SaveVideoRegion (LONG Units, LONG Row, LONG Column,
LONG Height, LONG Width, LONG BufferId);
Parameter
Description

Units
Bitwise mask indicating which video unit(s) to operate on.
Row
The start row of the region to save.

Column
The start column of the region to save.
Height
The number of rows in the region to save.

Width
The number of columns in the region to save.

BufferId
Number identifying the video buffer to use. Valid values range from 1 to the VideoSaveBuffers property for a selected unit(s).

Remarks
This method will save the specified video region of the display area to one of the provided video buffers for the video unit(s) specified by the Units parameter. The number of video buffers supported is stored in the VideoSaveBuffers property for each video unit online. However, an OPOS_EROD_NOBUFFERS error will be returned if the requested buffer exceeds the number of SystemVideoSaveBuffers even though the VideoSaveBuffers property may indicated the unit can support more save buffers than currently allocated for that unit.

If VideoSaveBuffers is greater than 0, the service object will be able to support at minimum one entire video screen. This does not guarantee that the service object can save an entire video screen in each supported buffer for a single unit. An OPOS_EROD_NOROOM error is returned when all the buffer memory has been allocated for a specific unit.

The source area is defined by the Row, Column, Height, and Width parameters. The video region can be restored to the screen by calling the RestoreVideoRegion method. If SaveVideoRegion is called twice with the same BufferId, the previous video data is lost, and any allocated memory is returned to the system.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· BufferId, Row, Column, Height, or Width, are out of range.

· Units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are updated before return.

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_EROD_NOBUFFERS:
Requested buffer exceeds the number of SystemVideoSaveBuffers.

ResultCodeExtended = OPOS_EROD_NOROOM:
All the buffer memory has been allocated for a specific unit. The ErrorUnits and ErrorString properties are updated before return.

OPOS_E_FAILURE
An error occurred while communicating with one of the video units specified by Units. The ErrorUnits and ErrorString properties are updated before return. (Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
AsyncMode Property; ErrorString Property; ErrorUnits Property; SystemVideoSaveBuffers Property; VideoSaveBuffers Property; RestoreVideoRegion Method

SelectChararacterSet Method

Syntax
LONG SelectChararacterSet (LONG Units, LONG CharacterSet);
Parameter
Description

Units
Bitwise mask indicating which video unit(s) to operate on.
CharacterSet
Contains the character set for displaying characters. Values are:

Value
Meaning

Range 101-199
A device-specific character set that does not match a code page, nor the ASCII or Widows ANSI character sets.

Range 400-990
Code page; matches one of the standard values.

ROD_CS_ASCII
The ASCII character set, supporting the ASCII characters between 20-hex and 7F-hex. The value of this constant is 998.

ROD_CS_WINDOWS
The Windows ANSI character set. The value of this constant is 999. This is exactly equivalent to the Widows code page 1252.

Ranges 1000 or higher
Windows code page; matches one of the standard values.
Remarks
Selects a compatible character set for the video unit(s) specified by the Units parameter.

The CharacterSet property is updated for each video unit id for which a new character set is is successfully.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· Value in CharacterSet is not supported or the unit(s) does not support the CapSelectCharacterSet capability.

· Units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are updated before return.

OPOS_E_FAILURE
An error occurred while communicating with one of the video units specified by Units. The ErrorUnits and ErrorString properties are updated before return.

Other Values
See ResultCode.

See Also
ErrorString Property; ErrorUnits Property; CapSelectCharacterSet Property; CharacterSet Property

SetCursor Method

Syntax
LONG SetCursor (LONG Units, LONG Row, LONG Column);
Parameter
Description

Units
Bitwise mask indicating which video unit(s) to operate on.
Row
Row to place the cursor on.

Column
Column to place the cursor on.

Remarks
This method will update the cursor position on the video unit(s) specified by the Units parameter.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· Row or Column positions are out of range.

· Units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are updated before return.

OPOS_E_FAILURE
An error occurred while communicating with one of the video units specified by Units. The ErrorUnits and ErrorString properties are updated before return.

Other Values
See ResultCode.

See Also
ErrorString Property; ErrorUnits Property

TransactionDisplay Method

Syntax
LONG TransactionDisplay (LONG Units, LONG Function);
Parameter
Description

Units
Bitwise mask indicating which video unit(s) to operate on.
Function
Transaction control function. Valid values are:

Value
Meaning

ROD_TD_TRANSACTION
Begin a transaction.

ROD_TD_NORMAL
End a transaction by displaying the buffered data.

Remarks
Enters or exits transaction mode for the video unit(s) specified by the Units parameter.

If Function is ROD_TD_TRANSACTION, then transaction mode is entered. Subsequent calls to ClearVideo, ClearVideoRegion, CopyVideoRegion, DisplayData, DrawBox, RestoreVideoRegion, SaveVideoRegion, and UpdateVideoRegionAttribute will buffer the display data (either at the video unit or the Service Object, depending on the display capabilities) until TransactionDisplay is called with the Function parameter set to ROD_TD_NORMAL. (In this case, the display methods only validate the method parameters and buffer the data – they do not initiate displaying. Also, the value of the AsyncMode property does not affect their operation: No OutputID will be assigned to the request, nor will an OutputCompleteEvent be fired.)

If Function is ROD_TD_NORMAL, then transaction mode is exited. If some data was buffered by calls to the methods ClearVideo, ClearVideoRegion, CopyVideoRegion, DisplayData, DrawBox, RestoreVideoRegion, SaveVideoRegion, and UpdateVideoRegionAttribute, then the buffered data is displayed. The entire transaction is treated as one message. This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Calling the ClearOutput method cancels transaction mode for the unit specified by the CurrentUnitID property. Any buffered print lines are also cleared.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· When CapTransaction is FALSE, this method is not supported.

· Function parameter is illegal.

· Units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are updated before return.

OPOS_E_BUSY
Cannot perform while output is in progress for one of the video units specified by Units. The ErrorUnits and ErrorString properties are updated before return. (Can only be returned if AsyncMode is FALSE and Function is ROD_TD_NORMAL)

OPOS_E_FAILURE
An error occurred communicating with one of the video units specified by Units. The ErrorUnits and ErrorString properties are updated before return. (Can only be returned if AsyncMode is FALSE and Function is ROD_TD_NORMAL)

Other Values
See ResultCode.

UpdateVideoRegionAttribute Method

Syntax
LONG UpdateVideoRegionAttribute (LONG Units, LONG Function,
LONG Row, LONG Column, LONG Height, LONG Width, LONG Attribute);
Parameter
Description

Units
Bitwise mask indicating which video unit(s) to operate on.

Function
The attribute command. See values below.
Row
The region’s start row.

Column
The region’s start column.

Height
The number of rows in the region.

Width
The number of columns in the region.

Attribute
See “Model” discussion in the General Information section.

The Function parameter values are:

Value
Meaning

ROD_UA_SET
Set the region with the new attribute.

ROD_UA_INTENSITY_ON
Turn on foreground intensity in the region.

ROD_UA_INTENSITY_OFF
Turn off foreground intensity in the region.

ROD_UA_REVERSE_ON
Reverse video the region.

ROD_UA_REVERSE_OFF
Remove reverse video from the region.

ROD_UA_BLINK_ON
Turn on blinking in the region.

ROD_UA_BLINK_OFF
Turn off blinking in the region.

Remarks
This method will modify the attribute on the video unit(s) specified by the Units parameter in the region defined by the Row, Column, Height, and Width parameters. When the Function parameter is ROD_UA_SET, the region’s attributes will be replaced with the new value in the Attribute parameter; otherwise the Attribute parameter is ignored and the region’s attributes will be modified.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· Row, Column, Height, or Width positions are out of range.

· Attribute or Function is illegal.

· Units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are updated before return.

OPOS_E_FAILURE
An error occurred while communicating with one of the video units specified by Units. The ErrorUnits and ErrorString properties are updated before return. (Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
AsyncMode Property; ErrorString Property; ErrorUnits Property; “Model” discussion

VideoSound Method

Syntax
LONG VideoSound (LONG Units, LONG Frequency, LONG Duration, LONG NumberOfCycles, LONG InterSoundWait);
Parameter
Description

Units
Bitwise mask indicating which video unit(s) to operate on.
Frequency
Tone frequency in Hertz.
Duration
Tone duration in milliseconds.

NumberOfCycles
If OPOS_FOREVER, then start tone sounding and, repeat continuously. Else perform the specified number of cycles.

InterSoundWait
When NumberOfCycles is not one, then pause for InterSoundWait milliseconds before repeating the tone cycle (before playing the tone again)

Remarks
Sound the video enunciator for the video(s) specified by the Units parameter.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

The duration of a video tone cycle is:

Duration parameter +

InterSoundWait parameter (except on the last tone cycle)

After the video has started an asynchronous sound, then the ClearOutput method will stop the sound. (When an InterSoundWait value of OPOS_FOREVER was used to start the sound, then the application must use ClearOutput to stop the continuous sounding of tones.)

If the CapTone property is FALSE for the selected unit(s), an OPOS_E_ILLEGAL is returned.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
One of the following errors occurred:

· NumberOfCycles is neither a positive, non-zero value nor OPOS_FOREVER.

· NumberOfCycles is OPOS_FOREVER when AsyncMode is FALSE.

· A negative InterSoundWait was specified.

· Units is zero or a non-existent unit was specified.

· A unit in Units does not support the CapTone capability.

The ErrorUnits and ErrorString properties may be updated before return.

OPOS_E_FAILURE
An error occurred while communicating with one of the video units specified by the Units parameter. The ErrorUnits and ErrorString properties are updated before return. (Can only be returned if AsyncMode is FALSE.)

Other Values
See ResultCode.

See Also
AsyncMode Property; ErrorString Property; ErrorUnits Property; CapTone Property; ClearOutput Method

Events

DataEvent Event

Syntax
void DataEvent (LONG Status);
The Status parameter is divided into four bytes. The diagram below indicates how the parameter Status is divided:

High Word
Low Word(Event Type)

High Byte
Low Byte

Row
Column
ROD_DE_TOUCH_UP
ROD_DE_TOUCH_DOWN
ROD_DE_TOUCH_MOVE

Remarks
Fired to indicate input data from a video touch unit to the application. The low word contains the Event Type. The high word contains additional data depending on the Event Type. When the Event Type is ROD_DE_TOUCH_UP, ROD_DE_TOUCH_DOWN, or ROD_DE_TOUCH_MOVE, the high word indicates where the touch occurred. The low byte contains the Column position and the high byte contains the Row position, with valid values ranging from 0-255.

Data events can be filtered at the remote order display device by setting the EventTypes property.

The EventUnitID property is updated before delivering the event.

See Also
“Input Model”; EventUnitID Property; DataEventEnabled Property; FreezeEvents Property

OutputCompleteEvent Event

Syntax
void OutputCompleteEvent (LONG OutputID);
The OutputID parameter indicates the ID number of the asynchronous output request that is complete.

Remarks
Fired when a previously started asynchronous output request completes successfully.

The EventUnits property is updated before delivering the event.

See Also
“Output Model”; EventUnits Property

StatusUpdateEvent Event

Syntax
void StatusUpdateEvent (LONG Status);
The Status parameter reports a change in the power state of a video unit.

Remarks
Fired when the remote order display device detects a power state change.

Deviation from the standard StatusUpdateEvent (see page 68):

· Before delivering the event, the EventUnits property is set to the units for which the new power state applies.

· When the remote order display device is enabled, then the Control will fire a StatusUpdateEvent to specify the bitmask of online units.

· While the remote order display device is enabled, a StatusUpdateEvent is fired when the power state of one or more units change. If more than one unit changes state at the same time, the Service Object may choose to either fire multiple events or to coalesce the information into a minimal number of events applying to EventUnits.

See Also
EventUnits Property

ErrorEvent Event

Syntax
void ErrorEvent (LONG ResultCode, LONG ResultCodeExtended,
LONG ErrorLocus, LONG* pErrorResponse);
Parameter
Description

ResultCode
Result code causing the error event. See ResultCode for values.

ResultCodeExtended
Extended result code causing the error event. See ResultCodeExtended for values.

ErrorLocus
Location of the error. See values below.

pErrorResponse
Pointer to the error event response. See values below.

The ErrorLocus parameter may be one of the following:

Value
Meaning

OPOS_EL_OUTPUT
Error occurred while processing asynchronous output.

OPOS_EL_INPUT
Error occurred while gathering or processing event-driven input. No input data is available.

OPOS_EL_INPUT_DATA
Error occurred while gathering or processing event-driven input, and some previously buffered data is available.

The contents at the location pointed to by the pErrorResponse parameter are preset to a default value, based on the ErrorLocus. The application may change the value to one of the following:

Value
Meaning

OPOS_ER_RETRY
Use only when locus is OPOS_EL_OUTPUT.
Retry the asynchronous output. The error state is exited.
Default when locus is OPOS_EL_OUTPUT.

OPOS_ER_CLEAR
Clear the buffered input data. The error state is exited.
Default when locus is OPOS_EL_INPUT.

OPOS_ER_CONTINUEINPUT
Use only when locus is OPOS_EL_INPUT_DATA. Acknowledges the error and directs the Control to continue processing. The Control remains in the error state, and will deliver additional DataEvents as directed by the DataEventEnabled property. When all input has been delivered and the DataEventEnabled property is again set to TRUE, then another ErrorEvent is delivered with locus OPOS_EL_INPUT.
Default when locus is OPOS_EL_INPUT_DATA.

Remarks
Fired when an error is detected while trying to read remote order display data.

Input error events are not delivered until the DataEventEnabled property is TRUE, so that proper application sequencing occurs.

The EventUnits and EventString properties are updated before return.

See Also
 “Status, Result Code, and State Model”; DataEventEnabled Property; EventUnits Property; EventString Property

Chapter 17
Scale

Summary

Properties

Common

Type
Access
Initialized After

AutoDisable
1.3
Boolean
R/W
Open

BinaryConversion
1.2
Long
R/W
Open

CapPowerReporting
1.3
Long
R
Open

CheckHealthText
1.0
String
R
Open

Claimed
1.0
Boolean
R
Open

DataCount
1.3
Long
R
Open

DataEventEnabled
1.3
Boolean
R/W
Open

DeviceEnabled
1.0
Boolean
R/W
Open & Claim

FreezeEvents
1.0
Boolean
R/W
Open

OutputID
1.0
Long
R
Not Supported

PowerNotify
1.3
Long
R/W
Open

PowerState
1.3
Long
R
Open

ResultCode
1.0
Long
R
--

ResultCodeExtended
1.0
Long
R
Open

State
1.0
Long
R
--

ControlObjectDescription
1.0
String
R
--

ControlObjectVersion
1.0
Long
R
--

ServiceObjectDescription
1.0
String
R
Open

ServiceObjectVersion
1.0
Long
R
Open

DeviceDescription
1.0
String
R
Open

DeviceName
1.0
String
R
Open

Specific

Type
Access
Initialized After

CapDisplay
1.2
Boolean
R
Open

CapDisplayText
1.3
Boolean
R
Open

CapPriceCalculating
1.3
Boolean
R
Open

CapTareWeight
1.3
Boolean
R
Open

CapZeroScale
1.3
Boolean
R
Open

AsyncMode
1.3
Boolean
R/W
Open

MaxDisplayTextChars
1.3
Long
R
Open

MaximumWeight
1.0
Long
R
Open

SalesPrice
1.3
Currency
R
Open, Claim, & Enable

TareWeight
1.3
Long
R/W
Open, Claim, & Enable

UnitPrice
1.3
Currency
R/W
Open, Claim, & Enable

WeightUnit
1.0
Long
R
Open

Methods

Common

May Use After

Open
1.0
--

Close
1.0
Open

Claim
1.0
Open

Release
1.0
Open & Claim

CheckHealth
1.0
Open, Claim, & Enable

ClearInput
1.3
Open & Claim

ClearOutput
1.0
Not Supported

DirectIO
1.0
Open

Specific

DisplayText
1.3
Open, Claim, & Enable

ReadWeight
1.0
Open, Claim, & Enable

ZeroScale
1.3
Open, Claim, & Enable

Events

Name

May Occur After

DataEvent
1.3
Open, Claim, & Enable

DirectIOEvent
1.0
Open, Claim

ErrorEvent
1.3
Open, Claim, & Enable

OutputCompleteEvent
1.0
Not Supported

StatusUpdateEvent
1.3
Open, Claim, & Enable

General Information

The Scale Control’s OLE programmatic ID is “OPOS.Scale”.

Capabilities

The scale has the following capability:

· Provides item weight to the application. The measure of weight may be in grams, kilograms, ounces, or pounds, depending upon the scale device.

The scale may have the following additional capabilities:

· Includes an integrated display with the current weight, or with the current weight plus Application-specified text.

· Performs price calculations (weight X unit price) and returns the sale price. (This feature is mostly used in Europe at this time.)

· Supports Application setting of tare weight.

· Supports Application zeroing of the scale.

Model

The general model of a scale is:

· A scale returns the weight of an item placed on its weighing surface.

· The primary scale method is ReadWeight. By default, it is performed synchronously. It returns after reading data from the scale; the weight is returned in the location pointed to by the method parameter pWeightData. If an error occurs or if the timeout elapses, the ReadWeight method returns with an error code.

· OPOS Release 1.3 and later – Asynchronous Input

If the property AsyncMode is TRUE when ReadWeight is called, then the method is performed asynchronously. It initiates event driven input and returns immediately. The timeout parameter specifies the maximum time the application wants to wait for a settled weight. Additional points are:

· If an error occurs while initiating event driven input (such as the device is offline), then an error code is returned by ReadWeight. Otherwise, ReadWeight returns a success status to the Application, and scale processing continues asynchronously …

· If a settled weight is received, then a DataEvent is enqueued containing the weight data in the Status parameter.

· If a scale error occurs (including a timeout with no settled weight), then an ErrorEvent is enqueued with an error code. The Application event handler may retry the weighing process by setting the response parameter (pointed to by pErrorResponse) to OPOS_ER_RETRY.

· Only one asynchronous call to ReadWeight can be in progress at a time. Nesting of asynchronous scale operations is illegal.

· An asynchronous scale operation may be cancelled with the ClearInput method.

For price-calculating scales, the Application must set the property UnitPrice before calling ReadWeight. After a weight is read (and just before the DataEvent is delivered to the Application, for asynchronous mode), the Control sets the property SalesPrice to the calculated price of the item.

Device Sharing

The scale is an exclusive-use device, as follows:

· After opening the device, properties are readable.

· The application must claim the device before enabling it.

· The application must claim and enable the device before calling methods that manipulate the device.

· See the “Summary” table for precise usage prerequisites.

Properties

AsyncMode Property R/W
Added in Release 1.3
Syntax
BOOL AsyncMode;

Remarks
If TRUE, then the ReadWeight method will be performed asynchronously.
If FALSE, this methods will be performed synchronously.

This property is initialized to FALSE by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

See Also
ReadWeight Method

CapDisplay Property
Added in Release 1.2
Syntax
BOOL CapDisplay;

Remarks
Set to TRUE if the scale includes an integrated display that shows the current weight;
otherwise it is FALSE, indicating that the application may need to show the current weight on another display.

This property is initialized by the Open method.

CapDisplayText Property
Added in Release 1.3
Syntax
BOOL CapDisplayText;

Remarks
Set to TRUE if the scale includes an integrated display that shows the current weight and can also show a text that describes the item being weighed. Otherwise FALSE, indicating that extra text cannot be shown on the display.

If TRUE, then CapDisplay must also be TRUE.

This property is initialized by the Open method.

See Also
MaxDisplayTextChars Property

CapPriceCalculating Property
Added in Release 1.3
Syntax
BOOL CapPriceCalculating;

Remarks
Set to TRUE if the scale can calculate prices. Otherwise FALSE, indicating that the scale only returns a weight.

For price calculating scales the calculation unit is in the scale rather than in the data-receiving terminal. For price-calculating scales the UnitPrice property is to be set before calling the ReadWeight method

This property is initialized by the Open method.

See Also
ReadWeight Method, WeightUnit Property,
UnitPrice Property, SalesPrice Property

CapTareWeight Property
Added in Release 1.3
Syntax
BOOL CapTareWeight;

Remarks
Set to TRUE if the scale includes setting a tare value. Otherwise FALSE, indicating that the scale does not support tare values.

This property is initialized by the Open method.

See Also
TareWeight Property

CapZeroScale Property
Added in Release 1.3
Syntax
BOOL CapZeroScale;

Remarks
Set to TRUE if the Application can set the scale weight to zero. Otherwise FALSE, indicating that the scale does not support programmatic zeroing.

This property is initialized by the Open method.

See Also
ZeroScale Method

MaxDisplayTextChars Property
Added in Release 1.3
Syntax
LONG MaxDisplayTextChars;

Remarks
The number of characters that may be displayed on an integrated display for the text which describes an article.

If the capability CapDisplayText is FALSE, then the device does not support text displaying and MaxDisplayTextChars is always zero.

This property is initialized by the Open method.

See Also
CapDisplayText Property

MaximumWeight Property

Syntax
LONG MaximumWeight;
Remarks
Holds the maximum weight measurement possible from the scale. The measurement unit is available via the WeightUnit property.

MaximumWeight has an assumed decimal place located after the “thousands” digit position. For example, an actual value of 12345 represents 12.345, and an actual value of 5 represents 0.005.

This property is initialized by the Open method.

See Also
WeightUnit Property

SalesPrice Property
Added in Release 1.3
Syntax
CURRENCY SalesPrice;

Remarks
The sales price read from the scale for price calculating scales. For price-calculating scales the scale calculates this value during the process of weighing by multiplying the UnitPrice property by the acquired weight.

This property is set by the control before the ReadWeight method returns (in synchronous use) or the DataEvent is delivered by the control (in asynchronous use).

If the capability CapPriceCalculating is FALSE then the device is not a price-calculating scale and SalesPrice is always zero.

This property is initialized by the Open method to zero.

See Also
ReadWeight Method, WeightUnit Property, CapPriceCalculating Property, UnitPrice Property

TareWeight Property R/W
Added in Release 1.3
Syntax
LONG TareWeight;

Remarks
Holds the tare weight of scale data. The weight in TareWeight property has an assumed fractional part of three digits. For example, an actual value of 12345 represents 12.345, and an actual value of 5 represents 0.005. The measured unit is specified in the WeightUnit property. If the capability CapTareWeight is FALSE then the device does not support setting of a tare value and TareWeight is always zero.

Tare weight is not included in the item weight returned by the ReadWeight method.

This property is initialized by the Open method to the scale’s default tare weight (usually zero)

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
CapTareWeight is FALSE or an invalid tare value was specified.

Other Values
See ResultCode.

See Also
CapTareWeight Property, ReadWeight Method, WeightUnit Property

UnitPrice Property R/W
Added in Release 1.3
Syntax
CURRENCY UnitPrice;

Remarks
Holds the unit price of the article to be weighed. For price calculating scales this property is to be set before starting the process of weighing. The scale itself calculates during weighing the property SalesPrice by multiplying the UnitPrice with the pWeightData parameter of the ReadWeight method. So, this property contains only a factor.

If the capability CapPriceCalculating is FALSE then the scale is not a price-calculating scale. In this case, setting of a unit price is not supported and UnitPrice is always zero.

This property is initialized by the Open method to zero.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
CapPriceCalculating is FALSE or an invalid price was specified.

Other Values
See ResultCode.

See Also
ReadWeight Method, WeightUnit Property, CapPriceCalculating Property, SalesPrice Property

WeightUnit Property

Syntax
LONG WeightUnit;
LONG WeightUnits;

(Synonym for WeightUnit.
)

Remarks
Holds the unit of weight of scale data.

Valid units are:

Value
Meaning

SCAL_WU_GRAM
Unit is a gram.

SCAL_WU_KILOGRAM
Unit is a kilogram (= 1000 grams).

SCAL_WU_OUNCE
Unit is an ounce.

SCAL_WU_POUND
Unit is a pound (= 16 ounces).

This property is initialized to the scale’s weight unit by the Open method.

Methods

DisplayText Method
Added in Release 1.3
Syntax
LONG DisplayText (BSTR Data);
Parameter
Description

Data
The string of characters to display.
The format of this data depends upon the value of the BinaryConversion property. See page 37.

Remarks
Call this method to update the text shown on the integrated display. Calling this method with an empty string (“”) will clear the display.

If the capability CapDisplayText is FALSE, then the device does not support text displaying and DisplayText will fail.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
An invalid text was specified – the text contains more characters than allowed in MaxDisplayTextChars, or displaying text is not allowed.

Other Values
See ResultCode.

See Also
CapDisplay Property, CapDisplayText Property,
MaxDisplayTextChars Property,
ReadWeight Method

Syntax
LONG ReadWeight (LONG* pWeightData, LONG Timeout);
Parameter
Description

pWeightData
If AsyncMode is FALSE, points to where the weight is returned; else must be zero.

Timeout
The number of milliseconds to wait for a settled weight before failing the method.
If zero, the method attempts to read the scale weight, then returns the appropriate status immediately.
If OPOS_FOREVER (-1), the method waits as long as needed until a weight is successfully read or an error occurs.

Remarks
Call to read a weight from the scale.

Release 1.0 – 1.2

The weighing process is performed synchronously and the method will return after finishing the weighing process. The weight is returned at pWeightData,

Release 1.3 and later

If AsyncMode is FALSE, then ReadWeight operates synchronously, as with earlier releases.

If AsyncMode is TRUE, the weighing process is performed asynchronously. The method will initiate a read, then return immediately. If the method returns a success status, the weighing process is started and a DataEvent containing the weight in its Status parameter indicates its completion.

The weight has an assumed decimal place located after the “thousands” digit position. For example, an actual value of 12345 represents 12.345, and an actual value of 5 represents 0.005.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
A valid weight was read and placed into the specified location.

OPOS_E_ILLEGAL
An invalid Timeout parameter was specified.

OPOS_E_TIMEOUT
A stable non-zero weight was not available before Timeout milliseconds elapsed (only if AsyncMode is FALSE).

OPOS_E_EXTENDED
ResultCodeExtended = OPOS_ESCAL_OVERWEIGHT:
The weight was over MaximumWeight.

Other Values
See ResultCode.

See Also
UnitPrice Property, WeightUnit Property, CapPriceCalculating Property, SalesPrice Property, TareWeight Property

ZeroScale Method
Added in Release 1.3
Syntax
LONG ZeroScale ();
Remarks
Call to set the current scale weight to zero. It may be used for initial calibration, or to account for tare weight on the scale.

May be called only if the property CapZeroScale is TRUE.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The method was successful.

OPOS_E_ILLEGAL
Scale zeroing is not supported.

Other Values
See ResultCode.

See Also
CapZeroScale Property

Events

DataEvent Event

Syntax
void DataEvent (LONG Status);
The Status parameter contains the weight.

Remarks
Fired to present input data from the device to the application after an asynchronous ReadWeight was initiated.

If the scale is a price-calculating scale, the unit price is placed in the UnitPrice property and the calculated sales price is placed in the SalesPrice property before this event is delivered.

ErrorEvent Event

Syntax
void ErrorEvent (LONG ResultCode, LONG ResultCodeExtended,
LONG ErrorLocus, LONG* pErrorResponse);
Parameter
Description

ResultCode
Result code causing the error event. See ResultCode for values.

ResultCodeExtended
Extended result code causing the error event. See ResultCodeExtended for values.

ErrorLocus
Location of the error. See values below.

pErrorResponse
Pointer to the error event response. See values below.

The ErrorLocus parameter may be one of the following:

Value
Meaning

OPOS_EL_INPUT
Error occurred while gathering or processing event-driven input. No input data is available.

OPOS_EL_INPUT_DATA
Error occurred while gathering or processing event-driven input, and some previously buffered data is available.

The contents at the location pointed to by the pErrorResponse parameter are preset to a default value, based on the ErrorLocus. The application may change the value to one of the following:

Value
Meaning

OPOS_ER_CLEAR
Clear the buffered input data. The error state is exited.
Default when locus is OPOS_EL_INPUT.

OPOS_ER_CONTINUEINPUT
Use only when locus is OPOS_EL_INPUT_DATA. Acknowledges the error and directs the Control to continue processing. The Control remains in the error state, and will deliver additional DataEvents as directed by the DataEventEnabled property. When all input has been delivered and the DataEventEnabled property is again set to TRUE, then another ErrorEvent is delivered with locus OPOS_EL_INPUT.
Default when locus is OPOS_EL_INPUT_DATA.

Remarks
Fired when an error is detected while trying to read scale data.

Input error events are not delivered until the DataEventEnabled property is TRUE, so that proper application sequencing occurs.

See Also
“Status, Result Code, and State Model”

Chapter 18
Scanner (Bar Code Reader)

Summary

Properties

Common

Type
Access
Initialized After

AutoDisable
1.2
Boolean
R/W
Open

BinaryConversion
1.2
Long
R/W
Open

CapPowerReporting
1.3
Long
R
Open

CheckHealthText
1.0
String
R
Open

Claimed
1.0
Boolean
R
Open

DataCount
1.2
Long
R
Open

DataEventEnabled
1.0
Boolean
R/W
Open

DeviceEnabled
1.0
Boolean
R/W
Open & Claim

FreezeEvents
1.0
Boolean
R/W
Open

OutputID
1.0
Long
R
Not Supported

PowerNotify
1.3
Long
R/W
Open

PowerState
1.3
Long
R
Open

ResultCode
1.0
Long
R
--

ResultCodeExtended
1.0
Long
R
Open

State
1.0
Long
R
--

ControlObjectDescription
1.0
String
R
--

ControlObjectVersion
1.0
Long
R
--

ServiceObjectDescription
1.0
String
R
Open

ServiceObjectVersion
1.0
Long
R
Open

DeviceDescription
1.0
String
R
Open

DeviceName
1.0
String
R
Open

Specific

Type
Access
Initialized After

DecodeData
1.2
Boolean
R/W
Open

ScanData
1.0
String
R
Open

ScanDataLabel
1.2
String
R
Open

ScanDataType
1.2
Long
R
Open

Methods

Common

May Use After

Open
1.0
--

Close
1.0
Open

Claim
1.0
Open

Release
1.0
Open & Claim

CheckHealth
1.0
Open, Claim, & Enable

ClearInput
1.0
Open & Claim

ClearOutput
1.0
Not Supported

DirectIO
1.0
Open

Events

Name

May Occur After

DataEvent
1.0
Open, Claim, & Enable

DirectIOEvent
1.0
Open, Claim

ErrorEvent
1.0
Open, Claim, & Enable

OutputCompleteEvent
1.0
Not Supported

StatusUpdateEvent
1.3
Open, Claim, & Enable

General Information

The Scanner Control’s OLE programmatic ID is “OPOS.Scanner”.

Capabilities

The Scanner Control has the following capability:

· Reads encoded data from a label.

Model

The Scanner Control follows the general “Input Model” for event-driven input:

· When input is received by the Control, it enqueues a DataEvent.

· If the AutoDisable property is TRUE, then the control automatically disables itself when a DataEvent is enqueued.

· An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is TRUE. Just before delivering this event, the Control copies the data into properties, and disables further data events by setting the DataEventEnabled property to FALSE. This causes subsequent input data to be enqueued by the Control while the application processes the current input and associated properties. When the application has finished the current input and is ready for more data, it reenables events by setting DataEventEnabled to TRUE.

· An ErrorEvent (or events) are enqueued if the Control encounters an error while gathering or processing input, and is delivered to the application when the DataEventEnabled property is TRUE.

· The DataCount property may be read to obtain the number of DataEvents enqueued by the Control.

· All input enqueued by the Control may be deleted by calling the ClearInput method.

Scanned data is placed into the property ScanData. If the application sets the property DecodeData to TRUE, then the data is decoded into ScanDataLabel and ScanDataType.

Device Sharing

The scanner is an exclusive-use device, as follows:

· The application must claim the device before enabling it.

· The application must claim and enable the device before the device begins reading input.

· See the “Summary” table for precise usage prerequisites.

Properties

DecodeData Property R/W
Added in Release 1.2
Syntax
BOOL DecodeData;
Remarks
If TRUE, then the Control will decode ScanData into the properties ScanDataLabel and ScanDataType.

This property is initialized to FALSE by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

ScanData Property

Syntax
BSTR ScanData;
Remarks
The data read from the scanner.
The format of this data depends upon the value of the BinaryConversion property. See page 37.

Scan data is, in general, in the format as delivered from the scanner. Message header and trailer information should be removed, however, since they do not contain useful information for an application and are likely to be scanner-specific.

Common header information is a prefix character (such as an STX character). Common trailer information is a terminator character (such as an ETX or CR character) and a block check character if one is generated by the scanner.

ScanData should include a symbology character if one is returned by the scanner (for example, an ‘A’ for UPC-A). ScanData should also include check digits if they are present in the label and returned by the scanner. (Note that both symbology characters and check digits may or may not be present, depending upon the scanner configuration. The Scanner Control will return them if present, but will not generate or calculate them if they are absent.)

Some merchandise may be marked with a supplemental barcode. This barcode is typically placed to the right of the main barcode, and consists of an additional two or five characters of information. If the scanner reads merchandise that contains both main and supplemental barcodes, the supplemental characters are appended to the main characters, and the result is delivered to the application as one label. (Note that a scanner may support configuration that enables or disables the reading of supplemental codes.)

Some merchandise may be marked with multiple labels, sometimes called multi-symbol labels or tiered labels. These barcodes are typically arranged vertically, and may be of the same or different symbology. If the scanner reads merchandise that contains multiple labels, each barcode is delivered to the application as a separate label. This is necessary due to the current lack of standardization of these barcode types. One is not able to determine all variations based upon the individual barcode data. Therefore, the application will need to determine when a multiple label barcode has been read based upon the data returned. (Note that a scanner may or may not support reading of multiple labels.)

This property is set by the Control just before delivering the DataEvent.

ScanDataLabel Property
Added in Release 1.2
Syntax
BSTR ScanDataLabel;

Remarks
The decoded bar code label.
The format of this data depends upon the value of the BinaryConversion property. See page 37.

When the property DecodeData is FALSE, ScanDataLabel is set to the empty string (“”).

When the property DecodeData is TRUE, the Control decodes ScanData into ScanDataLabel as follows:

· Scanner-generated symbology characters are removed, if present.

· If the label type contains a readable check digit (such as with UPC-A and EAN-13), then it must be present in ScanDataLabel. If the scanner does not return the check digit to the Service Object, then it is to be calculated and included.

· For variable length bar codes, the length identification is removed, if present.

For example, the EAN-13 barcode which appears printed as "5 018374 827715" on a label may be received from the scanner and placed into ScanData as the following:

Received from scanner
ScanData
Comment

5018374827715
5018374827715
Complete barcode only

501837482771<CR>
501837482771
Without check digit with carriage return

F5018374827715<CR>
F5018374827715
With scanner-dependent symbology character and carriage return

<STX>F5018374827715<ETX>
F5018374827715
With header, symbology character, and trailer

For each of these cases (and any other variations), ScanDataLabel must always be set to the string "5018374827715", and ScanDataType must be set to SCAN_SDT_EAN13.

This property is set by the Control just before delivering the DataEvent.

ScanDataType Property
Added in Release 1.2
Syntax
LONG ScanDataType ;

Remarks
The decoded bar code label type.

When the property DecodeData is FALSE, ScanDataType is set to SCAN_SDT_UNKNOWN.

When the property DecodeData is TRUE, the Control tries to determine the scan label type. The Scanner Control header file (OposScan.h) defines several symbologies with constant names beginning with SCAN_SDT.

The following label types are defined in this release:

Value
Label Type

One Dimensional Symbologies

SCAN_SDT_UPCA
UPC-A

SCAN_SDT_UPCA_S
UPC-A with supplemental barcode

SCAN_SDT_UPCE
UPC-E

SCAN_SDT_UPCE_S
UPC-E with supplemental barcode

SCAN_SDT_UPCD1
UPC-D1

SCAN_SDT_UPCD2
UPC-D2

SCAN_SDT_UPCD3
UPC-D3

SCAN_SDT_UPCD4
UPC-D4

SCAN_SDT_UPCD5
UPC-D5

SCAN_SDT_EAN8
EAN 8 (= JAN 8)

SCAN_SDT_JAN8
JAN 8 (= EAN 8)

SCAN_SDT_EAN8_S
EAN 8 with supplemental barcode

SCAN_SDT_EAN13
EAN 13 (= JAN 13)

SCAN_SDT_JAN13
JAN 13 (= EAN 13)

SCAN_SDT_EAN13_S
EAN 13 with supplemental barcode

SCAN_SDT_EAN128
EAN-128

SCAN_SDT_TF
Standard (or discrete) 2 of 5

SCAN_SDT_ITF
Interleaved 2 of 5

SCAN_SDT_Codabar
Codabar

SCAN_SDT_Code39
Code 39

SCAN_SDT_Code93
Code 93

SCAN_SDT_Code128
Code 128

SCAN_SDT_OCRA
OCR “A”

SCAN_SDT_OCRB
OCR “B”

Two Dimensional Symbologies

SCAN_SDT_PDF417
PDF 417

SCAN_SDT_MAXICODE
MAXICODE

Special Cases

SCAN_SDT_OTHER
If greater or equal to this type, then the Service Object has returned a non-OPOS defined symbology.

SCAN_SDT_UNKNOWN
The Service Object cannot determine the barcode symbology. ScanDataLabel may not be properly formatted for the actual barcode type.

This property is set by the Control just before delivering the DataEvent.

Events

DataEvent Event

Syntax
void DataEvent (LONG Status);
The Status parameter contains zero.

Remarks
Fired to present input data from the device to the application. The scanner data is placed in the ScanData, ScanDataLabel, and ScanDataType properties before this event is delivered.

ErrorEvent Event

Syntax
void ErrorEvent (LONG ResultCode, LONG ResultCodeExtended,
LONG ErrorLocus, LONG* pErrorResponse);
Parameter
Description

ResultCode
Result code causing the error event. See ResultCode for values.

ResultCodeExtended
Extended result code causing the error event. See ResultCodeExtended for values.

ErrorLocus
Location of the error. See values below.

pErrorResponse
Pointer to the error event response. See values below.

The ErrorLocus parameter may be one of the following:

Value
Meaning

OPOS_EL_INPUT
Error occurred while gathering or processing event-driven input. No input data is available.

OPOS_EL_INPUT_DATA
Error occurred while gathering or processing event-driven input, and some previously buffered data is available.

The contents at the location pointed to by the pErrorResponse parameter are preset to a default value, based on the ErrorLocus. The application may change the value to one of the following:

Value
Meaning

OPOS_ER_CLEAR
Clear the buffered input data. The error state is exited.
Default when locus is OPOS_EL_INPUT.

OPOS_ER_CONTINUEINPUT
Use only when locus is OPOS_EL_INPUT_DATA. Acknowledges the error and directs the Control to continue processing. The Control remains in the error state, and will deliver additional DataEvents as directed by the DataEventEnabled property. When all input has been delivered and the DataEventEnabled property is again set to TRUE, then another ErrorEvent is delivered with locus OPOS_EL_INPUT.
Default when locus is OPOS_EL_INPUT_DATA.

Remarks
Fired when an error is detected while trying to read scanner data.

Input error events are not delivered until the DataEventEnabled property is TRUE, so that proper application sequencing occurs.

See Also
“Status, Result Code, and State Model”

Chapter 19
Signature Capture

Summary

Properties

Common

Type
Access
Initialized After

AutoDisable
1.2
Boolean
R/W
Open

BinaryConversion
1.2
Long
R/W
Open

CapPowerReporting
1.3
Long
R
Open

CheckHealthText
1.0
String
R
Open

Claimed
1.0
Boolean
R
Open

DataCount
1.2
Long
R
Open

DataEventEnabled
1.0
Boolean
R/W
Open

DeviceEnabled
1.0
Boolean
R/W
Open & Claim

FreezeEvents
1.0
Boolean
R/W
Open

OutputID
1.0
Long
R
Not Supported

PowerNotify
1.3
Long
R/W
Open

PowerState
1.3
Long
R
Open

ResultCode
1.0
Long
R
--

ResultCodeExtended
1.0
Long
R
Open

State
1.0
Long
R
--

ControlObjectDescription
1.0
String
R
--

ControlObjectVersion
1.0
Long
R
--

ServiceObjectDescription
1.0
String
R
Open

ServiceObjectVersion
1.0
Long
R
Open

DeviceDescription
1.0
String
R
Open

DeviceName
1.0
String
R
Open

Specific

Type
Access
Initialized After

CapDisplay
1.0
Boolean
R
Open

CapRealTimeData
1.2
Boolean
R
Open

CapUserTerminated
1.0
Boolean
R
Open

MaximumX
1.0
Long
R
Open

MaximumY
1.0
Long
R
Open

RawData
1.0
String
R
Open, Claim, & Enable

RealTimeDataEnabled
1.2
Boolean
R/W
Open

TotalPoints
1.0
Long
R
Open, Claim, & Enable

PointArray
1.0
String
R
Open, Claim, & Enable

Methods

Common

May Use After

Open
1.0
--

Close
1.0
Open

Claim
1.0
Open

Release
1.0
Open & Claim

CheckHealth
1.0
Open, Claim, & Enable

ClearInput
1.0
Open & Claim

ClearOutput
1.0
Not Supported

DirectIO
1.0
Open

Specific

BeginCapture
1.0
Open, Claim, & Enable

EndCapture
1.0
Open, Claim, & Enable

Events

Name

May Occur After

DataEvent
1.0
Open, Claim, & Enable

DirectIOEvent
1.0
Open, Claim

ErrorEvent
1.0
Open, Claim, & Enable

OutputCompleteEvent
1.0
Not Supported

StatusUpdateEvent
1.3
Open, Claim, & Enable

General Information

The Signature Capture Control’s OLE programmatic ID is “OPOS.SigCap”.

Capabilities

The Signature Capture Control has the following capability:

· Obtains a signature captured by a signature capture device. The captured signature data is in the form of lines consisting of a series of points. Each point lies within the coordinate system defined by the resolution of the device, where (0, 0) is the upper-left point of the device, and (MaximumX, MaximumY) is the lower-right point. The signature line points are presented to the application by a DataEvent with a single array of line points

The Signature Capture Control may have the following additional capabilities:

· Provides a way for the user to terminate signature capture – that is, to tell the device that she or he has completed the signature.

· Displays form/data on the signature capture device.

· Returns the signature in “real time” as it is entered on the device. If this capability is true and has been enabled by application by setting the RealTimeDataEnabled property to TRUE, then a series of DataEvents are generated, each with an array of one or more line points representing a partial signature.

Model

The signature capture device usage model is:

· Open and claim the device.

· Enable the device and set DataEventEnabled to TRUE.

· Begin capturing a signature by calling the BeginCapture method. This method displays a form or data screen (if the device has a display) and enables the stylus.

· If the device is capable of supplying signature data in real time as the signature is entered (CapRealTimeData is set to TRUE), and if the RealTimeDataEnabled property is set to TRUE, the signature is presented to the application as a series of partial signature data events until the signature capture is terminated.

· If the device provides a way for the user to terminate the signature, then when the user terminates, the Control fires a DataEvent. Otherwise, the application must call the EndCapture method to terminate the signature.

· Disable the device. If the device has a display, this also clears the display.

The Signature Capture Control follows the general “Input Model” for event-driven input:

· When input is received by the Control, it enqueues a DataEvent.

· If the AutoDisable property is TRUE, then the control automatically disables itself when a DataEvent is enqueued.

· An enqueued DataEvent can be delivered to the application when the DataEventEnabled property is TRUE. Just before delivering this event, the Control copies the data into properties, and disables further data events by setting the DataEventEnabled property to FALSE. This causes subsequent input data to be enqueued by the Control while the application processes the current input and associated properties. When the application has finished the current input and is ready for more data, it reenables events by setting DataEventEnabled to TRUE.

· An ErrorEvent (or events) are enqueued if the Control encounters an error while gathering or processing input, and is delivered to the application when the DataEventEnabled property is TRUE.

· The DataCount property may be read to obtain the number of DataEvents enqueued by the Control.

· All input enqueued by the Control may be deleted by calling the ClearInput method.

Deviations from the Input Model are:

· The capture of signature data begins when the BeginCapture method is called.

· If signature capture is terminated by calling EndCapture, then no DataEvent is fired.

Device Sharing

The signature capture device is an exclusive-use device, as follows:

· The application must claim the device before enabling it.

· The application must claim and enable the device before calling methods that manipulate the device or before changing some writable properties.

· See the “Summary” table for precise usage prerequisites.

Properties

CapDisplay Property

Syntax
BOOL CapDisplay;

Remarks
Set to TRUE if the device is able to display a form or data entry screen;
otherwise it is FALSE.

This property is initialized by the Open method.

CapRealTimeData Property
Added in Release 1.2
Syntax
BOOL CapRealTimeData;

Remarks
Set to TRUE if the device is able to supply signature data as the signature is being captured (“real time”);
otherwise it is FALSE.

This property is initialized by the Open method.

CapUserTerminated Property

Syntax
BOOL CapUserTerminated;

Remarks
Set to TRUE if the user is able to terminate signature capture by checking a completion box, pressing a completion button, or performing some other interaction with the device.

Contains FALSE if the application must end signature capture by calling the EndCapture method.

This property is initialized by the Open method.

DeviceEnabled Property R/W (Common)

Syntax
BOOL DeviceEnabled;
Remarks
Set to TRUE to enable the signature capture device.

Set to FALSE to disable the device. If CapDisplay is TRUE, then the display screen of the device is cleared.

This property is initialized to FALSE by the Open method.

MaximumX Property

Syntax
LONG MaximumX;

Remarks
Contains the maximum horizontal coordinate of the signature capture device. It must be less than 65,536.
This property is initialized by the Open method.

MaximumY Property

Syntax
LONG MaximumY;

Remarks
Contains the maximum vertical coordinate of the signature capture device. It must be less than 65,536.

This property is initialized by the Open method.

PointArray Property

Syntax
BSTR PointArray;

Remarks
Contains the signature captured from the device. It consists of an array of (x, y) coordinate points with the number of array entries specified in TotalPoints. Each point is represented by four characters: x (low 8 bits), x (high 8 bits), y (low 8 bits), y (high 8 bits).
The format of this data depends upon the value of the BinaryConversion property. See page 37.

A special point value is (0xFFFF, 0xFFFF) which indicates the end of a line (that is, a pen lift). Almost all signatures are comprised of more than one line.

If the RealTimeDataEnabled property is FALSE, then PointArray contains the entire captured signature.
If the RealTimeDataEnabled property is TRUE, then PointArray contains at least one point of the signature. The actual number of points delivered at one time is implementation dependent. The points from multiple data events are logically concatenated to form the entire signature, such that the last point from a data event is followed immediately by the first point of the next data event.

The point representation definition is the same regardless of whether the signature is presented as a single PointArray, or as a series of real time PointArrays.

Reconstruction of the signature using the points is accomplished by beginning a line from the first point in the signature to the second point, then to the third, and so on. When an end-of-line point is encountered, the drawing of the line ends, and the next line is drawn beginning with the next point. An end-of-line point is assumed (but need not be present in PointArray) at the end of the signature.

This property is set by the Control just before delivering the DataEvent or by the EndCapture method.

See Also
RawData Property

RawData Property

Syntax
BSTR RawData;

Remarks
Contains the signature captured from the device in a device-specific format.
The format of this data depends upon the value of the BinaryConversion property. See page 37.

This data is often in a compressed form to minimize signature storage requirements. Reconstruction of the signature from this data requires device-specific processing.

This property is set by the Control just before delivering the DataEvent or by the EndCapture method.

See Also
TotalPoints Property; PointArray Property

RealTimeDataEnabled Property R/W
Added in Release 1.2
Syntax
BOOL RealTimeDataEnabled;
Remarks
When CapRealTimeData is TRUE and this property is set to TRUE, a series of partial signature data events is fired as the signature is captured until signature capture is terminated.

Else, the captured signature is fired as a single data event when signature capture is terminated.

This property is initialized to FALSE by the Open method.

Return
When this property is set, one of the following values is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
Cannot set to TRUE because CapRealTimeData is FALSE.

See Also
“General OLE for Retail POS Control Model”

TotalPoints Property

Syntax
LONG TotalPoints;

Remarks
Contains the number of signature points in PointArray.

If RealTimeDataEnabled is TRUE, then TotalPoints is set to zero to indicate that all of the partial signatures have been provided to the application by the Control.

This property is set by the Control just before delivering the DataEvent or by the EndCapture method. It includes the line drawing terminators (see PointArray).

Methods

BeginCapture Method

Syntax
LONG BeginCapture (BSTR FormName);

The FormName parameter contains the registry subkey name for obtaining form or data screen information for display on the device screen.

Remarks
Call to start capturing a signature.

If CapDisplay is TRUE, then FormName is used to find information about the form or data screen to be displayed. The operating system registry key

\HKEY_LOCAL_MACHINE\SOFTWARE\OLEforRetail\ServiceOPOS\
SignatureCapture\DeviceName\FormName

is accessed to get this information. DeviceName is the Service Object’s Device Name key.

The format and features of each signature capture device’s form/data screen varies widely and is often built with proprietary tools. Therefore, this key’s data and additional values and data under this key contain information that varies by Service Object. Typically, the registry key’s data is set to a form/data screen file name, and extra registry values and data are set as needed to control its display. (See the appendix “APPENDIX B
OPOS Registry Usage”, page 661.)

After displaying the form or data screen, when applicable, the signature capture stylus is enabled.

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
Signature capture successfully started.

OPOS_E_NOEXIST
FormName was not found.

Other Values
See ResultCode.

EndCapture Method

Syntax
LONG EndCapture ();

Remarks
Call to stop capturing a signature.

Terminates signature capture.

If the RealTimeDataEnabled property is FALSE:
If a signature was captured, then it is placed in the properties TotalPoints, PointArray, and RawData. If no signature was captured, then TotalPoints is set to zero, and PointArray and RawData are set to the empty string (“”).

If the RealTimeDataEnabled property is TRUE:
If there are signature points remaining which have not been delivered to the application by a DataEvent, then the remaining signature is placed into the properties TotalPoints, PointArray, and RawData. If no signature was captured or all signature points have been delivered to the application, then TotalPoints is set to zero, and PointArray and RawData are set to the empty string (“”).

Return
One of the following values is returned by the method and placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
Signature capture successfully stopped.

OPOS_E_ILLEGAL
Signature capture was not in progress.

Other Values
See ResultCode.

See Also
DataEvent
Events

DataEvent Event

Syntax
void DataEvent (LONG Status);
Remarks
Fired to signal input data from the device to the application.

This event can only be fired if the user can terminate signature capture – that is, if CapUserTerminated is TRUE.

The Status parameter contains TRUE if the user has entered a signature before terminating capture. It contains FALSE if the user terminated capture with no signature.

Before firing the event, the properties TotalPoints, PointArray, and RawData are set to appropriate values.

See Also
EndCapture Method

ErrorEvent Event

Syntax
void ErrorEvent (LONG ResultCode, LONG ResultCodeExtended,
LONG ErrorLocus, LONG* pErrorResponse);
Parameter
Description

ResultCode
Result code causing the error event. See ResultCode for values.

ResultCodeExtended
Extended result code causing the error event. See ResultCodeExtended for values.

ErrorLocus
Location of the error. See values below.

pErrorResponse
Pointer to the error event response. See values below.

The ErrorLocus parameter may be one of the following:

Value
Meaning

OPOS_EL_INPUT
Error occurred while gathering or processing event-driven input. No input data is available.

OPOS_EL_INPUT_DATA
Error occurred while gathering or processing event-driven input, and some previously buffered data is available. (Very unlikely – see Remarks.)

The contents at the location pointed to by the pErrorResponse parameter are preset to a default value, based on the ErrorLocus. The application may change the value to one of the following:

Value
Meaning

OPOS_ER_CLEAR
Clear the buffered input data. The error state is exited.
Default when locus is OPOS_EL_INPUT.

OPOS_ER_CONTINUEINPUT
Use only when locus is OPOS_EL_INPUT_DATA. Acknowledges the error and directs the Control to continue processing. The Control remains in the error state, and will deliver additional DataEvents as directed by the DataEventEnabled property. When all input has been delivered and the DataEventEnabled property is again set to TRUE, then another ErrorEvent is delivered with locus OPOS_EL_INPUT.
Default when locus is OPOS_EL_INPUT_DATA.

Remarks
Fired when an error is detected while trying to read signature capture data.

Input error events are not delivered until the DataEventEnabled property is TRUE, so that proper application sequencing occurs.

With proper programming, an ErrorEvent with locus OPOS_EL_INPUT_DATA will not occur. This is because each signature requires an explicit BeginCapture method, which can generate at most one DataEvent. The application would need to defer the DataEvent by setting DataEventEnabled to FALSE and request another signature before an OPOS_EL_INPUT_DATA would be possible.

See Also
“Status, Result Code, and State Model”

Chapter 20
Tone Indicator

Summary

Properties

Common

Type
Access
Initialized After

AutoDisable
1.2
Boolean
R/W
Not Supported

BinaryConversion
1.2
Long
R/W
Open

CapPowerReporting
1.3
Long
R
Open

CheckHealthText
1.2
String
R
Open

Claimed
1.2
Boolean
R
Open

DataCount
1.2
Long
R
Not Supported

DataEventEnabled
1.2
Boolean
R/W
Not Supported

DeviceEnabled
1.2
Boolean
R/W
Open

FreezeEvents
1.2
Boolean
R/W
Open

OutputID
1.2
Long
R
Open

PowerNotify
1.3
Long
R/W
Open

PowerState
1.3
Long
R
Open

ResultCode
1.2
Long
R
--

ResultCodeExtended
1.2
Long
R
Open

State
1.2
Long
R
--

ControlObjectDescription
1.2
String
R
--

ControlObjectVersion
1.2
Long
R
--

ServiceObjectDescription
1.2
String
R
Open

ServiceObjectVersion
1.2
Long
R
Open

DeviceDescription
1.2
String
R
Open

DeviceName
1.2
String
R
Open

Specific

Type
Access
Initialized After

AsyncMode
1.2
Boolean
R/W
Open & Enable

CapPitch
1.2
Boolean
R
Open

CapVolume
1.2
Boolean
R
Open

Tone1Pitch
1.2
Long
R/W
Open & Enable

Tone1Volume
1.2
Long
R/W
Open & Enable

Tone1Duration
1.2
Long
R/W
Open & Enable

Tone2Pitch
1.2
Long
R/W
Open & Enable

Tone2Volume
1.2
Long
R/W
Open & Enable

Tone2Duration
1.2
Long
R/W
Open & Enable

InterToneWait
1.2
Long
R/W
Open & Enable

Methods

Common

May Use After

Open
1.2
--

Close
1.2
Open

Claim
1.2
Open

Release
1.2
Open & Claim

CheckHealth
1.2
Open & Enable; Note

ClearInput
1.2
Not Supported

ClearOutput
1.2
Open

DirectIO
1.2
Open

Specific

Sound
1.2
Open & Enable; Note

SoundImmediate
1.2
Open & Enable; Note

Note: Also requires that no other application has claimed the tone indicator.

Events

Name

May Occur After

DataEvent
1.2
Not Supported

DirectIOEvent
1.2
Open

ErrorEvent
1.2
Open & Enable

OutputCompleteEvent
1.2
Open & Enable

StatusUpdateEvent
1.3
Open & Enable

General Information

The Tone Indicator Control’s OLE programmatic ID is “OPOS.ToneIndicator”.

Capabilities

The Tone Indicator Control has the following capabilities:

· Sound a tone device, which may be the PC system speaker or another hardware device. In many cases the PC speaker will not be available or will be in a position that is inaudible to the operator.

· Sound a two-tone indicator, providing simple pitch and volume control.

· Provide a synchronous one-shot (play once while waiting) indicator, similar to the Win32 Beep function.

Model

The Tone Indicator device is for use when the POS hardware platform provides such capabilities external to the PC standard speaker. Many POS systems have such devices, for example the ICL 92R keyboard, so that an indicator is always present at the point of sale.

This device supports a two-tone sound so that “siren” tones can be produced. The indicator is in general also started asynchronously so applications may perform other functions while waiting for the user to acknowledge the tone. There are also options to start the tone asynchronously with no count, so it runs forever, and be stopped when running.

When the indicator is started asynchronously then an OutputCompleteEvent is fired when all the tones have been played. This allows the application to know that the tone has stopped. For example when the cash drawer is opened the tone could be started, quietly for a given number of cycles. If the cash drawer is closed then the tone is stopped explicitly by the application, if not then the OutputCompleteEvent allows us to alter the prompt to the operator and possibly restart the tone a little louder.

The Tone Indicator follows the general output model. Asynchronous output is handled as follows:

· The Control buffers the request, sets the OutputID property to an identifier for this request, and returns as soon as possible. When the device completes the request successfully, then the Control fires an OutputCompleteEvent. A parameter of this event contains the OutputID of the completed request.

The Sound method will not return an error status due to a hardware problem. These errors will only be reported by an ErrorEvent. An error status is returned only if the Control is claimed by another application, is not enabled, a parameter is invalid, or the request cannot be enqueued. The first three error cases are due to an application error, while the last is a serious system resource exception.

· If an error occurs while performing an asynchronous request, an ErrorEvent is fired.

· The Control guarantees that asynchronous output is performed on a first-in first-out basis.

· All output buffered by OPOS may be deleted by calling the ClearOutput method. OutputCompleteEvents will not be fired for cleared output. This method also stops any output that may be in progress (when possible).

Examples

Set up an asynchronous two-tone indicator and sounds it 100 times. Each tone is sounded for 750 milliseconds at 50% volume, with no pause between each tone.

Indicator.Tone1Pitch = 500

Indicator.Tone1Volume = 50

Indicator.Tone1Duration = 750

Indicator.Tone2Pitch = 800

Indicator.Tone2Volume = 50

Indicator.Tone2Duration = 750

Indicator.InterToneWait = 0

Indicator.AsyncMode = True

Indicator.Sound 100, 0

Start a synchronous indicator. This has a simple alternating beep, 500 milliseconds on and 500 milliseconds off.

Indicator.Tone1Pitch = 500

Indicator.Tone1Volume = 50

Indicator.Tone1Duration = 500

Indicator.Tone2Pitch = 0
' turn off second tone

Indicator.InterToneWait = 0
' no wait after tone-1

Indicator.AsyncMode = False

Indicator.Sound 100, 500

The following example will cause an error, as it defines both tones to be zero.

Indicator.Tone1Pitch = 0
' turn off first tone

Indicator.Tone2Pitch = 0
' turn off second tone

Indicator.Sound 100, 0

The indicator Sound method can also be used to start an indefinite duration tone. If the NumberOfCycles parameter is specified to be OPOS_FOREVER then the tone is started and must be stopped explicitly.

Indicator.Tone1Pitch = 500

Indicator.Tone1Volume = 50

Indicator.Tone1Duration = 500

Indicator.Tone2Pitch = 0
' turn off second tone

Indicator.InterToneWait = 0
' no wait after tone-1

Indicator.AsyncMode = True

Indicator.Sound OPOS_FOREVER, 500

To stop an outstanding tone you have to use the ClearOutput or SoundImmediate method.

…

Indicator.AsyncMode = True

Indicator.Sound OPOS_FOREVER, 500

…

Indicator.ClearOutput

 or

Indicator.SoundImmediate

There is also a SoundImmediate method which causes both tones to be sounded once with their InterToneWait. The tones are sounded synchronously. This imitates a more normal Beep function such as that provided by the Win32 API.

Indicator.Tone1Pitch = 500

Indicator.Tone1Volume = 50

Indicator.Tone1Duration = 500

Indicator.Tone2Pitch = 0
' turn off second tone

Indicator.InterToneWait = 0
' no wait after tone-1

Indicator.AsyncMode = True

Indicator.Sound 1, 0
' asynchronous beep

Indicator.SoundImmediate
' synchronous beep

Device Sharing

The Tone Indicator is a sharable device. Its device sharing rules are:

· After opening and enabling the device, the application may access all properties and methods and will receive status update events.

· If more than one application has opened and enabled the device, all applications may access its properties and methods. Status update events are fired to all of the applications.

· If one application claims the tone indicator, then only that application may call the Sound and SoundImmediate methods. Use of this feature will effectively restrict the tone indicator to the main POS application if that application claims the device at startup.

· The application that initiates asynchronous sounds is the only one that receives the corresponding OutputCompleteEvents or ErrorEvents.

· See the “Summary” table for precise usage prerequisites.

Properties

AsyncMode Property R/W

Syntax
BOOL AsyncMode;
Remarks
If TRUE, then the Sound method will be performed asynchronously.
If FALSE, tones are generated synchronously.

This property is initialized to FALSE by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

CapPitch Property

Syntax
BOOL CapPitch;

Remarks
If TRUE, then the hardware tone generator has the ability to vary the pitch of the tone;
otherwise it is FALSE.

This property is initialized by the Open method.

CapVolume Property

Syntax
BOOL CapVolume;

Remarks
If TRUE, then the hardware tone generator has the ability to vary the volume of the tone;
otherwise it is FALSE.

This property is initialized by the Open method.

InterToneWait Property R/W

Syntax
LONG InterToneWait;

Remarks
The number of milliseconds of silence between tone-1 and tone-2.
If a gap is required after tone-2 but before a repeat of tone-1, then set the Sound parameter InterSoundWait.

This property is initialized to zero by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An illegal value was specified.

Tone1Duration Property R/W

Syntax
LONG Tone1Duration;

Remarks
The duration of the first tone in milliseconds. A value of zero or less will cause this tone not to sound.

This property is initialized to zero by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An illegal value was specified.

Tone1Pitch Property R/W

Syntax
LONG Tone1Pitch;

Remarks
The pitch or frequency of the first tone in hertz. A value of zero or less will cause this tone not to sound.

If the device does not support user-defined pitch (CapPitch is FALSE), then any value greater than zero indicates that the tone indicator uses its default value.

This property is initialized to zero by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An illegal value was specified.

Tone1Volume Property R/W

Syntax
LONG Tone1Volume;

Remarks
The volume of the first tone in percent of the device's capability, where 0 (or less) is silent and 100 (or more) is maximum.

If the device does not support user-defined volume (CapVolume is FALSE), then any value greater than zero indicates that the tone indicator uses its default value.

This property is initialized to 100 by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An illegal value was specified.

Tone2Duration Property R/W

Syntax
LONG Tone2Duration;

Remarks
The duration of the second tone in milliseconds. A value of zero or less will cause this tone not to sound.

This property is initialized to zero by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An illegal value was specified.

Tone2Pitch Property R/W

Syntax
LONG Tone2Pitch;

Remarks
The pitch or frequency of the second tone in hertz. A value of zero or less will cause this tone not to sound.

If the device does not support user-defined pitch (CapPitch is FALSE), then any value greater than zero indicates that the tone indicator uses its default value.

This property is initialized to zero by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An illegal value was specified.

Tone2Volume Property R/W

Syntax
LONG Tone2Volume;

Remarks
The volume of the second tone in percent of the device's capability, where 0 (or less) is silent and 100 (or more) is maximum.

If the device does not support user-defined volume (CapVolume is FALSE), then any value greater than zero indicates that the tone indicator uses its default value.

This property is initialized to 100 by the Open method.

Return
When this property is set, the following value is placed in the ResultCode property:

Value
Meaning

OPOS_SUCCESS
The property was set successfully.

OPOS_E_ILLEGAL
An illegal value was specified.

Methods

Sound Method

Syntax
LONG Sound (LONG NumberOfCycles, LONG InterSoundWait);
Parameter
Description

NumberOfCycles
If OPOS_FOREVER, then start the indicator sounding, and repeat continuously.
Else perform the specified number of cycles.

InterSoundWait
When NumberOfCycles is not one, then pause for InterSoundWait milliseconds before repeating the tone cycle (before playing tone-1 again).

Remarks
Sound the indicator, or start it sounding asynchronously.

This method is performed synchronously if AsyncMode is FALSE, and asynchronously if AsyncMode is TRUE.

The duration of an indicator cycle is:

Tone1Duration property +
InterToneWait property +
Tone2Duration property +
InterSoundWait parameter (except on the last tone cycle)

After the tone indicator has started an asynchronous sound, then the sound may be stopped by using one of the following methods. (When an InterSoundWait value of OPOS_FOREVER was used to start the sound, then the application must use one of these to stop the continuous sounding of the tones.)

· ClearOutput
· SoundImmediate
Return
One of the following values are returned by the method, and also placed in the ResultCode property.

Value
Meaning

OPOS_SUCCESS
Indicates that the indicator was sounded or has been started.

OPOS_E_ILLEGAL
One of the following errors occurred:

· NumberOfCycles is neither a positive, non-zero value nor OPOS_FOREVER.

· NumberOfCycles is OPOS_FOREVER when AsyncMode is FALSE.

· A negative InterSoundWait was specified

Other Values
See ResultCode.

SoundImmediate Method

Syntax
LONG SoundImmediate ();
Remarks
Sounds the hardware tone generator once, synchronously. Both tone-1 and tone-2 are sounded, with their InterToneWait.

If asynchronous output is outstanding, then it is terminated before playing the immediate sound (as if ClearOutput were called). SoundImmediate is primarily intended for use in exception conditions when asynchronous output is outstanding, such as within an error event handler.

Return
One of the following values are returned by the method, and also placed in the ResultCode property.

Value
Meaning

OPOS_SUCCESS
Indicates that the indicator was sounded or has been started.

Other Values
See ResultCode.

APPENDIX A
Change History

Release 1.01

Release 1.01 mostly adds clarifications and corrections, but the Line Display and Signature Capture chapters received substantive changes to correct deficiencies in their definition.

Release 1.01 replaces Release 1.0. The ControlObjectVersion for a compliant Control Object is 1000xxx, where xxx is a vendor-specific build number. The ServiceObjectVersion for a compliant Service Object is 1000xxx, where xxx is a vendor-specific build number.

Section
Change

Second Page
Add name of Microsoft Web site for OPOS information.

Introduction When … Properties May Be Accessed
Update to say that capabilities are initialized at Open, others may not be initialized until DeviceEnabled = TRUE, and properties remain initialized until the Control is closed.

Introduction Device Sharing Model
If an exclusive device is Released, then reClaimed, settable device characteristics are restored to their state at Release.

Common Release method
If device is enabled, then disable before releasing.

Cash Drawer WaitForDrawerClose method
BeepFrequency is in hertz.

Hard Totals General Information
Recommend claiming necessary files before a BeginTrans, to ensure that CommitTrans does not fail.

Keylock General Information
Claim will return OPOS_E_ILLEGAL, not success.

Line Display General Information
Major clarification of line display usage modes; including intercharacter wait and marquees.

Line Display MarqueeFormat property
Add this property.

Line Display MarqueeType property
Add DISP_MT_INIT value.

Line Display ClearText and RefreshWindow methods
Clarify their functionality.

POS Printer XxxLetterQuality properties
Add initialization information.

POS Printer XxxLineWidth properties
Clarify these properties.

POS Printer CapConcurrentXxxXxx properties
Clarify that if a “concurrent” capability is false, then the application should print to only one of the stations at a time, and not alternate print lines between them.

POS Printer CapXxxNearendSensor properties
Rename to CapXxxNearEndSensor for consistency with XxxNearEnd properties.

POS Printer CapXxxBarcode properties
Rename to CapXxxBarCode for consistency with PrintBarCode method.

Scale Summary
Change ClearInput method to Not Supported. Scale input is not event-driven.

Scale WeightUnit property
Change to read-only property.

Signature Capture MaximumX and MaximumY properties
Clarify that maximum value is 65,535.

Signature Capture TotalVectors and VectorArray properties
Rename to TotalPoints and PointArray. Update the General Information and the property remarks sections for consistency.

Signature Capture PointArray property
Clarify that each point is represented by four characters:
x (low 8 bits), x (high 8 bits), y (low 8 bits), y (high 8 bits).

Throughout
Update the property initialization details.

OposDisp.h header file
Add DISP_MT_INIT constant and MarqueeFormat constants.

Appendix C Technical Details
Add this appendix, with the sections:
 - System strings and binary data.
 - Event Handler Restrictions.

Release 1.1

Release 1.1 adds APIs based on requirements from OPOS-J, the Japanese OPOS consortium.

Release 1.1 is a superset of Release 1.01.

Section
Change

POS Keyboard
New device: Add information in several locations, plus POS Keyboard chapter and header file.

Second Page
Remove CompuServe reference.

Line Display CapCharacterSet property
Add values for Kana and Kanji.

Line Display CharacterSet property
Add Windows code page information.

POS Printer Data Characters and Escape Sequences
Add new sequences for:
 Feed and Paper cut
 Feed, Paper cut, and Stamp
 Feed lines
 Feed units
 Feed reverse
 Font typeface selection
 Reverse video
 Shading
 Scale horizontally
 Scale vertically
Add width selection for underline sequence.

POS Printer: Add the following properties and methods:
 CapCharacterSet property
 CapTransaction property
 ErrorLevel property
 ErrorString property
 FontTypefaceList property
 RecBarCodeRotationList property
 RotateSpecial property
 SlpBarCodeRotationList property
 TransactionPrint method
 ValidateData method

POS Printer CharacterSet property
Add Windows code page information.

POS Printer PrintBarCode method
Add information on effects of the RotateSpecial property.

POS Printer PrintImmediate and PrintNormal methods
Clarify the effects of Carriage Return and Line Feed.

Scanner ScanData property
Clarify the data that is present in this property.

OposDisp.h header file
Add CapCharacterSet values for Kana and Kanji.

OposPtr.h header file
Add CapCharacterSet values.
Add ErrorLevel values.
Add TransactionPrint Control values.

Release 1.2

Release 1.2 adds additional device classes, plus additional APIs based on requirements from various OPOS-US, OPOS-Japan, and OPOS-Europe members.

Release 1.2 is a superset of Release 1.1.

Section
Change

Cash Changer
New device: Add information in several locations, plus Cash Changer chapter and header file.

Tone Indicator
New device: Add information in several locations, plus Tone Indicator chapter and header file.

Several places
When a method has a Timeout parameter, added the constant OPOS_FOREVER as a value, and noted that OPOS_E_ILLEGAL can be returned.

First Two Pages
Update company names.
Update copyright notices.
Update web reference.

Introduction How an Application Uses an OPOS Control and
Device Sharing Model
Explicitly state that a control may be simultaneously opened by many applications, but may be restricted in its functionality based on the Claim method.

Introduction Events
Add this section.

Introduction Input Model
Clarify the handling of error conditions.
Add usage of AutoDisable and DataCount.
Clarify the Error state exit conditions.
Clarify when ClearInput is legal.

Introduction Output Model
Clarify the Error state conditions.

Introduction Result Code Model
Clarify the setting of ResultCodeExtended.
Common BinaryConversion, AutoDisable, and DataCount properties
Add these new properties.
Throughout document, add to Summary sections for each device class.
Throughout document, specify the BString properties and method parameters that are affected by BinaryConversion.

Common ControlObjectVersion and ServiceObjectVersion properties
Add compliance information when versions don’t match.

Common FreezeEvents property
Clarify FreezeEvents role in delaying event firing.

Common ResultCodeExtended property
Clarify the setting of ResultCodeExtended.
Common ClearInput and ClearOutput methods
Correct return value information: May return one of three statuses.

Common Open method
Correct return value information: ResultCode may not match method return value.

Common Release method
Correct DeviceEnabled side effects: Only exclusive use devices are disabled during the Release.

Common StatusUpdateEvent event
Clarify the initial firing of events at device enable.

MICR BankNumber
Correct definition to digits 4-8 of the TransitNumber.

MSR ErrorReportingType
Add this new property.

MSR ParseDecodeData
Clarify inconsistency: Both ParseDecodeData and ParseDecodedData were used for this property.

MSR ErrorEvent
Update for track level error notification.

POS Keyboard General Information
Clarify the type of keyboards that may be a POS Keyboard.

POS Keyboard POSKeyData property
Update definition of this property: A logical key value..

POS Keyboard CapKeyUp, EventTypes, and POSKeyEventType properties
Add these new properties.

POS Printer Escape Sequences
Clarify that escape sequences that are not OPOS sequences are passed through to the printer.

POS Printer CapConcurrentXxxYyy
Clarify the interpretation of a FALSE value.

POS Printer XxxLineSpacing
Clarify that line spacing includes the printed line height. Could have been interpreted as only the whitespace between each pair of lines.

POS Printer PrintBarCode
Add list of symbologies.

POS Printer MapMode and XxxLetterQuality
Clarified legal handling of MapMode when the printer supports half-dots.
Clarified potential impact on metrics when XxxLetterQuality is changed and MapMode is dots.

POS Printer SetBitmap
Extend the bitmap number usage to allow the same bitmap to be used for both receipt and slip.

POS Printer TransactionPrint
Clarify when Busy and Extended statuses may be returned.

POS Printer ValidateData
Add “Underline” to the Illegal status section.

Scale Model
Correct to state the weight unit is defined by the device, and not settable by the application.

Scale CapDisplay
Add this new property.

Scale WeightUnit
Clarify inconsistency: Both WeightUnit and WeightUnits were used for this property.

Scanner ScanDataLabel and ScanDataType
Add these new properties.

Signature Capture “Real Time” feature
Add the new properties CapRealTimeData and RealTimeDataEnabled.
Update various sections for real time operation.

Change History Release 1.1
Remove the compliance requirements for 1.1 Control Objects. This information was corrected and added to the common ControlObjectVersion and ServiceObjectVersion properties.

Opos.h header file
Add OPOS_FOREVER constant.
Add BinaryConversion values.

OposMsr.h header file
Add ErrorReportingType values.

OposKbd.h header file
Add EventTypes values.

OposPtr.h header file
Remove PTR_RP_NORMAL_ASYNC.
Add symbologies to match scanner.

OposScan.h header file
Add symbologies for ScanDataType.

Technical Details “Event Handlers”
Delete section. Much of the information was inaccurate, and the rest was merged into the new “Events” section in the first chapter.

Throughout
Correct various editing errors.

Release 1.3

Release 1.3 adds additional device classes, a few additional APIs, and some corrections.

Release 1.3 is a superset of Release 1.2.

Section
Change

First Two Pages
Update copyright notices.

Update web reference.

General
Modify the use of the term event “firing.” Use “enqueue” and “deliver” appropriately to describe event firing.

Bump Bar
New device: Add information in several locations, plus Bump Bar chapter and header file.

Fiscal Printer
New device: Add information in several locations, plus Fiscal Printer chapter and header file.

PIN Pad
New device: Add information in several locations, plus PIN Pad chapter and header file.

Remote Order Display
New device: Add information in several locations, plus Remote Order Display chapter and header file.

Several places
Relax ErrorEvent “retry” response to allow its use with some input devices.

Introduction Events
Clarify effect of the top event being blocked.

Introduction Input Model
Add details concerning enqueuing and delivery of ErrorEvents.

Add description of asynchronous input.

Introduction Device Power Reporting Model
Add this section.

Introduction OPOS Control Descriptions
Add CURRENCY data type.

Common CapPowerReporting, PowerNotify, PowerState properties
Add these properties here, plus…
Add to the Summary section of each device.

Common ResultCode property
Generalize the meaning of OPOS_E_BUSY.

Common StatusUpdateEvent
Add power state reporting information.

Change parameter name from Data to Status.

Every Device
Add power reporting properties to Summary section.

Add StatusUpdateEvent support (if previously not reported.

Add power reporting reference to existing StatusUpdateEvent descriptions.

MSR DecodeData
Add “raw format” description and column to track data table.

MSR ExpirationDate
Specify the format.

MSR TrackxData
Specify that data excludes the sentinels and LRC.
Add that decoding occurs when DecodeData is TRUE.

MSR ErrorEvent
Clarify that DataCount and AutoDisable are not relevant for MSR error events.

POSPrinter XxxLineChars
Add implementation recommendations.

POSPrinter PrintTwoNormal
Clarify the meaning of the Stations parameter, including the addition of new constants.

Scale
Add the following features:

· Asynchronous input. Property AsyncMode. Method ClearInput, updates to ReadWeight. Events DataEvent and ErrorEvent.
· Display of text. Properties CapDisplayText, MaxDisplayTextChars. Method DisplayText.
· Price calculation. Properties CapPriceCalculating, SalesPrice, UnitPrice.
· Tare weight. Properties CapTareWeight, TareWeight.
· Scale zeroing. Property CapZeroScale. Method ZeroScale.
Tone Indicator Summary and General Information’s Device Sharing
Consistently specify that Tone Indicator is a sharable device.

Opos.h header file
Add CapPowerReporting, PowerState, and PowerNotify properties.
Add StatusUpdateEvent power reporting values.

OposPtr.h header file
Add new PrintTwoNormal station constants.

Throughout
Correct some editing errors.

Release 1.4
Release 1.4 adds one additional device class.

Release 1.4 is a super set of Release 1.3.

Section
Change

CAT
Added new device class, Credit Authorization Terminal which includes CAT chapter and header file. This device class was added at the request of OPOS-J and is used primarily in Japan. No other revisions were made to the version 1.3 of the OPOS specification.
APPENDIX B
OPOS Registry Usage

OPOS Controls require some data in the system registry in order for the Control Objects to locate the proper Service Object and initialize it for the device.

The registry is organized in a hierarchical structure, in which each level is named a “key.” Each key may contain:

· Additional keys (sometimes called “subkeys”).

· Zero or more named “values.” A value is assigned “data” of type string, binary, or double-word.

· One “default value” that may be assigned data of type string.

OPOS only defines string data.

Service Object Root Registry Key

All OPOS Service Object entries should be placed under the following main key:

HKEY_LOCAL_MACHINE\SOFTWARE\OLEforRetail\ServiceOPOS

The “HKEY_LOCAL_MACHINE\SOFTWARE” key is the recommended key for software configuration local to the PC. The “OLEforRetail” key will group all OLE for Retail related configuration information. The “ServiceOPOS” key maintains configuration information for OPOS Service Objects.

Device Class Keys

Each class has an identifying Device Class subkey under the main OPOS key. The following key names have been established:

BumpBar
CashChanger
CashDrawer
CAT
CoinDispenser
FiscalPrinter
HardTotals
Keylock
LineDisplay
MICR
MSR
PINPad
POSKeyboard
POSPrinter
RemoteOrderDisplay
Scale
Scanner
SignatureCapture
ToneIndicator

Device Name Keys and Values

Each device within a class is assigned a Device Name subkey under the class’s key. This should be performed by a Service Object installation procedure. This Device Name key is passed to the Control Object’s Open method by the application. The Device Name is not constrained, except that it must be unique among the names under the device class.

The default value of the Device Name key is the programmatic ID
 of the Service Object. This string is needed by the Control Object, so that the Service Object may be loaded and the OLE Automation interfaces established between the CO and the SO.

Value – Required
Data

(Default)
Service Object’s OLE Programmatic ID.

The device unit key’s values and their data describe the characteristics of the actual device on the terminal or PC. The following values are strongly recommended for use by installation and support personnel:

Value – Recommended
Data

Service
Filename of the Service Object.

Description
String describing the Service Object.

Version
String containing the Service Object version number. General format is: MajorVersion.MinorVersion.BuildVersion.

Other values may be defined as needed by the Service Object. Values might contain information such as:

Communications Port
Baud Rate
Serial Line Characteristics
Interrupt Request (IRQ) Values
Input/Output (I/O) Ports

Logical Device Name Values

An application may open a Control by passing the Device Name key to the Open method. In many cases, however, the application will want a level of isolation where the application specifies a “Logical Device Name” that is translated into a Device Name.

A Logical Device Name is added to the registry as a value contained in the Device Class key. The value name is set to the Logical Device Name, and its data must match a Device Name key contained in the same Device Class.

The application integrator is responsible for adding Logical Device Names to the registry. (They are not added by the Service Object install procedure.)

Service Provider Root Registry Key

The SO service providers may need to store some information in the registry that is common to some or all of its Service Objects. This data could include installation directories, installation date, and deinstall information. Service provider information should be placed under the following main key:

HKEY_LOCAL_MACHINE\SOFTWARE\OLEforRetail\ServiceInfo

The subkeys under this key should be the names of service provider companies. Subkeys and values within each service provider company subkey are provider-dependent.

Example

In this example, keys are listed in italics. Comments appear as comment.

Two device classes are given: POSPrinter and CashDrawer.

The POSPrinter class contains two Device Names. Also, two Logical Device Names are present, which point to the Device Names.

The CashDrawer class contains one Device Name and one Logical Device Name. The Service Object has a unique Prog ID but uses the same executable as one of the printers. This Service Object could use the example value “Uses” to point to some registry values of the printer device that can be used for the cash drawer parameters.

\HKEY_LOCAL_MACHINE

(
((
\SOFTWARE

(

(
((
\OLEforRetail

(




((
\ServiceOPOS

(




((
\POSPrinter
Device Class Key







((
\NCR7156=NCR.Ptr7156.1
Device Name Key





Service=C:\OPOS\NCR\PTR7156.DLL





Description=NCR 7156 Serial Printer





Version=1.0.12





...Service Object-specific values. Might include:





Port=COM3





BaudRate=9600







((
\Epson950=Epson.PtrTMU950.1
Device Name Key





Service=TMU950.EXE





Description=Epson TM-U950 Printer





Version=1.0.7





...Service Object-specific values could go here.

(
(
(



((
PSI.Ptr.1=NCR7156
Logical Device Name

(
(
(



((
PSI.Ptr.2=Epson950
Logical Device Name





((
\CashDrawer
Device Class Key







((
\EpsonCash=Epson.CD.1
Device Name Key





Service=TMU950.EXE





Description=Epson Cash Drawer Kickout on TM-U950





Version=1.0.7





...Service Object-specific values. Might include:





Uses=POSPrinter\Epson950

(

(



((
PSI.CD.1=EpsonCash
Logical Device Name



((
\ServiceInfo

(

((
\EPSON

(

InstallDir=C:\OPOS\EPSON

(

InstallDate=1995/11/13

(
APPENDIX C
OPOS Application Header Files

The header files are listed in alphabetical order. The mapping of device class name to header file name is as follows:

– General –
Opos.h
Bump Bar
OposBb.h
Cash Changer
OposChan.h
Cash Drawer
OposCash.h
CAT
OposCat.h
Coin Dispenser
OposCoin.h
Fiscal Printer
OposFptr.h
Hard Totals
OposTot.h
Keylock
OposLock.h
Line Display
OposDisp.h
MICR
OposMicr.h
MSR
OposMsr.h
PIN Pad
OposPpad.h
POS Keyboard
OposKbd.h
POS Printer
OposPtr.h
Remote Order Display
OposRod.h
Scale
OposScal.h
Scanner
OposScan.h
Signature Capture
OposSig.h
Tone Indicator
OposTone.h

Opos.h : Main OPOS Header File

///

//

// Opos.h

//

// General header file for OPOS Applications.

//

// Modification history

// --

// 95-12-08 OPOS Release 1.0 CRM

// 97-06-04 OPOS Release 1.2 CRM

// Add OPOS_FOREVER.

// Add BinaryConversion values.

// 98-03-06 OPOS Release 1.3 CRM

// Add CapPowerReporting, PowerState, and PowerNotify values.

// Add power reporting values for StatusUpdateEvent.

//

///

#if !defined(OPOS_H)

#define OPOS_H

///

// OPOS "State" Property Constants

///

const LONG OPOS_S_CLOSED = 1;

const LONG OPOS_S_IDLE = 2;

const LONG OPOS_S_BUSY = 3;

const LONG OPOS_S_ERROR = 4;

///

// OPOS "ResultCode" Property Constants

///

const LONG OPOSERR = 100;

const LONG OPOSERREXT = 200;

const LONG OPOS_SUCCESS = 0;

const LONG OPOS_E_CLOSED = 1 + OPOSERR;

const LONG OPOS_E_CLAIMED = 2 + OPOSERR;

const LONG OPOS_E_NOTCLAIMED = 3 + OPOSERR;

const LONG OPOS_E_NOSERVICE = 4 + OPOSERR;

const LONG OPOS_E_DISABLED = 5 + OPOSERR;

const LONG OPOS_E_ILLEGAL = 6 + OPOSERR;

const LONG OPOS_E_NOHARDWARE = 7 + OPOSERR;

const LONG OPOS_E_OFFLINE = 8 + OPOSERR;

const LONG OPOS_E_NOEXIST = 9 + OPOSERR;

const LONG OPOS_E_EXISTS = 10 + OPOSERR;

const LONG OPOS_E_FAILURE = 11 + OPOSERR;

const LONG OPOS_E_TIMEOUT = 12 + OPOSERR;

const LONG OPOS_E_BUSY = 13 + OPOSERR;

const LONG OPOS_E_EXTENDED = 14 + OPOSERR;

///

// OPOS "BinaryConversion" Property Constants

///

const LONG OPOS_BC_NONE = 0;

const LONG OPOS_BC_NIBBLE = 1;

const LONG OPOS_BC_DECIMAL = 2;

///

// "CheckHealth" Method: "Level" Parameter Constants

///

const LONG OPOS_CH_INTERNAL = 1;

const LONG OPOS_CH_EXTERNAL = 2;

const LONG OPOS_CH_INTERACTIVE = 3;

///

// OPOS "CapPowerReporting", "PowerState", "PowerNotify” Property

// Constants

///

const LONG OPOS_PR_NONE = 0;

const LONG OPOS_PR_STANDARD = 1;

const LONG OPOS_PR_ADVANCED = 2;

const LONG OPOS_PN_DISABLED = 0;

const LONG OPOS_PN_ENABLED = 1;

const LONG OPOS_PS_UNKNOWN = 2000;

const LONG OPOS_PS_ONLINE = 2001;

const LONG OPOS_PS_OFF = 2002;

const LONG OPOS_PS_OFFLINE = 2003;

const LONG OPOS_PS_OFF_OFFLINE = 2004;

///

// "ErrorEvent" Event: "ErrorLocus" Parameter Constants

///

const LONG OPOS_EL_OUTPUT = 1;

const LONG OPOS_EL_INPUT = 2;

const LONG OPOS_EL_INPUT_DATA = 3;

///

// "ErrorEvent" Event: "ErrorResponse" Constants

///

const LONG OPOS_ER_RETRY = 11;

const LONG OPOS_ER_CLEAR = 12;

const LONG OPOS_ER_CONTINUEINPUT= 13;

///

// "StatusUpdateEvent" Event: Common "Status" Constants

///

const LONG OPOS_SUE_POWER_ONLINE = 2001;

const LONG OPOS_SUE_POWER_OFF = 2002;

const LONG OPOS_SUE_POWER_OFFLINE = 2003;

const LONG OPOS_SUE_POWER_OFF_OFFLINE = 2004;

///

// General Constants

///

const LONG OPOS_FOREVER = -1;

#endif // !defined(OPOS_H)

OposBb.h: Bump Bar Header File

///

//

// OposBb.h

//

// Bump Bar header file for OPOS Applications.

//

// Modification history

// --

// 98-03-06 OPOS Release 1.3 BB

//

///

#if !defined(OPOSBB_H)

#define OPOSBB_H

#include "Opos.h"

///

// "CurrentUnitID" and "UnitsOnline" Properties

// and "Units" Parameter Constants

///

#define BB_UID(Unit) (1 << (Unit-1))

const LONG BB_UID_1 = BB_UID(1);

const LONG BB_UID_2 = BB_UID(2);

const LONG BB_UID_3 = BB_UID(3);

const LONG BB_UID_4 = BB_UID(4);

const LONG BB_UID_5 = BB_UID(5);

const LONG BB_UID_6 = BB_UID(6);

const LONG BB_UID_7 = BB_UID(7);

const LONG BB_UID_8 = BB_UID(8);

const LONG BB_UID_9 = BB_UID(9);

const LONG BB_UID_10 = BB_UID(10);

const LONG BB_UID_11 = BB_UID(11);

const LONG BB_UID_12 = BB_UID(12);

const LONG BB_UID_13 = BB_UID(13);

const LONG BB_UID_14 = BB_UID(14);

const LONG BB_UID_15 = BB_UID(15);

const LONG BB_UID_16 = BB_UID(16);

const LONG BB_UID_17 = BB_UID(17);

const LONG BB_UID_18 = BB_UID(18);

const LONG BB_UID_19 = BB_UID(19);

const LONG BB_UID_20 = BB_UID(20);

const LONG BB_UID_21 = BB_UID(21);

const LONG BB_UID_22 = BB_UID(22);

const LONG BB_UID_23 = BB_UID(23);

const LONG BB_UID_24 = BB_UID(24);

const LONG BB_UID_25 = BB_UID(25);

const LONG BB_UID_26 = BB_UID(26);

const LONG BB_UID_27 = BB_UID(27);

const LONG BB_UID_28 = BB_UID(28);

const LONG BB_UID_29 = BB_UID(29);

const LONG BB_UID_30 = BB_UID(30);

const LONG BB_UID_31 = BB_UID(31);

const LONG BB_UID_32 = BB_UID(32);

///

// "DataEvent" Event: "Status" Parameter Constants

///

const LONG BB_DE_KEY = 0x01;

#endif // !defined(OPOSBB_H)
OposCash.h : Cash Drawer Header File

///

//

// OposCash.h

//

// Cash Drawer header file for OPOS Applications.

//

// Modification history

// --

// 95-12-08 OPOS Release 1.0 CRM

// 98-03-06 OPOS Release 1.3 CRM

//

///

#if !defined(OPOSCASH_H)

#define OPOSCASH_H

#include "Opos.h"

///

// "StatusUpdateEvent" Event Constants

///

const LONG CASH_SUE_DRAWERCLOSED = 0;

const LONG CASH_SUE_DRAWEROPEN = 1;

#endif // !defined(OPOSCASH_H)

OposCat.h : CAT Header File

///

//

// OposCAT.h

//

// CAT header file for OPOS Applications.

//

// Modification history

// --

// 98-06-01 OPOS Release 1.4 OPOS-J

//

//

//

///

#if !defined(OPOSCAT_H)

#define OPOSCAT_H

#include "Opos.h"

///

// Payment Condition Constants

///

const LONG CAT_PAYMENT_LUMP = 10;

const LONG CAT_PAYMENT_BONUS_1 = 21;

const LONG CAT_PAYMENT_BONUS_2 = 22;

const LONG CAT_PAYMENT_BONUS_3 = 23;

const LONG CAT_PAYMENT_BONUS_4 = 24;

const LONG CAT_PAYMENT_BONUS_5 = 25;

const LONG CAT_PAYMENT_INSTALLMENT_1 = 61;

const LONG CAT_PAYMENT_INSTALLMENT_2 = 62;

const LONG CAT_PAYMENT_INSTALLMENT_3 = 63;

const LONG CAT_PAYMENT_BONUS_COMBINATION_1 = 31;

const LONG CAT_PAYMENT_BONUS_COMBINATION_2 = 32;

const LONG CAT_PAYMENT_BONUS_COMBINATION_3 = 33;

const LONG CAT_PAYMENT_BONUS_COMBINATION_4 = 34;

const LONG CAT_PAYMENT_REVOLVING = 80;

///

// Transaction Type Constants

///

const LONG CAT_TRANSACTION_SALES = 10;

const LONG CAT_TRANSACTION_VOID = 20;

const LONG CAT_TRANSACTION_REFUND = 21;

const LONG CAT_TRANSACTION_VOIDPRESALES = 29;

const LONG CAT_TRANSACTION_COMPLETION = 30;

const LONG CAT_TRANSACTION_PRESALES = 40;

const LONG CAT_TRANSACTION_CHECKCARD = 41;

///

// ResultCodeExtended Constants

///

const LONG OPOS_ECAT_CENTERERROR = 01;

const LONG OPOS_ECAT_COMMANDERROR = 90;

const LONG OPOS_ECAT_RESET = 91;

const LONG OPOS_ECAT_COMMUNICATIONERROR = 92;

const LONG OPOS_ECAT_DAILYLOGOVERFLOW = 200;
///

// "Daily Log" Property & Argument Constants

///

const LONG CAT_DL_NONE = 0; //None of them

const LONG CAT_DL_REPORTING = 1; //Only Reporting

const LONG CAT_DL_SETTLEMENT = 2; //Only Settlement

const LONG CAT_DL_REPORTING_SETTLEMENT = 3; //Both of them

#endif // !defined(OPOSCAT_H)

OposChan.h : Cash Changer Header File

///

//

// OposChan.h

//

// Cash Changer header file for OPOS Applications.

//

// Modification history

// --

// 97-06-04 OPOS Release 1.2 CRM

//

///

#if !defined(OPOSCHAN_H)

#define OPOSCHAN_H

#include "Opos.h"

///

// "DeviceStatus" and "FullStatus" Property Constants

// "StatusUpdateEvent" Event Constants

///

const LONG CHAN_STATUS_OK = 0; // DeviceStatus, FullStatus

const LONG CHAN_STATUS_EMPTY = 11; // DeviceStatus, StatusUpdateEvent

const LONG CHAN_STATUS_NEAREMPTY= 12; // DeviceStatus, StatusUpdateEvent

const LONG CHAN_STATUS_EMPTYOK = 13; // StatusUpdateEvent

const LONG CHAN_STATUS_FULL = 21; // FullStatus, StatusUpdateEvent

const LONG CHAN_STATUS_NEARFULL = 22; // FullStatus, StatusUpdateEvent

const LONG CHAN_STATUS_FULLOK = 23; // StatusUpdateEvent

const LONG CHAN_STATUS_JAM = 31; // DeviceStatus, StatusUpdateEvent

const LONG CHAN_STATUS_JAMOK = 32; // StatusUpdateEvent

const LONG CHAN_STATUS_ASYNC = 91; // StatusUpdateEvent

///

// "ResultCodeExtended" Property Constants for Cash Changer

///

const LONG OPOS_ECHAN_OVERDISPENSE = 1 + OPOSERREXT;

#endif // !defined(OPOSCHAN_H)

OposCoin.h : Coin Dispenser Header File

///

//

// OposCoin.h

//

// Coin Dispenser header file for OPOS Applications.

//

// Modification history

// --

// 95-12-08 OPOS Release 1.0 CRM

//

///

#if !defined(OPOSCOIN_H)

#define OPOSCOIN_H

#include "Opos.h"

///

// "DispenserStatus" Property Constants

// "StatusUpdateEvent" Event: "Data" Parameter Constants

///

const LONG COIN_STATUS_OK = 1;

const LONG COIN_STATUS_EMPTY = 2;

const LONG COIN_STATUS_NEAREMPTY= 3;

const LONG COIN_STATUS_JAM = 4;

#endif // !defined(OPOSCOIN_H)

OposDisp.h : Line Display Header File

///

//

// OposDisp.h

//

// Line Display header file for OPOS Applications.

//

// Modification history

// --

// 95-12-08 OPOS Release 1.0 CRM

// 96-03-18 OPOS Release 1.01 CRM

// Add DISP_MT_INIT constant and MarqueeFormat constants.

// 96-04-22 OPOS Release 1.1 CRM

// Add CapCharacterSet values for Kana and Kanji.

//

///

#if !defined(OPOSDISP_H)

#define OPOSDISP_H

#include "Opos.h"

///

// "CapBlink" Property Constants

///

const LONG DISP_CB_NOBLINK = 0;

const LONG DISP_CB_BLINKALL = 1;

const LONG DISP_CB_BLINKEACH = 2;

///

// "CapCharacterSet" Property Constants

///

const LONG DISP_CCS_NUMERIC = 0;

const LONG DISP_CCS_ALPHA = 1;

const LONG DISP_CCS_ASCII = 998;

const LONG DISP_CCS_KANA = 10;

const LONG DISP_CCS_KANJI = 11;

///

// "CharacterSet" Property Constants

///

const LONG DISP_CS_ASCII = 998;

const LONG DISP_CS_WINDOWS = 999;

///

// "MarqueeType" Property Constants

///

const LONG DISP_MT_NONE = 0;

const LONG DISP_MT_UP = 1;

const LONG DISP_MT_DOWN = 2;

const LONG DISP_MT_LEFT = 3;

const LONG DISP_MT_RIGHT = 4;

const LONG DISP_MT_INIT = 5;

///

// "MarqueeFormat" Property Constants

///

const LONG DISP_MF_WALK = 0;

const LONG DISP_MF_PLACE = 1;

///

// "DisplayText" Method: "Attribute" Property Constants

// "DisplayTextAt" Method: "Attribute" Property Constants

///

const LONG DISP_DT_NORMAL = 0;

const LONG DISP_DT_BLINK = 1;

///

// "ScrollText" Method: "Direction" Parameter Constants

///

const LONG DISP_ST_UP = 1;

const LONG DISP_ST_DOWN = 2;

const LONG DISP_ST_LEFT = 3;

const LONG DISP_ST_RIGHT = 4;

///

// "SetDescriptor" Method: "Attribute" Parameter Constants

///

const LONG DISP_SD_OFF = 0;

const LONG DISP_SD_ON = 1;

const LONG DISP_SD_BLINK = 2;

#endif // !defined(OPOSDISP_H)

OposFptr.h : Fiscal Printer Header File

///

//

// OposFptr.h

//

// Fiscal Printer header file for OPOS Applications.

//

// Modification history

// --

// 98-03-06 OPOS Release 1.3 PDU

//

///

#if !defined(OPOSFPTR_H)

#define OPOSFPTR_H

#include "Opos.h"

///

// Fiscal Printer Station Constants

///

const LONG FPTR_S_JOURNAL = 1;

const LONG FPTR_S_RECEIPT = 2;

const LONG FPTR_S_SLIP = 4;

const LONG FPTR_S_JOURNAL_RECEIPT = FPTR_S_JOURNAL | FPTR_S_RECEIPT;

///

// "CountryCode" Property Constants

///

const LONG FPTR_CC_BRAZIL = 1;

const LONG FPTR_CC_GREECE = 2;

const LONG FPTR_CC_HUNGARY = 3;

const LONG FPTR_CC_ITALY = 4;

const LONG FPTR_CC_POLAND = 5;

const LONG FPTR_CC_TURKEY = 6;

///

// "ErrorLevel" Property Constants

///

const LONG FPTR_EL_NONE = 1;

const LONG FPTR_EL_RECOVERABLE = 2;

const LONG FPTR_EL_FATAL = 3;

const LONG FPTR_EL_BLOCKED = 4;

///

// "ErrorState", "PrinterState" Property Constants

///

const LONG FPTR_PS_MONITOR = 1;

const LONG FPTR_PS_FISCAL_RECEIPT = 2;

const LONG FPTR_PS_FISCAL_RECEIPT_TOTAL = 3;

const LONG FPTR_PS_FISCAL_RECEIPT_ENDING = 4;

const LONG FPTR_PS_FISCAL_DOCUMENT = 5;

const LONG FPTR_PS_FIXED_OUTPUT = 6;

const LONG FPTR_PS_ITEM_LIST = 7;

const LONG FPTR_PS_LOCKED = 8;

const LONG FPTR_PS_NONFISCAL = 9;

const LONG FPTR_PS_REPORT = 10;

///

// "SlipSelection" Property Constants

///

const LONG FPTR_SS_FULL_LENGTH = 1;

const LONG FPTR_SS_VALIDATION = 2;

///

// "GetData" Method Constants

///

const LONG FPTR_GD_CURRENT_TOTAL = 1;

const LONG FPTR_GD_DAILY_TOTAL = 2;

const LONG FPTR_GD_RECEIPT_NUMBER = 3;

const LONG FPTR_GD_REFUND = 4;

const LONG FPTR_GD_NOT_PAID = 5;

const LONG FPTR_GD_MID_VOID = 6;

const LONG FPTR_GD_Z_REPORT = 7;

const LONG FPTR_GD_GRAND_TOTAL = 8;

const LONG FPTR_GD_PRINTER_ID = 9;

const LONG FPTR_GD_FIRMWARE = 10;

const LONG FPTR_GD_RESTART = 11;

///

// "AdjustmentType" arguments in diverse methods

///

const LONG FPTR_AT_AMOUNT_DISCOUNT = 1;

const LONG FPTR_AT_AMOUNT_SURCHARGE = 2;

const LONG FPTR_AT_PERCENTAGE_DISCOUNT = 3;

const LONG FPTR_AT_PERCENTAGE_SURCHARGE = 4;

///

// "ReportType" argument in "PrintReport" method

///

const LONG FPTR_RT_ORDINAL = 1;

const LONG FPTR_RT_DATE = 2;

///

// "StatusUpdateEvent" Event: "Data" Parameter Constants

///

const LONG FPTR_SUE_COVER_OPEN = 11;

const LONG FPTR_SUE_COVER_OK = 12;

const LONG FPTR_SUE_JRN_EMPTY = 21;

const LONG FPTR_SUE_JRN_NEAREMPTY = 22;

const LONG FPTR_SUE_JRN_PAPEROK = 23;

const LONG FPTR_SUE_REC_EMPTY = 24;

const LONG FPTR_SUE_REC_NEAREMPTY = 25;

const LONG FPTR_SUE_REC_PAPEROK = 26;

const LONG FPTR_SUE_SLP_EMPTY = 27;

const LONG FPTR_SUE_SLP_NEAREMPTY = 28;

const LONG FPTR_SUE_SLP_PAPEROK = 29;

const LONG FPTR_SUE_IDLE =1001;

///

// "ResultCodeExtended" Property Constants for Fiscal Printer

///

const LONG OPOS_EFPTR_COVER_OPEN = 1 + OPOSERREXT; // (Several)

const LONG OPOS_EFPTR_JRN_EMPTY = 2 + OPOSERREXT; // (Several)

const LONG OPOS_EFPTR_REC_EMPTY = 3 + OPOSERREXT; // (Several)

const LONG OPOS_EFPTR_SLP_EMPTY = 4 + OPOSERREXT; // (Several)

const LONG OPOS_EFPTR_SLP_FORM = 5 + OPOSERREXT; // EndRemoval

const LONG OPOS_EFPTR_MISSING_DEVICES =

 6 + OPOSERREXT; // (Several)

const LONG OPOS_EFPTR_WRONG_STATE =

 7 + OPOSERREXT; // (Several)

const LONG OPOS_EFPTR_TECHNICAL_ASSISTANCE =

 8 + OPOSERREXT; // (Several)

const LONG OPOS_EFPTR_CLOCK_ERROR =

 9 + OPOSERREXT; // (Several)

const LONG OPOS_EFPTR_FISCAL_MEMORY_FULL =

 10 + OPOSERREXT; // (Several)

const LONG OPOS_EFPTR_FISCAL_MEMORY_DISCONNECTED =

 11 + OPOSERREXT; // (Several)

const LONG OPOS_EFPTR_FISCAL_TOTALS_ERROR =

 12 + OPOSERREXT; // (Several)

const LONG OPOS_EFPTR_BAD_ITEM_QUANTITY =

 13 + OPOSERREXT; // (Several)

const LONG OPOS_EFPTR_BAD_ITEM_AMOUNT =

 14 + OPOSERREXT; // (Several)

const LONG OPOS_EFPTR_BAD_ITEM_DESCRIPTION =

 15 + OPOSERREXT; // (Several)

const LONG OPOS_EFPTR_RECEIPT_TOTAL_OVERFLOW =

 16 + OPOSERREXT; // (Several)

const LONG OPOS_EFPTR_BAD_VAT =

 17 + OPOSERREXT; // (Several)

const LONG OPOS_EFPTR_BAD_PRICE =

 18 + OPOSERREXT; // (Several)

const LONG OPOS_EFPTR_BAD_DATE =

 19 + OPOSERREXT; // (Several)

const LONG OPOS_EFPTR_NEGATIVE_TOTAL =

 20 + OPOSERREXT; // (Several)

const LONG OPOS_EFPTR_WORD_NOT_ALLOWED =

 21 + OPOSERREXT; // (Several)

#endif // !defined(OPOSFPTR_H)

OposKbd.h : POS Keyboard Header File

///

//

// OposKbd.h

//

// POS Keyboard header file for OPOS Applications.

//

// Modification history

// --

// 96-04-22 OPOS Release 1.1 CRM

// 97-06-04 OPOS Release 1.2 CRM

// Add "EventTypes" and "POSKeyEventType" values.

//

///

#if !defined(OPOSKBD_H)

#define OPOSKBD_H

#include "Opos.h"

///

// "EventTypes" Property Constants

///

const LONG KBD_ET_DOWN = 1;

const LONG KBD_ET_DOWN_UP = 2;

///

// "POSKeyEventType" Property Constants

///

const LONG KBD_KET_KEYDOWN = 1;

const LONG KBD_KET_KEYUP = 2;

#endif // !defined(OPOSKBD_H)

OposLock.h : Keylock Header File

///

//

// OposLock.h

//

// Keylock header file for OPOS Applications.

//

// Modification history

// --

// 95-12-08 OPOS Release 1.0 CRM

//

///

#if !defined(OPOSLOCK_H)

#define OPOSLOCK_H

#include "Opos.h"

///

// "KeyPosition" Property Constants

// "WaitForKeylockChange" Method: "KeyPosition" Parameter

// "StatusUpdateEvent" Event: "Data" Parameter

///

const LONG LOCK_KP_ANY = 0; // WaitForKeylockChange Only

const LONG LOCK_KP_LOCK = 1;

const LONG LOCK_KP_NORM = 2;

const LONG LOCK_KP_SUPR = 3;

#endif // !defined(OPOSLOCK_H)

OposMicr.h : MICR Header File

///

//

// OposMicr.h

//

// MICR header file for OPOS Applications.

//

// Modification history

// --

// 95-12-08 OPOS Release 1.0 CRM

//

///

#if !defined(OPOSMICR_H)

#define OPOSMICR_H

#include "Opos.h"

///

// "CheckType" Property Constants

///

const LONG MICR_CT_PERSONAL = 1;

const LONG MICR_CT_BUSINESS = 2;

const LONG MICR_CT_UNKNOWN = 99;

///

// "CountryCode" Property Constants

///

const LONG MICR_CC_USA = 1;

const LONG MICR_CC_CANADA = 2;

const LONG MICR_CC_MEXICO = 3;

const LONG MICR_CC_UNKNOWN = 99;

///

// "ResultCodeExtended" Property Constants for MICR

///

const LONG OPOS_EMICR_NOCHECK = 1 + OPOSERREXT; // EndInsertion

const LONG OPOS_EMICR_CHECK = 2 + OPOSERREXT; // EndRemoval

#endif // !defined(OPOSMICR_H)

OposMsr.h : MSR Header File

///

//

// OposMsr.h

//

// Magnetic Stripe Reader header file for OPOS Applications.

//

// Modification history

// --

// 95-12-08 OPOS Release 1.0 CRM

// 97-06-04 OPOS Release 1.2 CRM

// Add ErrorReportingType values.

//

///

#if !defined(OPOSMSR_H)

#define OPOSMSR_H

#include "Opos.h"

///

// "TracksToRead" Property Constants

///

const LONG MSR_TR_1 = 1;

const LONG MSR_TR_2 = 2;

const LONG MSR_TR_3 = 4;

const LONG MSR_TR_1_2 = MSR_TR_1 | MSR_TR_2;

const LONG MSR_TR_1_3 = MSR_TR_1 | MSR_TR_3;

const LONG MSR_TR_2_3 = MSR_TR_2 | MSR_TR_3;

const LONG MSR_TR_1_2_3 = MSR_TR_1 | MSR_TR_2 | MSR_TR_3;

///

// "ErrorReportingType" Property Constants

///

const LONG MSR_ERT_CARD = 0;

const LONG MSR_ERT_TRACK = 1;

///

// "ErrorEvent" Event: "ResultCodeExtended" Parameter Constants

///

const LONG OPOS_EMSR_START = 1 + OPOSERREXT;

const LONG OPOS_EMSR_END = 2 + OPOSERREXT;

const LONG OPOS_EMSR_PARITY = 3 + OPOSERREXT;

const LONG OPOS_EMSR_LRC = 4 + OPOSERREXT;

#endif // !defined(OPOSMSR_H)

OposPpad.h : PIN Pad Header File

///

//

// OposPpad.h

//

// PIN Pad header file for OPOS Applications.

//

// Modification history

// --

// 98-03-06 OPOS Release 1.3 JDB

//

///

#if !defined(OPOSPPAD_H)

#define OPOSPPAD_H

#include "Opos.h"

///

// "CapDisplay" Property Constants

///

const LONG PPAD_DISP_UNRESTRICTED = 1;

const LONG PPAD_DISP_PINRESTRICTED = 2;

const LONG PPAD_DISP_RESTRICTED_LIST = 3;

const LONG PPAD_DISP_RESTRICTED_ORDER = 4;

///

// "AvailablePromptsList" and "Prompt" Property Constants

///

const LONG PPAD_MSG_ENTERPIN = 1;

const LONG PPAD_MSG_PLEASEWAIT = 2;

const LONG PPAD_MSG_ENTERVALIDPIN = 3;

const LONG PPAD_MSG_RETRIESEXCEEDED = 4;

const LONG PPAD_MSG_APPROVED = 5;

const LONG PPAD_MSG_DECLINED = 6;

const LONG PPAD_MSG_CANCELED = 7;

const LONG PPAD_MSG_AMOUNTOK = 8;

const LONG PPAD_MSG_NOTREADY = 9;

const LONG PPAD_MSG_IDLE = 10;

const LONG PPAD_MSG_SLIDE_CARD = 11;

const LONG PPAD_MSG_INSERTCARD = 12;

const LONG PPAD_MSG_SELECTCARDTYPE = 13;

///

// "CapLanguage" Property Constants

///

const LONG PPAD_LANG_NONE = 1;

const LONG PPAD_LANG_ONE = 2;

const LONG PPAD_LANG_PINRESTRICTED = 3;

const LONG PPAD_LANG_UNRESTRICTED = 4;

///

// "TransactionType" Property Constants

///

const LONG PPAD_TRANS_DEBIT = 1;

const LONG PPAD_TRANS_CREDIT = 2;

const LONG PPAD_TRANS_INQ = 3;

const LONG PPAD_TRANS_RECONCILE = 4;

const LONG PPAD_TRANS_ADMIN = 5;

///

// "EndEFTTransaction" Method Completion Code Constants

///

const LONG PPAD_EFT_NORMAL = 1;

const LONG PPAD_EFT_ABNORMAL = 2;

///

// "DataEvent" Event Status Constants

///

const LONG PPAD_SUCCESS = 1;

const LONG PPAD_CANCEL = 2;

#endif // !defined(OPOSPPAD_H)

OposPtr.h : POS Printer Header File

///

//

// OposPtr.h

//

// POS Printer header file for OPOS Applications.

//

// Modification history

// --

// 95-12-08 OPOS Release 1.0 CRM

// 96-04-22 OPOS Release 1.1 CRM

// Add CapCharacterSet values.

// Add ErrorLevel values.

// Add TransactionPrint Control values.

// 97-06-04 OPOS Release 1.2 CRM

// Remove PTR_RP_NORMAL_ASYNC.

// Add more barcode symbologies.

// 98-03-06 OPOS Release 1.3 CRM

// Add more PrintTwoNormal constants.

//

///

#if !defined(OPOSPTR_H)

#define OPOSPTR_H

#include "Opos.h"

///

// Printer Station Constants

///

const LONG PTR_S_JOURNAL = 1;

const LONG PTR_S_RECEIPT = 2;

const LONG PTR_S_SLIP = 4;

const LONG PTR_S_JOURNAL_RECEIPT = PTR_S_JOURNAL | PTR_S_RECEIPT ;

const LONG PTR_S_JOURNAL_SLIP = PTR_S_JOURNAL | PTR_S_SLIP ;

const LONG PTR_S_RECEIPT_SLIP = PTR_S_RECEIPT | PTR_S_SLIP ;

const LONG PTR_TWO_RECEIPT_JOURNAL = 0x8000 + PTR_S_JOURNAL_RECEIPT;

const LONG PTR_TWO_SLIP_JOURNAL = 0x8000 + PTR_S_JOURNAL_SLIP ;

const LONG PTR_TWO_SLIP_RECEIPT = 0x8000 + PTR_S_RECEIPT_SLIP ;

///

// "CapCharacterSet" Property Constants

///

const LONG PTR_CCS_ALPHA = 1;

const LONG PTR_CCS_ASCII = 998;

const LONG PTR_CCS_KANA = 10;

const LONG PTR_CCS_KANJI = 11;

///

// "CharacterSet" Property Constants

///

const LONG PTR_CS_ASCII = 998;

const LONG PTR_CS_WINDOWS = 999;

///

// "ErrorLevel" Property Constants

///

const LONG PTR_EL_NONE = 1;

const LONG PTR_EL_RECOVERABLE = 2;

const LONG PTR_EL_FATAL = 3;

///

// "MapMode" Property Constants

///

const LONG PTR_MM_DOTS = 1;

const LONG PTR_MM_TWIPS = 2;

const LONG PTR_MM_ENGLISH = 3;

const LONG PTR_MM_METRIC = 4;

///

// "CutPaper" Method Constant

///

const LONG PTR_CP_FULLCUT = 100;

///

// "PrintBarCode" Method Constants:

///

// "Alignment" Parameter

// Either the distance from the left-most print column to the start

// of the bar code, or one of the following:

const LONG PTR_BC_LEFT = -1;

const LONG PTR_BC_CENTER = -2;

const LONG PTR_BC_RIGHT = -3;

// "TextPosition" Parameter

const LONG PTR_BC_TEXT_NONE = -11;

const LONG PTR_BC_TEXT_ABOVE = -12;

const LONG PTR_BC_TEXT_BELOW = -13;

// "Symbology" Parameter:

// One dimensional symbologies

const LONG PTR_BCS_UPCA = 101; // Digits

const LONG PTR_BCS_UPCE = 102; // Digits

const LONG PTR_BCS_JAN8 = 103; // = EAN 8

const LONG PTR_BCS_EAN8 = 103; // = JAN 8 (added in 1.2)

const LONG PTR_BCS_JAN13 = 104; // = EAN 13

const LONG PTR_BCS_EAN13 = 104; // = JAN 13 (added in 1.2)

const LONG PTR_BCS_TF = 105; // (Discrete 2 of 5) Digits

const LONG PTR_BCS_ITF = 106; // (Interleaved 2 of 5) Digits

const LONG PTR_BCS_Codabar = 107; // Digits, -, $, :, /, ., +;

 // 4 start/stop characters

 // (a, b, c, d)

const LONG PTR_BCS_Code39 = 108; // Alpha, Digits, Space, -, .,

 // $, /, +, %; start/stop (*)

 // Also has Full ASCII feature

const LONG PTR_BCS_Code93 = 109; // Same characters as Code 39

const LONG PTR_BCS_Code128 = 110; // 128 data characters

// (The following were added in Release 1.2)

const LONG PTR_BCS_UPCA_S = 111; // UPC-A with supplemental

 // barcode

const LONG PTR_BCS_UPCE_S = 112; // UPC-E with supplemental

 // barcode

const LONG PTR_BCS_UPCD1 = 113; // UPC-D1

const LONG PTR_BCS_UPCD2 = 114; // UPC-D2

const LONG PTR_BCS_UPCD3 = 115; // UPC-D3

const LONG PTR_BCS_UPCD4 = 116; // UPC-D4

const LONG PTR_BCS_UPCD5 = 117; // UPC-D5

const LONG PTR_BCS_EAN8_S = 118; // EAN 8 with supplemental

 // barcode

const LONG PTR_BCS_EAN13_S = 119; // EAN 13 with supplemental

 // barcode

const LONG PTR_BCS_EAN128 = 120; // EAN 128

const LONG PTR_BCS_OCRA = 121; // OCR "A"

const LONG PTR_BCS_OCRB = 122; // OCR "B"

// Two dimensional symbologies

const LONG PTR_BCS_PDF417 = 201;

const LONG PTR_BCS_MAXICODE = 202;

// Start of Printer-Specific bar code symbologies

const LONG PTR_BCS_OTHER = 501;

///

// "PrintBitmap" Method Constants:

///

// "Width" Parameter

// Either bitmap width or:

const LONG PTR_BM_ASIS = -11; // One pixel per printer dot

// "Alignment" Parameter

// Either the distance from the left-most print column to the start

// of the bitmap, or one of the following:

const LONG PTR_BM_LEFT = -1;

const LONG PTR_BM_CENTER = -2;

const LONG PTR_BM_RIGHT = -3;

///

// "RotatePrint" Method: "Rotation" Parameter Constants

// "RotateSpecial" Property Constants

///

const LONG PTR_RP_NORMAL = 0x0001;

const LONG PTR_RP_RIGHT90 = 0x0101;

const LONG PTR_RP_LEFT90 = 0x0102;

const LONG PTR_RP_ROTATE180 = 0x0103;

///

// "SetLogo" Method: "Location" Parameter Constants

///

const LONG PTR_L_TOP = 1;

const LONG PTR_L_BOTTOM = 2;

///

// "TransactionPrint" Method: "Control" Parameter Constants

///

const LONG PTR_TP_TRANSACTION = 11;

const LONG PTR_TP_NORMAL = 12;

///

// "StatusUpdateEvent" Event: "Data" Parameter Constants

///

const LONG PTR_SUE_COVER_OPEN = 11;

const LONG PTR_SUE_COVER_OK = 12;

const LONG PTR_SUE_JRN_EMPTY = 21;

const LONG PTR_SUE_JRN_NEAREMPTY= 22;

const LONG PTR_SUE_JRN_PAPEROK = 23;

const LONG PTR_SUE_REC_EMPTY = 24;

const LONG PTR_SUE_REC_NEAREMPTY= 25;

const LONG PTR_SUE_REC_PAPEROK = 26;

const LONG PTR_SUE_SLP_EMPTY = 27;

const LONG PTR_SUE_SLP_NEAREMPTY= 28;

const LONG PTR_SUE_SLP_PAPEROK = 29;

const LONG PTR_SUE_IDLE = 1001;

///

// "ResultCodeExtended" Property Constants for Printer

///

const LONG OPOS_EPTR_COVER_OPEN = 1 + OPOSERREXT; // (Several)

const LONG OPOS_EPTR_JRN_EMPTY = 2 + OPOSERREXT; // (Several)

const LONG OPOS_EPTR_REC_EMPTY = 3 + OPOSERREXT; // (Several)

const LONG OPOS_EPTR_SLP_EMPTY = 4 + OPOSERREXT; // (Several)

const LONG OPOS_EPTR_SLP_FORM = 5 + OPOSERREXT; // EndRemoval

const LONG OPOS_EPTR_TOOBIG = 6 + OPOSERREXT; // PrintBitmap

const LONG OPOS_EPTR_BADFORMAT = 7 + OPOSERREXT; // PrintBitmap

#endif // !defined(OPOSPTR_H)

OposRod.h : Remote Order Display Header File

///

//

// OposRod.h

//

// Remote Order Display header file for OPOS Applications.

//

// Modification history

// --

// 98-03-06 OPOS Release 1.3 BB

//

///

#if !defined(OPOSROD_H)

#define OPOSROD_H

#include "Opos.h"

///

// "CurrentUnitID" and "UnitsOnline" Properties

// and "Units" Parameter Constants

///

#define ROD_UID(Unit) (1 << (Unit-1))

const LONG ROD_UID_1 = ROD_UID(1);

const LONG ROD_UID_2 = ROD_UID(2);

const LONG ROD_UID_3 = ROD_UID(3);

const LONG ROD_UID_4 = ROD_UID(4);

const LONG ROD_UID_5 = ROD_UID(5);

const LONG ROD_UID_6 = ROD_UID(6);

const LONG ROD_UID_7 = ROD_UID(7);

const LONG ROD_UID_8 = ROD_UID(8);

const LONG ROD_UID_9 = ROD_UID(9);

const LONG ROD_UID_10 = ROD_UID(10);

const LONG ROD_UID_11 = ROD_UID(11);

const LONG ROD_UID_12 = ROD_UID(12);

const LONG ROD_UID_13 = ROD_UID(13);

const LONG ROD_UID_14 = ROD_UID(14);

const LONG ROD_UID_15 = ROD_UID(15);

const LONG ROD_UID_16 = ROD_UID(16);

const LONG ROD_UID_17 = ROD_UID(17);

const LONG ROD_UID_18 = ROD_UID(18);

const LONG ROD_UID_19 = ROD_UID(19);

const LONG ROD_UID_20 = ROD_UID(20);

const LONG ROD_UID_21 = ROD_UID(21);

const LONG ROD_UID_22 = ROD_UID(22);

const LONG ROD_UID_23 = ROD_UID(23);

const LONG ROD_UID_24 = ROD_UID(24);

const LONG ROD_UID_25 = ROD_UID(25);

const LONG ROD_UID_26 = ROD_UID(26);

const LONG ROD_UID_27 = ROD_UID(27);

const LONG ROD_UID_28 = ROD_UID(28);

const LONG ROD_UID_29 = ROD_UID(29);

const LONG ROD_UID_30 = ROD_UID(30);

const LONG ROD_UID_31 = ROD_UID(31);

const LONG ROD_UID_32 = ROD_UID(32);

///

// Broadcast Methods: "Attribute" Parameter Constants

///

const LONG ROD_ATTR_BLINK = 0x80;

const LONG ROD_ATTR_BG_BLACK = 0x00;

const LONG ROD_ATTR_BG_BLUE = 0x10;

const LONG ROD_ATTR_BG_GREEN = 0x20;

const LONG ROD_ATTR_BG_CYAN = 0x30;

const LONG ROD_ATTR_BG_RED = 0x40;

const LONG ROD_ATTR_BG_MAGENTA = 0x50;

const LONG ROD_ATTR_BG_BROWN = 0x60;

const LONG ROD_ATTR_BG_GRAY = 0x70;

const LONG ROD_ATTR_INTENSITY = 0x08;

const LONG ROD_ATTR_FG_BLACK = 0x00;

const LONG ROD_ATTR_FG_BLUE = 0x01;

const LONG ROD_ATTR_FG_GREEN = 0x02;

const LONG ROD_ATTR_FG_CYAN = 0x03;

const LONG ROD_ATTR_FG_RED = 0x04;

const LONG ROD_ATTR_FG_MAGENTA = 0x05;

const LONG ROD_ATTR_FG_BROWN = 0x06;

const LONG ROD_ATTR_FG_GRAY = 0x07;

///

// "DrawBox" Method: "BorderType" Parameter Constants

///

const LONG ROD_BDR_SINGLE = 1;

const LONG ROD_BDR_DOUBLE = 2;

const LONG ROD_BDR_SOLID = 3;

///

// "ControlClock" Method: "Function" Parameter Constants

///

const LONG ROD_CLK_START = 1;

const LONG ROD_CLK_PAUSE = 2;

const LONG ROD_CLK_RESUME = 3;

const LONG ROD_CLK_MOVE = 4;

const LONG ROD_CLK_STOP = 5;

///

// "ControlCursor" Method: "Function" Parameter Constants

///

const LONG ROD_CRS_LINE = 1;

const LONG ROD_CRS_LINE_BLINK = 2;

const LONG ROD_CRS_BLOCK = 3;

const LONG ROD_CRS_BLOCK_BLINK = 4;

const LONG ROD_CRS_OFF = 5;

///

// "SelectChararacterSet" Method: "CharacterSet" Parameter Constants

///

const LONG ROD_CS_ASCII = 998;

const LONG ROD_CS_WINDOWS = 999;

///

// "TransactionDisplay" Method: "Function" Parameter Constants

///

const LONG ROD_TD_TRANSACTION = 11;

const LONG ROD_TD_NORMAL = 12;

///

// "UpdateVideoRegionAttribute" Method: "Function" Parameter Constants

///

const LONG ROD_UA_SET = 1;

const LONG ROD_UA_INTENSITY_ON = 2;

const LONG ROD_UA_INTENSITY_OFF = 3;

const LONG ROD_UA_REVERSE_ON = 4;

const LONG ROD_UA_REVERSE_OFF = 5;

const LONG ROD_UA_BLINK_ON = 6;

const LONG ROD_UA_BLINK_OFF = 7;

///

// "EventTypes" Property and "DataEvent" Event: "Status" Parameter Constants

///

const LONG ROD_DE_TOUCH_UP = 0x01;

const LONG ROD_DE_TOUCH_DOWN = 0x02;

const LONG ROD_DE_TOUCH_MOVE = 0x04;

///

// "ResultCodeExtended" Property Constants for Remote Order Display

///

const LONG OPOS_EROD_BADCLK = 1 + OPOSERREXT; // ControlClock

const LONG OPOS_EROD_NOCLOCKS = 2 + OPOSERREXT; // ControlClock

const LONG OPOS_EROD_NOREGION = 3 + OPOSERREXT; // RestoreVideo

 // Region

const LONG OPOS_EROD_NOBUFFERS = 4 + OPOSERREXT; // SaveVideoRegion

const LONG OPOS_EROD_NOROOM = 5 + OPOSERREXT; // SaveVideoRegion

#endif // !defined(OPOSROD_H)

OposScal.h : Scale Header File

///

//

// OposScal.h

//

// Scale header file for OPOS Applications.

//

// Modification history

// --

// 95-12-08 OPOS Release 1.0 CRM

//

///

#if !defined(OPOSSCAL_H)

#define OPOSSCAL_H

#include "Opos.h"

///

// "WeightUnit" Property Constants

///

const LONG SCAL_WU_GRAM = 1;

const LONG SCAL_WU_KILOGRAM = 2;

const LONG SCAL_WU_OUNCE = 3;

const LONG SCAL_WU_POUND = 4;

///

// "ResultCodeExtended" Property Constants for Scale

///

const LONG OPOS_ESCAL_OVERWEIGHT= 1 + OPOSERREXT; // ReadWeight

#endif // !defined(OPOSSCAL_H)

OposScan.h : Bar Code Scanner Header File

///

//

// OposScan.h

//

// Scanner header file for OPOS Applications.

//

// Modification history

// --

// 95-12-08 OPOS Release 1.0 CRM

// 97-06-04 OPOS Release 1.2 CRM

// Add "ScanDataType" values.

//

///

#if !defined(OPOSSCAN_H)

#define OPOSSCAN_H

#include "Opos.h"

///

// "ScanDataType" Property Constants

///

// One dimensional symbologies

const LONG SCAN_SDT_UPCA = 101; // Digits

const LONG SCAN_SDT_UPCE = 102; // Digits

const LONG SCAN_SDT_JAN8 = 103; // = EAN 8

const LONG SCAN_SDT_EAN8 = 103; // = JAN 8 (added in 1.2)

const LONG SCAN_SDT_JAN13 = 104; // = EAN 13

const LONG SCAN_SDT_EAN13 = 104; // = JAN 13 (added in 1.2)

const LONG SCAN_SDT_TF = 105; // (Discrete 2 of 5) Digits

const LONG SCAN_SDT_ITF = 106; // (Interleaved 2 of 5) Digits

const LONG SCAN_SDT_Codabar = 107; // Digits, -, $, :, /, ., +;

 // 4 start/stop characters

 // (a, b, c, d)

const LONG SCAN_SDT_Code39 = 108; // Alpha, Digits, Space, -, .,

 // $, /, +, %; start/stop (*)

 // Also has Full ASCII feature

const LONG SCAN_SDT_Code93 = 109; // Same characters as Code 39

const LONG SCAN_SDT_Code128 = 110; // 128 data characters

const LONG SCAN_SDT_UPCA_S = 111; // UPC-A with supplemental

 // barcode

const LONG SCAN_SDT_UPCE_S = 112; // UPC-E with supplemental

 // barcode

const LONG SCAN_SDT_UPCD1 = 113; // UPC-D1

const LONG SCAN_SDT_UPCD2 = 114; // UPC-D2

const LONG SCAN_SDT_UPCD3 = 115; // UPC-D3

const LONG SCAN_SDT_UPCD4 = 116; // UPC-D4

const LONG SCAN_SDT_UPCD5 = 117; // UPC-D5

const LONG SCAN_SDT_EAN8_S = 118; // EAN 8 with supplemental

 // barcode

const LONG SCAN_SDT_EAN13_S = 119; // EAN 13 with supplemental

 // barcode

const LONG SCAN_SDT_EAN128 = 120; // EAN 128

const LONG SCAN_SDT_OCRA = 121; // OCR "A"

const LONG SCAN_SDT_OCRB = 122; // OCR "B"

// Two dimensional symbologies

const LONG SCAN_SDT_PDF417 = 201;

const LONG SCAN_SDT_MAXICODE = 202;

// Special cases

const LONG SCAN_SDT_OTHER = 501; // Start of Scanner-Specific bar

 // code symbologies

const LONG SCAN_SDT_UNKNOWN = 0; // Cannot determine the barcode

 // symbology.

#endif // !defined(OPOSSCAN_H)

OposSig.h : Signature Capture Header File

///

//

// OposSig.h

//

// Signature Capture header file for OPOS Applications.

//

// Modification history

// --

// 95-12-08 OPOS Release 1.0 CRM

//

///

#if !defined(OPOSSIG_H)

#define OPOSSIG_H

#include "Opos.h"

// No definitions required for this version.

#endif // !defined(OPOSSIG_H)

OposTone.h : Tone Indicator Header File

///

//

// OposTone.h

//

// Tone Indicator header file for OPOS Applications.

//

// Modification history

// --

// 97-06-04 OPOS Release 1.2 CRM

//

///

#if !defined(OPOSTONE_H)

#define OPOSTONE_H

#include "Opos.h"

// No definitions required for this version.

#endif // !defined(OPOSTONE_H)

OposTot.h : Hard Totals Header File

///

//

// OposTot.h

//

// Hard Totals header file for OPOS Applications.

//

// Modification history

// --

// 95-12-08 OPOS Release 1.0 CRM

//

///

#if !defined(OPOSTOT_H)

#define OPOSTOT_H

#include "Opos.h"

///

// "ResultCodeExtended" Property Constants for Hard Totals

///

const LONG OPOS_ETOT_NOROOM = 1 + OPOSERREXT; // Create, Write

const LONG OPOS_ETOT_VALIDATION = 2 + OPOSERREXT; // Read, Write

#endif // !defined(OPOSTOT_H)

APPENDIX D
Technical Details

System Strings (BSTR)

System String Characteristics

OPOS uses OLE system strings to pass and return data of variable length. System strings are often referred to as BStrings, and are assigned the type BSTR by Microsoft Visual C++.

A system string consists of a sequence of Unicode characters, which are each 16-bits wide. Thus, they are also referred to as “wide” characters. The string is followed by a NUL, or zero, character. The string is preceded by an unsigned long count of the bytes in the string, not including the NUL. Divide this count by two to obtain the number of characters in the string.

Most of the time, OPOS uses system strings to pass character data back and forth among the Application, Control Object, and System Object. A system string (BSTR) is used to pass string parameters by methods and to return string properties. A pointer to a system string (BSTR*) is used as a method parameter when the method must return string data.

System String Usage

Visual Basic both receives and sends system strings without any complications. The internal representation of VB strings is as wide characters with a length component. A BSTR may be passed using a variable, a string expression, or a literal. A BSTR* requires use of a variable, so that the data may be modified by the method.

Visual C++, however, requires more consideration.

BSTR is usually quite straightforward to use:

· BSTR Method Parameters
· Calling Function Calling an OLE automation method with a BSTR parameter is treated by VC++ as a pointer to a character string, LPCTSTR. If the VC++ ANSI option is used, MFC takes care of conversion from ANSI to Unicode.

· Called Function The function implementing an OLE automation method receives a BSTR parameter as a pointer to a character string, LPCTSTR. If the VC++ ANSI option is used, then MFC performs an automatic conversion from Unicode into ANSI before passing control to the function. The string length immediately precedes the string pointer.

· BSTR Return Type (used for getting properties)

· Calling Function An OLE automation method returning a BSTR result is automatically converted by MFC into a CString.

· Called Function An automation method returns a BSTR result by placing the data into an MFC CString object, and returning the result of the CString's “AllocSysString” member function. If the VC++ ANSI option is used, then this function automatically converts the string from ANSI into Unicode.

BSTR* can be a little more difficult to use in ANSI mode, since the string remains in Unicode format.

· To get the string, it must be converted from Unicode to MBCS. Some macros are available that make this conversion easier, such as T2OLE and OLE2T. (These do no handle NUL characters embedded in the string, however.)

· To set the string, place the data into an MFC CString object, and use CString's “SetSysString” member function.

System Strings and Binary Data

Sometimes OPOS uses BSTR and BSTR* to pass binary data.

These cases may return byte data in the range 00-hex to FF-hex. Each 16-bit character of the system string contains one byte of binary data in the lower 8 bits. The upper 8 bits are zero. This ensures that translations between ANSI and Unicode formats maintain one byte per string character.

The troublesome character within binary data is the NUL character, or zero. This is because although system strings have a length component, some software still relies upon the NUL character to determine the end of the string.

System String Usage with Binary Data

Visual Basic can build binary string data by using the Chr(number) function to create each character, where number ranges from 0 to 255. Each byte of binary data may be extracted by using AscB(Mid(string, charindex, 1)).

Visual C++, again, requires more consideration.

Looking at the cases as with non-binary data, BSTR handling is as follows:

· BSTR Method Parameters
· Calling Function This is the most difficult case. The automatic conversion from a LPCTSTR to a system string cannot be used if the data may contain NULs, since it terminates upon finding a NUL. See “Calling Methods with Binary BSTR Data” below for steps to handle this case.

· Called Function The function receives a pointer to a character string, LPCTSTR. It must use the string length immediately preceding the string pointer.

· BSTR Return Type (used for getting properties)

· Calling Function The automatic conversion by MFC into a CString properly handles binary data.

· Called Function The CString “AllocSysString” member function properly handles binary data.

BSTR* handling for ANSI is as follows:

· To get the string, it must be converted from Unicode to MBCS. The conversion macros, such as T2OLE and OLE2T, stop on the first NUL character. Therefore, the function “WideCharToMultiByte” must be used.

· To set the string, place the data into an MFC CString object, and use CString's “SetSysString” member function.

Calling Methods with Binary BSTR Data

When a VC++ project inserts an OLE Control, VC++ generates a wrapper class for the control, so that the methods and properties may be accessed. Member functions of this class handle placing parameters into the format required to call across the OLE IDispatch interface into the control.

The generated member functions for calling a method with a BSTR parameter or for setting a BSTR property use LPCTSTR as the input parameter, and convert this NUL-terminated string into a system string. Thus, this member function may not be used for passing binary data with NULs.

The solution involves manually overloading the generated method to accept a “const CString&”. Then, the application may set a CString to the binary data and call the new function.

For example, if the control has a method “long SendBstring(BSTR String)”, the generated wrapper class will have a function similar to the following:

 long xxx::SendBstring(LPCTSTR String)

 {

 long result;

 static BYTE parms[] = VTS_BSTR;

 InvokeHelper(???, // ??? is the dispatch ID for the method.

 DISPATCH_METHOD,

 VT_I4, (void*)&result, // Returns a 4-byte integer.

 parms, String); // Sends one BSTR parameter.

 return result;

 }

Add the following overloaded function to the class declaration header file:

 long SendBstring(const CString& String);

and add the following definition to the class definition source file:

 long xxx::SendBstring(const CString& String);

 {

 long result;

 static BYTE parms[] = VTS_VARIANT;

 VARIANT VarString;

 VariantInit(&VarString);

 VarString.vt = VT_BSTR;

 VarString.bstrVal = String.AllocSysString();

 InvokeHelper(???, // ??? is the dispatch ID for the method.

 DISPATCH_METHOD,

 VT_I4, (void*)&result, // Returns a 4-byte integer.

 parms, &VarString); // Sends one VARIANT parameter.

 VariantClear(&VarString);

 return result;

 }

To call the method with binary data, use a sequence such as:

 CString s;

.... Put string (which may contain NULs) into “s”

.... Then, assuming that bs is an instance of the class “xxx”:

 long r = bs.SendBstring(s);

End of Application Programmer’s Guide
�	POS may also refer to Point-of-Service – a somewhat broader category than Point-of-Sale.

�	Other future operating systems that support OLE Controls may also support OLE for Retail POS, depending upon software support by the hardware manufacturers or third-party developers.

�	This document assumes that an application consists of only one process. Multi-process applications are possible to create but uncommon. Technically, device sharing is performed on a process basis. However, with single-process applications we can view sharing as application-level.

�	Firing of events can also be deferred by the containing application. A control container may request controls to freeze event firing. For example, this feature is utilized by Visual Basic when modal dialog boxes are active. Therefore, events are fired when both FreezeEvents is FALSE and the container has not requested event freezing.�Container-initiated event freezing is not referenced elsewhere in this document, since an Application will seldom if ever notice it and cannot directly control it.

	Other conditions are described in the section “� REF Events * MERGEFORMAT �Events�” on page � PAGEREF Events �22�.

�	An MSR Control Object must support the property ParseDecodeData. In addition, due to a documentation error in OPOS APG Releases 1.1 and earlier, it is recommended that the property ParseDecodedData also be supported, and that it refer to the same property.

� 	OPOS 1.1 defined a POS Keyboard as a secondary key entry device, separate from the primary keyboard. OPOS 1.2 expanded this definition.

�	From the OPOS POS Printer perspective, the exact definition of a “dot” is not significant. It is a Printer/Service Object unit used to express various metrics. For example, some printers define a “half-dot” that is used in high-density graphics printing, and perhaps in text printing. An OPOS POS Printer Service Object may handle this case in one of these ways:

Consistently define a “dot” as the printer’s smallest physical size, that is, a half-dot.

If the Service Object changes bitmap graphics printing density based on the XxxLetterQuality setting, then alter the size of a dot to match the bitmap density (that is, a physical printer dot when FALSE and a half-dot when TRUE). Note that this choice should not be used if the printer’s text metrics are based on half-dot sizes, since accurate values for the metrics may not then be possible.

� 	A Scale Control Object must support the property WeightUnit. In addition, due to a documentation error in OPOS APG Releases 1.1 and earlier, it is recommended that the property WeightUnits also be supported, and that it refer to the same property.

�	A Programmatic ID, or “Prog ID”, is the name of a key that must appear in the “HKEY_CLASSES_ROOT” section of the registry. This key must have a subkey named “CLSID”, which is the Class ID associated with the Prog ID. The Class ID must be a key within the “HKEY_CLASSES_ROOT\CLSID” registry section. This key contains subkeys that specify the OLE Automation Server type and that instruct OLE how to start the Server.

�PAGE \# "'Page: '#'�'" �Page: 120���

These should be changed to Open to follow convention of rest of document. Then check each of the property descriptions to make sure that the value is defined at Open as well as when the value is changed to a meaningful value. Therefore all Specific properties in the table will show when they are Initialized. See Pinpad specification as an example.

�PAGE \# "'Page: '#'�'" �Page: 122���The question has been brought up that there needs to be clarification to the Cancel Purchase and Refund Purchase to cover a partial purchase return. For instance a customer purchases more then one item and returns only one of the items. How is this handled?

=> In Japan it is very clear. First we refund/return all of them, and buy some of them. This is the only way. (Ohashi)

�PAGE \# "'Page: '#'�'" �Page: 127���Remove this because the property and parameter types are described elseware in the document; the information as shown here is not correct anyway.

=>Thank you.

�PAGE \# "'Page: '#'�'" �Page: 128���Suggest rewording “Verify that the SequenceNumber property matches the value of the SequenceNumber argument of the AuthorizeSales method.”

=>Thank you.

�PAGE \# "'Page: '#'�'" �Page: 128���Suggest rewording “Verify that the SequenceNumber property matches the value of the SequenceNumber argument of the AuthorizeSales method.”

=>Thank you.

�PAGE \# "'Page: '#'�'" �Page: 135���Suggestion is that you should put here the defined standard property values for Card company ID since each manufacturer may have a different standard set of values that these get set to. This would be very helpful to the application programmer to have these values defined here.

For example if Sumitomo is a card company, and a Sumitomo card is used then this property should have the the same value if the CAT device comes from Omron, Nec, or anybody else.

=>Refer to my mail.

�PAGE \# "'Page: '#'�'" �Page: 139���Changed type since header file defines these as LONG values.

�PAGE \# "'Page: '#'�'" �Page: 141���There was much confusion on the content of this table. It needs to be made clearer. Our suggestions are as follows:

Move OPOS Terms to left column; Add title to current left column to read General Payment Category. Also the table values need to be filled in for all positions…leaving them blank does not help convey information to the programmer as to what he should expect to see…

�PAGE \# "'Page: '#'�'" �Page: 144���Should Comb. be combination or integrated as defined by the earlier PaymentCondition, PaymentDetail properties…they seem to use both of these terms to indicate the same thing. Also check the header file.

�PAGE \# "'Page: '#'�'" �Page: 146���This has been removed because the table has changed to reflect the fact that values will be put in all spaces in the table.

�PAGE \# "'Page: '#'�'" �Page: 147���Changed to match the type of the SequenceNumber argument.

�PAGE \# "'Page: '#'�'" �Page: 149���Changed type since header file defines these as LONG values.

�PAGE \# "'Page: '#'�'" �Page: 150���Six different Authroize methods have been defined. Have you considered doing this with only one method which would have an additional parameter of TransactionType??? The other six methods, even in their description have very similar wording. This is your option but it does seem easier if you would only have one method with this additional property.

�PAGE \# "'Page: '#'�'" �Page: 150���Renamed from GetDailyLog so therefore it has changed location to remain alphabitized.

�PAGE \# "'Page: '#'�'" �Page: 151���All the methods need to have this put in place of what was there. This matches the format used in rest of OPOS document.

�PAGE \# "'Page: '#'�'" �Page: 152���Each opening sentence should be clearer. Please add more details to make the purpose clearer.

�PAGE \# "'Page: '#'�'" �Page: 152���This method should return this value if this method is called and the corresponding capability property is false. You need to make this change to all of the “Authorize” methods except the AuthorizeSales method. DONE 9/29/98 – ALP.

�PAGE \# "'Page: '#'�'" �Page: 152���All the methods need to have this put in place of what was there. This matches the format used in rest of OPOS document.

�PAGE \# "'Page: '#'�'" �Page: 157���Why is condition specified and defined? A programmer should never set this value to 0 in a functioning program. Is there some reason why a programmer would set to 0? What happens when a timeout occurs while a CAT operation is in progress. This is not defined here…Is it necessary to define it here?

Document:
OLE for Retail POS Application Guide – Rel. 1.4
Filename:
OPOS-APG-(Rel-1.4)
Author:
alp/NCR
Page:
1 of 706
Document:
OLE for Retail POS Application Guide – Rel. 1.4
Filename:
OPOS1_4(draft4.0)
Author:
alp/NCR
Page:
2 of 706
Document:
OLE for Retail POS Application Guide – Rel. 1.4 COMMENTS * MERGEFORMAT
Filename:
OPOS1_4(draft4.0)
Author:
 Ealp/NCR
Page:
93 of 706

_949907242.doc

_949907243.doc

_949907241.doc

_877499638.doc
���

