
Common Control Object 1.4.994 – Issues

In this document, I’ve tried to include the various issues and comments that I’ve received for Common Control Objects 1.4.994.

Throughout, I'll use App for Application, CO for Control Object, Common CO for my Common Control Object(s), and SO for Service Object.

Since this document has gotten rather long, here is a table of contents.

21
Issue Summary

1.1
OPOS-Japan’s Examination Report of the CCO1.4.994
2
1.2
Other E-Mails
3
2
Compatibility
4
2.1
Issues
4
2.2
Response: ClaimDevice and ReleaseDevice
4
2.3
Response: OpenText Property
5
2.4
Response: Backward Compatibility
5
2.4.1
POS Application Compatibility
5
2.4.2
SO Compatibility
6
3
BOOL and VARIANT_BOOL
7
3.1
Issues
7
3.2
Response
7
3.2.1
What is a BOOL?
8
3.2.2
What is FALSE and What is TRUE?
11
3.2.3
MFC and Boolean Value Coercion
11
3.2.4
Summary
12
4
Using Common COs in VB and VC++
13
4.1
Issues
13
4.2
Response
13
5
Multiple Instances
13
5.1
Issues
13
5.2
Response
13
6
Extended Open Status Codes
14
6.1
Current Proposals
14
6.2
My Updated Proposal
14
7
Change List for 1.4.995.
16
8
Items To Be Documented
16

1 Issue Summary

This section summarizes the items that must be investigated and/or updated.

1.1 OPOS-Japan’s Examination Report of the CCO1.4.994

This report was submitted to the OPOS Core by Nagao-san / Epson on May 3. I have included the e-mail and document in the ZIP file that includes this document.

The following items are listed as issues in section 5.0 of their document:

· OPOS 1.4 specification incompatibility.

· “Claim” and “Release” renamed to “ClaimDevice” and “ReleaseDevice”.

· Added “OpenText” property.

Also, Nagao-san’s e-mail and section 2 of the document discussed backward compatibility concerns.

See “Compatibility“; section 2.

· Issues relating to Visual Basic.

· Does not show all properties and methods when used as Insertable Object.
See “Using Common COs in VB and VC++“; section 4.

· API variable type of Cash Changer’s “ReadCashCounts” changed from BOOL* to VARIANT_BOOL*.
See “BOOL and VARIANT_BOOL“; section 3.

· TRUE value not fixed for BOOL Property.
See “BOOL and VARIANT_BOOL“; section 3.

· App freeze when closing one to two child windows containing the same CO.
See “Multiple Instances“; section 5.

· Can’t add as control in Visual C++.
See “Using Common COs in VB and VC++“; section 4.

In section 4.0, OPOS-J proposed using MFC in order to provide better backward compatibility. Epson, Fujitsu, and Nittsuko are willing to supply 1.4 control objects.

I thank OPOS-J for their concern and willingness to put together an alternate set of control objects. My response is:

· The issues are not serious enough to warrant starting the review cycle all over. The rest of this document addresses each of the issues in detail.

· A significant drawback to the OPOS-J proposal is future version support. Without a generator such as I have developed for the Common COs, then support for a future version will require painstaking updates and review of each CO for new features and to ensure backward compatibility. My generator consistently produces the required compatibility automatically, plus makes the addition of new methods and properties as well as new Control Objects very easy to do.

1.2 Other E-Mails

· Extended open status codes.

E-mails from Bill Turner / PSC Scanning, Kevin Quitt / IEE, and Nagao-san / Epson for OPOS-J. See “Extended Open Status Codes“; section 6.
· Running 2 or more instances of a CO within an App.

Currently causes various problems. E-mails from Harry McKinlay, Fukuchi-san / Fujitsu. See “Multiple Instances“; section 5.

· CoCreateInstance “context” parameter causes problem on Win95.

E-mail from Scott Wiemer / Axiohm. See “Change List for 1.4.995.“; section 7.

· CURRENCY property gets don’t work.

E-mail from Thomas Heinrich / SNI. See “Change List for 1.4.995.“; section 7.

2 Compatibility

2.1 Issues

OPOS-J listed two issues and a concern in their document relating to compatibility. They are:

· “Claim” and “Release” renamed to “ClaimDevice” and “ReleaseDevice”.

· Added “OpenText” property.

· Backward compatibility concerns.

2.2 Response: ClaimDevice and ReleaseDevice

This is obviously a change from the current APG, that will need to be documented in the next version. Using ATL, there is no alternative to changing “Release”. “Claim” was changed for consistency.

I have asserted the following points:

· It is good (some would say necessary) for OPOS to make this change to remove the collision of “Release” with COM’s Release method. In addition to the issue with ATL use (both for COs and SOs), this has caused difficulty with some other languages (such as Delphi) requiring workarounds.

· This is not a serious issue. Why?
Changing to any other CO – whether the Common COs or anyone’s MFC-based COs – requires development level changes, including rebuilding the application. So, while updating the App, it is a very minor additional change to also perform the renaming of these two methods.

Details

Most (if not all) real OPOS Apps use early-binding. This means that the CO’s type library information is read and used during development and build time, and the App must be deployed with this same CO. Both VC++ and VB save the CO’s Class ID as well as information on how to call the CO’s method, access its properties, and receive its events.

For example, with a VC++ MFC App, you can use Project | Add | Component and select and insert an OPOS CO as an ActiveX Control. A wrapper class header and implementation file will be generated to allow easy calling of the methods and properties. After putting an instance of the control onto a dialog, the Class Wizard can be used to assign a variable name to the control (using the Member Variables tab) and to add event handlers (using the Message Maps tab). This specific CO must be installed on the target system along with the App.

Changing to another CO requires several steps. The VC++ Project | Add | Component menu is used again to select and insert the new OPOS CO. Another wrapper class header and implementation file will be generated. After putting an instance of the control onto a dialog, the Class Wizard can be used to delete the variable name from the previous CO instance and assign it to the new CO. Event handlers must be added and the code from the previous handlers moved to these new ones. Finally, you should remove the remnants of the old CO from the source code, including the old wrapper files and CO references in the resource (.rc) file.

The other (theoretical) way for an App to use a CO is via late-binding. I’ll address this in section 2.4.

2.3 Response: OpenText Property

This is a property that is not in the current APG. I added it to assist with problem detection of the “Open” method.

See the section “Extended Open Status Codes“ in section 6 for an updated proposal, using a LONG “OpenResult” instead of a BSTR “OpenText”. Note that adding a property causes no compatibility issues.

2.4 Response: Backward Compatibility

OPOS-J’s document lists two conditions for backward compatibility. I list their conditions followed by my response.

2.4.1 POS Application Compatibility

OPOS-J Condition

CCO used with early POS application without source code modification of POS application.

POS application does not need to replace Claim / Release method with ClaimDevice / ReleaseDevice.

Response

For most POS applications, changing from one CO to another – whether to a Common CO or any MFC-based CO – requires source code modifications, as detailed in section 2.2. The additional source code changes for “ClaimDevice” and “ReleaseDevice” imposed by the Common COs are minor and straightforward.

It is theoretically possible that an application may be late-bound. This means that it acquires information about the CO’s methods, properties, and events at run-time, and dynamically configures itself for the CO. Programming for late-bound use of methods and properties is not particularly difficult. In fact, all CO’s must use late binding to the SO, in order to support different SOs with the same set of methods for a device class. However, late binding for events is not directly supported by the predominant tool sets. This makes it unlikely that Apps have used late binding.

If an App has been implemented using late binding, however, the Common COs will support that App without any source or binary level changes. This backward compatibility is provided because:

· The “Claim” and “Release” methods are supported for the IDispatch interface. This interface is the one which must be used to implement late binding.

· The additional “OpenResult” property does not affect compatibility. Only missing or altered methods, properties, and events can cause incompatibility, not new ones.

2.4.2 SO Compatibility

OPOS-J Condition

CCO used with early SO without SO modification

CCO also call Claim/Release method of SO, not ClaimDevice/ReleaseDevice

Response

The Common COs support all versions of SOs, from 1.01 through 1.4 without source or binary level changes.

When the App calls “ClaimDevice” or “Claim”, the Common COs call the SO method “ClaimDevice” if present, else it calls “Claim”. The SO may implement either of these two methods. When the App calls “ReleaseDevice” or “Release”, the Common COs call the SO method “ReleaseDevice” if present, else it calls “Release”. By doing this, the Common COs provide full backward compatibility while allowing future SOs that intend to use the Common COs to be implemented using ATL.

3 BOOL and VARIANT_BOOL

3.1 Issues

OPOS-J listed two issues in their document relating to booleans. Their issues are:

· “API variable type changed from BOOL to VARIANT_BOOL

“The second variable in the Cash Changer method ReadCashCounts has been changed from a BOOL pointer to a VARIANT_BOOL pointer.

“(OPOS1.4, LONG ReadCashCounts(BSTR *pCashCounts, BOOL *pDiscrepancy);)”

· “TRUE value not fixed for BOOL Property

“When a BOOL value of TRUE is written to a Property (e.g. DeviceEnabled, DataEventEnabled) the SO receives this value as -1. However with VC++ a value of TRUE is designated as 1. Some OPOS-J members have SOs which decide by comparing the received value to TRUE this needs to be fixed since a value of TRUE will never be registered by the SO. One possible work around for this issue follows.”

The work around suggested forcing Automation’s VARIANT_TRUE to VC++’s TRUE.

3.2 Response

I respectfully disagree with the first issue, but agree to the workaround for the second.

I performed quite a bit of testing to understand exactly how COM and VC++’s MFC handle booleans. Let me take some time to explain this.

First, though, let me say that the APG has always listed the parameter and return types that are used in the descriptions at the end of the Introduction chapter. For booleans, the entry is:

BOOL An integer with the legal values TRUE (non-zero) and FALSE (zero).

It was not the APG’s intention to specify that BOOL, TRUE, and FALSE were to be the actual names used within each development environment.

So what do we mean by the terms “BOOL”, “TRUE”, and “FALSE”.

3.2.1 What is a BOOL?

The data types chosen by OPOS are a small subset of the Automation data types. BOOL was selected as the term to use for booleans since it is one of the types that is listed by the VC++ Class Wizard's Automation tab. The Automation boolean data type, given in WTYPES.H, is VT_BOOL. The corresponding data type is VARIANT_BOOL, as stated in the OAIDL.H header file.

Unfortunately, VC++'s MFC designers made some poor compromises for handling Automation booleans. This has led to the current problems. When you select a BOOL property or method parameter type, VC++ uses VARIANT_BOOL (typedef'ed to “short” in WTYPES.H) as the COM type, but internally uses BOOL (typedef'ed to “long” in WTYPES.H).

I put together a small MFC ActiveX control project to illustrate the VC++ handling of booleans, using one boolean property and methods with boolean and boolean pointer parameters.

The dialog box for adding the method with a boolean pointer parameter is in the following picture:

The resulting class tree and ODL file follows. Notes:

· VC++ uses “boolean” in both the .ODL file and the interface class view.

· VC++ uses “BOOL” and “BOOL*” to implement the booleans.

· VC++ 6.0 gives the warnings shown during compilation. VC++ 5.0 does not.
(I did not research the reasons for these warnings.)

Finally, I used OLE View to look at the registered control's type library. Notice that VC++ converts each boolean to the COM type VARIANT_BOOL:

3.2.2 What is FALSE and What is TRUE?

(I’ll leave the philosophical discussion to another time. ;-))

First, FALSE is easy: Whether we use the VC++ constant FALSE or VARIANT_FALSE, its value is zero.

TRUE is not so easy. The VC++ constant VARIANT_TRUE is defined in WTYPES.H as “((VARIANT_BOOL)0xffff))”, which is really -1 since VARIANT_BOOL is a “short”. The VC++ constant TRUE is defined in WTYPES.H as 1.

The APG specification merely defines TRUE as non-zero, so that VC++ VARIANT_TRUE, VC++ TRUE, and the values 23 and -1234 should all be treated by OPOS software as logically true. Further, from a purist viewpoint, testing a boolean against a specific non-zero value has always been discouraged in programming. This remains true here. That is, if dealing with a boolean “x” in C++, one should always test “if(x) {…}” and “if(!x) {…}” and not against specific values. However, considering the currently deployed software, we need to take into account that SOs from several vendors have tested against TRUE (1).

Since the proper COM data type to use for booleans has been shown in the previous section to be “VARIANT_BOOL”, then the appropriate constants that should be used at the COM level are “VARIANT_TRUE” (-1) and “VARIANT_FALSE” (0).

How should all of this be applied to SOs?

· Getting boolean properties. An OPOS CO calls the SO’s “GetPropertyNumber” which returns a “long”. The CO must coerce the return value to VARIANT_TRUE or VARIANT_FALSE before passing it to the App.

· Setting boolean properties. An OPOS CO calls the SO’s “SetPropertyNumber” with a “long” parameter. The Common COs 1.4.994 set the parameter to –1 or 0. For compatibility with MFC SOs that test against VC++ TRUE, I will change to set the parameter to 1 or 0, as suggested by OPOS-J.

· Passing boolean and boolean pointer method parameters. An OPOS CO must pass a boolean as a VARIANT_BOOL and a boolean pointer as a VARIANT_BOOL pointer.

3.2.3 MFC and Boolean Value Coercion

As shown in section 3.2.1, when you select a BOOL property or method parameter type, VC++ uses VARIANT_BOOL (“short”) as the COM type, but internally uses BOOL (“long”).

Then MFC tries to perform conversions between these types. It does this successfully with booleans, but fails badly on boolean pointers. Specifically, MFC does the following:

· Incoming booleans (VARIANT_BOOL to BOOL). Applies to MFC COs and MFC SOs.

Before calling the Automation method implementation, MFC (in OLEDISP1.CPP) converts non-zero VARIANT_BOOL parameters to TRUE (1).

· Outgoing booleans (BOOL to VARIANT_BOOL). Applies to MFC COs.

Before calling out to a COM method, MFC (in OLEDISP2.CPP) converts non-zero boolean parameters to VARIANT_TRUE (-1).

· Boolean return values – such as with get of boolean property (BOOL to VARIANT_BOOL). Applies to MFC COs.

Before returning a boolean, MFC (in OLEDISP1.CPP) converts non-zero boolean parameters to VARIANT_TRUE (-1).

· Incoming boolean pointers (VARIANT_BOOL* to BOOL*).
Applies to MFC COs and MFC SOs. Currently, the only OPOS method that uses a boolean pointer is the Cash Changer’s ReadCashCounts.

No conversion is performed, either before calling the Automation method implementation or after it returns! And, even worse, the implementation is passed a pointer to the VARIANT_BOOL (short) using a pointer to BOOL (long). This means that if the implementation reads the value normally (using “*pBool”), then it is reading 4 bytes instead of the 2 that it should read. At this time, this is not a significant issue, since the ReadCashCounts only sets the boolean, and does not need to read it.

The value set by the implementation, however, should take some extra care. If it writes a new value normally (using “*pBool = x”), then it is writing 4 bytes instead of the proper 2 bytes. If the caller’s boolean was truly a VARIANT_BOOL or short, then you have just overwritten part of the next variable in the data area! Therefore, the implementation should set a new value by using “*(VARIANT_BOOL*)pBool = x”, where x is VARIANT_TRUE or VARIANT_FALSE.

· Outgoing booleans pointers (BOOL* to VARIANT_BOOL*).
Applies to MFC COs. Currently, the only OPOS method that uses a boolean pointer is the Cash Changer’s ReadCashCounts.

Before calling out to a COM method, MFC converts non-zero boolean parameters to VARIANT_TRUE (-1). No conversion is performed after it returns.

3.2.4 Summary

A summary of the issues by OPOS-J and my responses is:

· Issue. The Common CO changed the Cash Changer’s ReadCashCounts BOOL* parameter to VARIANT_BOOL*.

Response. The Common CO is correct. The proper COM type for a BOOL* entered by VC++ MFC and Class Wizard is VARIANT_BOOL*. An MFC SO will see it as a BOOL*, and should handle it carefully as shown in the previous section.

· Issue. The current Common COs pass boolean properties as –1 for true, but some SOs test specifically against 1.

Response. I will implement the work around suggested by OPOS-J, to provide compatibility for MFC-based SOs.
4 Using Common COs in VB and VC++

4.1 Issues

OPOS-J listed two issues in their document relating to this topic. They are:

· In Visual Basic, does not show all properties and methods when used as Insertable Object.

· In Visual C++, can’t add a Common CO as a control, using the Project | Add | Component menu item.

4.2 Response

Both of these issues are due to a bug that I introduced in the Common COs 1.4.994.

In my list of updates from 1.4.993 to 1.4.994, one of the items was:

· Registry values. … Use Major.Minor.Build for Version. …

I had mistakenly thought that this value within the Class ID key was for the vendor to use for a version number. However, both the VB and VC++ environments seem to require this to be set to “1.0”.

5 Multiple Instances

5.1 Issues

Two issues were raised relating to using more than one instance of a Common CO within an App. They are:

· OPOS-J: App freeze when closing one to two child windows containing the same CO.

· Harry McKinlay and Fukuchi-san / Fujitsu: Running 2 or more instances of a CO within an App causes various problems.

5.2 Response

I believe that both of these issues are due to the same bug.

The event handling code (in *Event.cpp) has incorrect setup for the second and succeeding instances of a CO within a process. It must be updated so that the hidden window class is registered while there are one or more instances, and then continue on to create the hidden window and synchronization objects. The current code only completes event initialization successfully for the first instance, and leaves others in a bad state.

I will need to retest to ensure that this solves the issue, and would like to ask Harry and Fukuchi-san to do the same if possible.

6 Extended Open Status Codes

6.1 Current Proposals

I've considered the proposal by Bill Turner and Kevin Quitt and the comments by OPOS-J on this subject. The salient points, as I see it, are:

1. On an “Open” failure, more information would be useful.

2. My initial proposal, in the current 1.4.994 Beta, defines a new BSTR property “OpenText” that is set by the CO. Though useful, it is not easily nationalized.

3. Bill proposed adding standard values to “ResultCodeExtended” that may be used during Open. A numeric code has the advantage of not requiring nationalization, and no extra property is needed. Also, there are no significant App or SO impacts, although the CO might query the SO for its “ResultCodeExtended” before a successful “Open” -- this theoretically could adversely impact an SO, although I think that this is unlikely.

4. OPOS-J proposed that standard values be added to “ResultCode” instead of “ResultCodeExtended”, since this is the property that is used for statuses that apply to more than one device. Also the spec says that “ResultCodeExtended” is not initialized until a successful “Open”.

5. I don't think that we should add to the “ResultCode” values, since this could have App impacts, since new, unexpected return values may occur. This violates our forward migration principle – that is, “a newer version must not break an App written to a previous version”. To prevent App impacts, we would need some other, new property that an App could set to enable the new result codes. This becomes too cumbersome.

Therefore, I think that the best solution is a new numeric property that is set by the CO. Adding a property will not impact any App or SO -- it lies dormant unless the App is updated to use it.

6.2 My Updated Proposal

1. The Common COs define a long property “OpenResult”, initialized to zero.

On “Open”, the CO sets this property to one of the following constants, which will be added to the “Opos.h” and “OposAll.bas” header files. Following the constant is the ResultCode value that the CO will return from the Open method.

· 0 (OPOS_SUCCESS)

Open was successful.

· EOPEN_ALREADYOPEN (OPOS_E_ILLEGAL)

Control is already open.

· EOPEN_REGBADNAME (OPOS_E_NOEXIST) Either:

· The registry key for the device class is missing (e.g.,
 HKLM\Software\OLEforRetail\ServiceOPOS\POSPrinter
is not present), or

· The specified “DeviceName” is neither a subkey within this class nor a value whose data is a subkey within this class.

· EOPEN_REGPROGID (OPOS_E_NOSERVICE)

The device key's default value does not contain a valid programmatic ID for the Service Object.

· EOPEN_SOCREATE (OPOS_E_NOSERVICE) Either:

· Couldn't create an instance of the Service Object, or

· The Service Object doesn't have a dispatch interface.

· EOPEN_SOBADIF (OPOS_E_NOSERVICE)

The service object doesn't support one or more methods required by its version.

· EOPEN_SOFAILEDOPEN (OPOS_E_NOSERVICE)

The Service Object returned an error on its “OpenService” call.

· EOPEN_SOBADVERSION (OPOS_E_NOSERVICE)

The Service Object major version is not 1.

2. To avoid possible Service Object impacts, the CO will not get the SO's “ResultCodeExtended” during “Open”. The only way that an SO can report its error is by returning a valid “ResultCode” value from its “OpenService”. My suggestions for the cases given by Bill and Kevin are:

· OPOS_E_BUSY or OPOS_E_NOHARDWARE

Unable to open PC communication hardware (e.g., serial port is in use or invalid).

· OPOS_E_ILLEGAL

Invalid configuration information for service object.

· OPOS_E_NOEXIST

Unsupported device (wrong model or manufacturer).

3. An SO can report more specific error conditions in several ways. One rather simple possibility is to write some information into the registry for the “DeviceName” that could be browsed by developers and service personnel. Other forms of logging could also be used.

7 Change List for 1.4.995.

· Registry values. Change the Class ID value Version to 1.0. (See section 4.2.)

· “OpenText” property. Replace this new property with “OpenResult”. Add new constants to the “Opos.h” and “OposAll.bas” header files. (See section 6.2.)

· Multiple instance support. Correct to properly support more than one instance of a Common CO within an App. (See section 4.2.)

· Setting boolean properties. When a Common CO calls the SO’s “SetPropertyNumber” to set a boolean, pass a parameter of 1 or 0. This will provide compatibility with MFC SOs that test against VC++ TRUE. (See section 3.2.4.)

· CoCreateInstance parameter. Change the context parameter from CLSCTX_SERVER back to CLSCTX_ALL. The change from “all” to “server” in an earlier version was not required, and caused at least one Win95 configuration to fail.
· CURRENCY property gets. Correct the generated code for this property type.
· Event firing. Update to first perform lookup of dispatch ID in the App’s event sink. This is not done by ATL-generated code, but must be present for full support of late binding.
8 Items To Be Documented

· Windows 95 only. Must install DCOM95 or DCOM98 in order to support ATL controls. Windows NT 4.0 and Windows 98 already contain the updated COM APIs provided by this package.

· ClaimDevice and ReleaseDevice. “Claim” changed to “ClaimDevice”. “Release” changed to “ReleaseDevice”. These new names must be used for early bound Apps and are recommended when late bounds Apps are updated

“Claim” and “Release” continue to be supported for late bound applications (that is, through the IDispatch interface) for backward migration.

· “OpenResult” property. Document this new property.

· SetPropertyNumber with boolean values. (CPG) Document that:

· An SO should test boolean parameter values only for zero or non-zero.

· The Common COs will pass a parameter of 1 for true and 0 for false, in order to provide compatibility with MFC SOs that test against VC++ TRUE.

· Boolean pointer parameters and MFC. Add warnings about proper usage, due to problems in the MFC design. (Base on information in 3.2.3.)

// end

May 16, 1999
Curtiss Monroe
Page 16 of 16

