
UnifiedPOS

UnifiedPOS
Retail Peripheral Architecture

Version 1.6 July 15, 2001

International Standard

For Implementation of Point Of Service Peripherals

UnifiedPOS Technical Committee Members:

Fujitsu Transaction Solutions Inc.,
The Home Depot, Inc.,
IBM Corporation,
Microsoft Corporation,
NCR Corporation,
PCMS Datafit Ltd.,
J.C. Penney Company, Inc.,
Research Computer Services, Inc.,
Sears, Roebuck & Co.,
Seiko Epson Corporation,
Sun Microsystems, Inc.,
Wincor Nixdorf GmbH & Co. KG.

Information regarding the activities of the UnifiedPOS Committee can
be viewed at the following web site:

http://www.nrf-arts.org

UnifiedPOS

UnifiedPOS Retail Peripheral Architecture

Information in this document is subject to change without notice.

JavaPOS is a trademark of Sun Microsystems, Inc.
Windows is a trademark of Microsoft Corporation.
Epson is a trademark of Seiko Epson Corporation.

http://www.nrf-arts.org
http://www.nrf-arts.org

Table of Contents
INTRODUCTION AND ARCHITECTURE
UNIFIEDPOS ARCHITECTURE FOR RETAIL .. 1

WHAT IS UNIFIEDPOS? ... 1

GOALS .. 3
DEPENDENCIES ... 3
UNIFIEDPOS RELATIONSHIP TO OPOS AND JAVAPOS ... 3
WHO SHOULD READ THIS DOCUMENT .. 4

ARCHITECTURAL OVERVIEW ... 5

ARCHITECTURAL COMPONENTS ... 5
USE OF UML.. 6
DATA TYPES ... 9

DEVICE BEHAVIOR MODELS.. 10

INTRODUCTION TO PROPERTIES, METHODS, AND EVENTS 10
Properties (UML Attributes).. 10
Methods (UML Operations)... 11
Events (UML Interfaces).. 11

DEVICE INITIALIZATION AND FINALIZATION ... 12
Initialization ... 12
Finalization .. 12
Summary .. 13

DEVICE SHARING MODEL .. 14
Exclusive-Use Devices ... 14
Sharable Devices ... 14

EVENTS ... 15
ERRORS .. 16

Error Codes ... 16
Extended Error Code ... 17

DEVICE INPUT MODEL ... 18
DEVICE OUTPUT MODELS .. 21

Synchronous Output... 21
Asynchronous Output... 21

DEVICE POWER REPORTING MODEL .. 22
Model ... 22
Power State Diagram ... 23
Power Properties ... 24
Power Reporting Requirements for DeviceEnabled 25

DEVICE STATES .. 26
Device State Diagram .. 27

VERSION HANDLING .. 28

CHAPTER 1
COMMON PROPERTIES, METHODS, AND EVENTS 29

SUMMARY .. 29
GENERAL INFORMATION .. 31
PROPERTIES (UML ATTRIBUTES) .. 33

ii UnifiedPOS Retail Peripheral Architecture
METHODS (UML OPERATIONS)... 44
EVENTS (UML INTERFACES)... 50

CHAPTER 2
BUMP BAR ... 57

SUMMARY .. 57
GENERAL INFORMATION .. 61

Bump Bar Class Diagram .. 62
Bump Bar State Diagram ... 66

PROPERTIES (UML ATTRIBUTES) .. 67
METHODS (UML OPERATIONS)... 73
EVENTS (UML INTERFACES)... 78

CHAPTER 3
CASH CHANGER.. 83

SUMMARY .. 83
GENERAL INFORMATION .. 87

Capabilities .. 87
CashChanger Class Diagram .. 88
Cash Changer State Diagram .. 93

PROPERTIES (UML ATTRIBUTES) .. 95
METHODS (UML OPERATIONS).. 105
EVENTS (UML INTERFACES)... 112

CHAPTER 4
CASH DRAWER .. 115

SUMMARY .. 115
GENERAL INFORMATION .. 118

Capabilities .. 118
Cash Drawer Class Diagram ... 119

PROPERTIES (UML ATTRIBUTES) .. 120
METHODS (UML OPERATIONS)... 122
EVENTS (UML INTERFACES)... 123

CHAPTER 5
CAT - CREDIT AUTHORIZATION TERMINAL .. 125

SUMMARY .. 125
GENERAL INFORMATION .. 129

Description of terms... 129
Capabilities .. 130
CAT Class Diagram ... 131
Model ... 132
Device Sharing... 135
CAT State Diagram .. 136

PROPERTIES (UML ATTRIBUTES) .. 137
METHODS (UML OPERATIONS)... 154
EVENTS (UML INTERFACES)... 162

CHAPTER 6
COIN DISPENSER... 165

SUMMARY .. 165

iiiTable of Contents
GENERAL INFORMATION .. 168
Coin Dispenser Class Diagram ... 169

PROPERTIES (UML ATTRIBUTES) .. 171
METHODS (UML OPERATIONS)... 172
EVENTS (UML INTERFACES)... 173

CHAPTER 7
FISCAL PRINTER... 175

SUMMARY .. 175
GENERAL INFORMATION .. 184

Fiscal Printer Class Diagram .. 185
General Requirements ... 186
Fiscal Printer Modes ... 187
Model ... 188
Error Model ... 189
Device Sharing... 190
Fiscal Printer State Diagram ... 191
Fiscal Printer States .. 192
Fiscal Printer PrinterState Diagram ... 195
Document Printing ... 196
Ordering of Fiscal Receipt Print Requests .. 197
Fiscal Receipt Layouts ... 199
Example of a fiscal receipt ... 200
Totalizers and Fiscal Memory ... 201
Counters ... 201
VAT Tables... 201
Receipt Duplication ... 202
Currency amounts, percentage amounts, VAT rates, and quantity amounts 202
Currency Change ... 202

PROPERTIES (UML ATTRIBUTES) .. 203
METHODS (UML OPERATIONS)... 241
EVENTS (UML INTERFACES)... 315

CHAPTER 8
HARD TOTALS ... 319

SUMMARY .. 319
GENERAL INFORMATION .. 322

Hard Totals Class Diagram ... 323
PROPERTIES (UML ATTRIBUTES) .. 327
METHODS (UML OPERATIONS)... 329
EVENTS (UML INTERFACES)... 339

CHAPTER 9
KEYLOCK .. 341

SUMMARY .. 341
GENERAL INFORMATION .. 343

Keylock Class Diagram ... 343
PROPERTIES (UML ATTRIBUTES) .. 345
METHODS (UML OPERATIONS)... 346
EVENTS (UML INTERFACES)... 347

iv UnifiedPOS Retail Peripheral Architecture
CHAPTER 10
LINE DISPLAY .. 349

SUMMARY .. 349
GENERAL INFORMATION .. 353

Line Display Class Diagram .. 354
PROPERTIES (UML ATTRIBUTES) .. 357
METHODS (UML OPERATIONS)... 376
EVENTS (UML INTERFACES)... 387

CHAPTER 11
MICR - MAGNETIC INK CHARACTER RECOGNITION READER 389

SUMMARY .. 389
GENERAL INFORMATION .. 392

MICR Class Diagram .. 393
MICR Character Substitution .. 396

PROPERTIES (UML ATTRIBUTES) .. 397
METHODS (UML OPERATIONS)... 401
EVENTS (UML INTERFACES)... 405

CHAPTER 12
MSR - MAGNETIC STRIPE READER .. 409

SUMMARY .. 409
GENERAL INFORMATION .. 412

MSR Class Diagram .. 413
MSR State Diagrams .. 415
MSR Usage Diagram ... 417

PROPERTIES (UML ATTRIBUTES) .. 418
EVENTS (UML INTERFACES)... 429

CHAPTER 13
PIN PAD .. 435

SUMMARY .. 435
GENERAL INFORMATION .. 439

Capabilities .. 439
PIN Pad Class Diagram .. 440
Feature Not Supported ... 441
Note on Terminology.. 441
Model ... 442
Device Sharing... 443
PIN Pad State Diagram ... 444

PROPERTIES (UML ATTRIBUTES) .. 445
METHODS (UML OPERATIONS)... 456
EVENTS (UML INTERFACES)... 460

CHAPTER 14
POINT CARD READER WRITER.. 463

SUMMARY .. 463
GENERAL INFORMATION .. 468

Capabilities .. 468
Point Card Reader Writer Class Diagram .. 469

vTable of Contents
Model ... 470
Input Model.. 470
Output Model ... 471
Card Insertion Diagram .. 472
Printing Capability .. 473
Cleaning Capability ... 474
Initialization of Magnetic Stripe Data ... 474
Device Sharing... 474
Data Characters and Escape Sequences ... 475
Point Card Reader Writer State Diagram ... 477

PROPERTIES (UML ATTRIBUTES) .. 478
METHODS (UML OPERATIONS).. 497
EVENTS (UML INTERFACES) .. 505

CHAPTER 15
POS KEYBOARD... 509

SUMMARY .. 509
GENERAL INFORMATION .. 512

POS Keyboard Class Diagram .. 512
PROPERTIES (UML ATTRIBUTES) .. 514
EVENTS (UML INTERFACES)... 516

CHAPTER 16
POS POWER... 519

SUMMARY .. 519
GENERAL INFORMATION .. 522

Capabilities .. 522
Device Sharing... 522
Model ... 523
POSPower Class Diagram .. 524
POSPower State Diagram ... 525
POSPower PowerState Diagram - part 1 .. 526
POSPower PowerState Diagram - part 2 .. 527
POSPower PowerState Diagram - part 3 .. 528
POSPower State chart Diagram for fan and temperature 529

PROPERTIES (UML ATTRIBUTES) .. 530
METHODS (UML OPERATIONS)... 534
EVENTS (UML INTERFACES) .. 535

CHAPTER 17
POS PRINTER.. 537

SUMMARY .. 537
GENERAL INFORMATION .. 543

Capabilities .. 543
POS Printer Class Diagram .. 544
POS Printer Class Diagram - Version 1.5 Updates 544
Model ... 546
Device Sharing... 549
POS Printer State Diagram ... 550
“Both sides printing” sequence Diagram .. 551
Data Characters and Escape Sequences ... 552

vi UnifiedPOS Retail Peripheral Architecture
POS Printer State Diagrams (Low Level) ... 555
PROPERTIES (UML ATTRIBUTES) .. 560
METHODS (UML OPERATIONS)... 603
EVENTS (UML INTERFACES)... 633

CHAPTER 18
REMOTE ORDER DISPLAY... 639

SUMMARY .. 639
GENERAL INFORMATION .. 643

Remote Order Display Class Diagram .. 644
PROPERTIES (UML ATTRIBUTES) .. 650
METHODS (UML OPERATIONS)... 660
EVENTS (UML INTERFACES)... 677

CHAPTER 19
SCALE ... 681

SUMMARY .. 681
GENERAL INFORMATION .. 684

Scale Class Diagram .. 685
PROPERTIES (UML ATTRIBUTES) .. 687
METHODS (UML OPERATIONS)... 692
EVENTS (UML INTERFACES)... 695

CHAPTER 20
SCANNER (BAR CODE READER)... 699

SUMMARY .. 699
GENERAL INFORMATION .. 702

Scanner Class Diagram ... 702
PROPERTIES (UML ATTRIBUTES) .. 704
EVENTS (UML INTERFACES)... 709

CHAPTER 21
SIGNATURE CAPTURE .. 713

SUMMARY .. 713
GENERAL INFORMATION .. 716

Signature Capture Class Diagram ... 717
PROPERTIES (UML ATTRIBUTES) .. 720
METHODS (UML OPERATIONS)... 724
EVENTS (UML INTERFACES)... 726

CHAPTER 22
TONE INDICATOR... 729

SUMMARY .. 729
GENERAL INFORMATION .. 732

Tone Indicator Class Diagram .. 733
PROPERTIES (UML ATTRIBUTES) .. 736
METHODS (UML OPERATIONS)... 739
EVENTS (UML INTERFACES)... 741

viiTable of Contents
APPENDIX A
OLE FOR RETAIL POS — OPOS IMPLEMENTATION REFERENCE........ 1

WHAT IS “OLE FOR RETAIL POS?” .. 1
WHO SHOULD READ THIS SECTION ... 2
GENERAL OLE FOR RETAIL POS CONTROL MODEL... 2
OPOS DEFINITIONS .. 3

Device Class... 3
Control Object or CO .. 3
Service Object or SO.. 3
OPOS Control or Control.. 3

HOW AN APPLICATION USES AN OPOS CONTROL .. 4
WHEN METHODS AND PROPERTIES MAY BE ACCESSED 5

Methods.. 5
Properties... 5

STATUS, RESULT CODE, AND STATE MODEL ... 7
Status Model ... 8
Result Code Model... 8
State Model .. 9

DEVICE SHARING MODEL .. 11
Exclusive-Use Devices ... 11
Sharable Devices ... 11

EVENTS ... 13
INPUT MODEL ... 15
OUTPUT MODEL ... 17

Synchronous Output... 17
Asynchronous Output... 17

DEVICE POWER REPORTING MODEL .. 18
Model ... 18
Properties ... 19
Power Reporting Requirements for DeviceEnabled 20

OPOS COMPONENT DESCRIPTIONS .. 21
SECTION 1: OPOS DATA TYPES .. 22
SECTION 2: OPOS INTERFACE DESCRIPTIONS ... 23
OPOS COMMON PROPERTIES, METHODS, AND EVENTS...................................... 24
PROPERTIES .. 24
METHODS ... 41
EVENTS... 47
PERIPHERAL INTERFACES ... 51
OPOS: CASH DRAWER ... 52

Visual Basic Command Examples. .. 52
Initializing Properties, Methods, & Events.. 52
Capabilities, Assignments and Descriptions Properties, Methods, & Events 52
Cash Drawer Operations Properties & Methods .. 53
Terminating Methods ... 53
Visual C++ Command Examples. ... 54
Initializing Properties, Methods, & Events.. 54
Capabilities, Assignments and Descriptions Properties, Methods, & Events 54
Cash Drawer Operations Properties & Methods .. 55
Terminating Methods ... 55

viii UnifiedPOS Retail Peripheral Architecture
OPOS: MICR ... 56
Visual Basic Command Examples. .. 56
Initializing Properties, Methods, & Events.. 56
Capabilities, Assignments and Descriptions Properties, Methods, & Events 56
MICR Operations Properties, Methods, & Events .. 57
Terminating Methods ... 58
Visual C++ Command Examples. ... 59
Initializing Properties, Methods, & Events.. 59
Capabilities, Assignments and Descriptions Properties, Methods, & Events 59
MICR Operations Properties, Methods, & Events .. 60
Terminating Methods ... 61

SECTION 3: OPOS REGISTRY USAGE ... 62
SECTION 4: OPOS APPLICATION HEADER FILES ... 66
SECTION 5: TECHNICAL DETAILS ... 67

System Strings (BSTR) ... 67
System Strings and Binary Data .. 68

SECTION 6: RELEASE 1.5 API CHANGE: CLAIMDEVICE AND RELEASEDEVICE .. 69

APPENDIX B
JAVA FOR RETAIL POS — JAVAPOS IMPLEMENTATION REFERENCE1

WHAT IS JAVA FOR RETAIL POS? ... 1
Benefits... 1
Dependencies ... 2
Relationship to OPOS .. 2
Who Should Read This Section .. 2

APPENDIX OVERVIEW .. 3
ARCHITECTURAL OVERVIEW ... 3

Architectural Components ... 4
DEVICE BEHAVIOR MODELS .. 6

Introduction to Properties, Methods, and Events .. 6
Device Initialization and Finalization ... 7

Initialization .. 7
Finalization ... 7
Summary... 8

Device Sharing Model .. 9
Exclusive-Use Devices ... 10
Sharable Devices .. 10

Data Types ... 11
Exceptions .. 12

ErrorCode ... 13
ErrorCodeExtended .. 14

Events ... 15
Registering for Events .. 17
Event Delivery .. 17

Device Input Model .. 18
Device Output Models .. 21

Synchronous Output ... 21
Asynchronous Output ... 21

Device Power Reporting Model ... 23
Model .. 23
Properties .. 24

ixTable of Contents
Power Reporting Requirements for DeviceEnabled......................... 25

Device States .. 26
Threads .. 27
Version Handling ... 27

CLASSES AND INTERFACES... 28
Synopsis.. 28

Application ... 28
Device Control .. 29
Device Service .. 29
Helper Classes .. 30

Sample Class and Interface Hierarchies ... 31
Application ... 31
Device Controls .. 31
Device Service .. 32

Sample Application Code... 34
Package Structure.. 35

jpos.. 35
jpos.events .. 36
jpos.services.. 36

DEVICE CONTROLS... 37
Device Control Responsibilities... 37
Device Service Management.. 38

jpos.config/loader (JCL) and JavaPOS Entry Registry (JER) 38
jpos.config/loader (JCL) Characteristics .. 38

Property and Method Forwarding ... 41
Event Handling .. 42

Event Listeners and Event Delivery ... 42
Event Callbacks .. 43

Version Handling ... 44
DEVICE SERVICES .. 46

Device Service Responsibilities ... 46
Property and Method Processing .. 46
Event Generation ... 47
Physical Device Access.. 48
API Mapping Rules .. 48

JAVAPOS COMPONENT DESCRIPTIONS .. 49
SECTION 1: JAVAPOS DATA TYPES... 50

Data Types ... 50
SECTION 2: JAVAPOS INTERFACE DESCRIPTIONS ... 51
JAVAPOS COMMON PROPERTIES, METHODS, AND EVENTS 52

Properties... 52
Methods.. 64
Events ... 70

PERIPHERAL INTERFACES... 75
JAVAPOS: CASH DRAWER... 76

Java Command Examples. ... 76
Initializing Properties, Methods, & Events.. 76
Capabilities, Assignments and Descriptions Properties, Methods, & Events 76
Cash Drawer Operations Properties, Methods, & Events 77
Terminating Methods ... 77

x UnifiedPOS Retail Peripheral Architecture
JAVAPOS: MICR ... 78
Java Command Examples. ... 78
Initializing Properties, Methods, & Events.. 78
Capabilities, Assignments and Descriptions Properties, Methods, & Events 78
MICR Operations Properties, Methods, & Events .. 80
Terminating Methods ... 80

SECTION 3: TECHNICAL DETAILS - OPOS AND JAVAPOS 81
API Mapping Rules .. 81

Data Types .. 81
Property & Method Names ... 82
Events ...83
Constants... 83

API Deviations ... 84

APPENDIX C
CHANGE HISTORY ... 1

RELEASE VERSION 1.4 ... 1
RELEASE VERSION 1.5 ... 1
RELEASE VERSION 1.6 ... 3

APPENDIX D
ADDITIONAL SOFTWARE REFERENCES... 1

UML REFERENCES... 1

APPENDIX E
ADDITIONAL HARDWARE REFERENCES ... 1

USB PLUSPOWER CONNECTOR.. 1

What Is UnifiedPOS?

UnifiedPOS is the acronym for Unified Point of Service. It is an architectural
specification for application interfaces to point-of-service devices that are used in
the retail environment. This standard is both operating system independent and
language neutral and defines:

• An architecture for application interface to retail devices.

• A set of retail device behaviors sufficient to support a range of POS solutions.

The UnifiedPOS standard will include:

• The UnifiedPOS Retail Peripheral Architecture overview.

• Text descriptions of the interface to the functions of the device.

• UML terminology and diagrams for each device category, to describe:

• Relationships between classes/interfaces and objects in the system.

• Basis for creating C++, Java, IDL, or other OO technology to implement the
UML design.

• Operational characteristics and details for implementations which are
compliant to the UnifiedPOS architecture. These are being added in
Appendices A and B for UnifiedPOS Version 1.6.

The UnifiedPOS standard will not include:

• Specific language API specifications.

• Complete software components. Hardware providers or third-party providers
develop and distribute these components.

• Certification mechanism; this must be handled by individual language
standard committees (such as the OLE for Retail POS (OPOS) and Java for
Retail POS (JavaPOS) committees).

I N T R O D U C T I O N A N D A R C H I T E C T U R E

UnifiedPOS Architecture for Retail

2
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Since the release of UnifiedPOS Version 1.4, the retail standards committees have
been maintaining three separate standard documents, UnifiedPOS, JavaPOS and
OPOS. The architecture and device characteristics are identical in each of these
documents. The addition of new device categories and/or enhancements to
existing chapters requires consultation and agreement on the technical content for
the standard. However, in addition to that technical work, there is a heavy
administrative burden in generating the correct documentation for three different
versions of the specification. The current documentation situation is inherently
error prone in that the same changes have to be maintained in multiple
documents. Confusion is generated in cases where differences have inadvertently
appeared in the documentation. In order to simplify the process and bring a higher
quality of review to ongoing modifications of the documentation, the standard
committee is releasing a consolidated UnifiedPOS specification. This
UnifiedPOS Version 1.6 specification includes the description of all device
categories plus the minor delta information for each of the specific existing
implementations, currently JavaPOS and OPOS.

Appendix A includes the definition, goals and deliverables for OPOS. There are
explanations for the input/output and device sharing for Microsoft’s COM model
for the operation of the interface. Event and error handling unique to this
implementation are described.

Appendix B includes the definition, goals and deliverables for JavaPOS. There
are explanations for the input/output and device sharing for the Java model for the
operation of the interface. Event and error handling unique to this implementation
are described.

3What Is UnifiedPOS?: Goals
Goals
The goals of UnifiedPOS are to provide:

• Common device architecture that is international and extends across vendors,
platforms, and retail format.

• Standards for application to device interfaces in an operating system
independent and language neutral manner.

• Reduced implementation costs for vendors to support multiple (for example,
Windows/COM and Java) platforms because they share the same architecture.
This should produce speed to market for innovation.

• An environment avoiding competition between standards while encouraging
competition among implementations.

Dependencies
Success of the goals of UnifiedPOS depends upon platform specific standard
committees (such as JavaPOS and OLE for Retail POS (OPOS) technical
committees) to advance the architecture into platform specific documentation,
API definitions and implementations.

The specific technical implementations require:

• Platform specific Programmer’s Guide.

• Source files, including:

• Definition files. Various interface and class files described in the
standard.

• Example files. These will include a set of sample Control classes, to
illustrate the interface presented to an application.

UnifiedPOS Relationship to OPOS and JavaPOS
The UnifiedPOS specification formalizes and documents the underlying retail
device architecture, shared by both the JavaPOS and OPOS standards, in an
operating system independent and language neutral manner. The first release of
the UnifiedPOS Specification was Version 1.4.

Both the JavaPOS and OPOS standards have been established as conformant
platform mappings of the UnifiedPOS specification. In UnifiedPOS Version 1.6,
appendices have been added in order to document specific implementation details
for each of these platforms. JavaPOS will be recognized as the only UnifiedPOS
conformant, operating system neutral, Java language mapping (See Appendix B).
OPOS will be recognized as the only UnifiedPOS conformant language neutral
COM mapping (See Appendix A). Future UnifiedPOS mappings to platforms
other than Java and COM will be included as appendices to the UnifiedPOS
specification as they become available.

This acceptance of the existing standards is based on their close conformance to a
common design model. Historically, the OPOS standards provided device

4
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
interfaces for Win32-based terminals using ActiveX technologies. The OPOS
standard was used as the starting point for JavaPOS, due to:

• Similar purposes. Both standards involved developing device interfaces for
a segment of the software community.

• Reuse of device models. The majority of the OPOS documentation specifies
the properties, methods, events, and constants used to model device behavior.
These behaviors are in large part independent of programming language.

• Reduced learning curve. Many application and hardware vendors are
already familiar with using and implementing the OPOS APIs.

Therefore, retail application developers and Service writers can continue to write
their code in conformance with one or both of the JavaPOS or OPOS standards.
The content of the UnifiedPOS specification, however, along with the appropriate
Appendix, will constitute the definition of how an application can be developed
to meet the UnifiedPOS standard. The standards committees do not intend to
release future versions of the specific OPOS and JavaPOS documents after the
Version 1.6 specification.

Who Should Read This Document
The UnifiedPOS Architecture is targeted to the standard committees that will
provide the language specific mapping and Programmer’s Guides. However, the
application developer who will use POS devices, the system developer who will
write POS device code, and the suppliers of POS devices for retail may be
interested in the device characteristics as portrayed in this document.

This guide assumes that the standard committee member is familiar with the
following:

• General characteristics of POS peripheral devices.

• UnifiedPOS terminology and architecture.

• UML for reading the design.

5Architectural Overview: Architectural Components
Architectural Overview
UnifiedPOS defines a multi-layered architecture in which a POS Application
interacts with the Physical or Logical Device through the UnifiedPOS Control
layer.

Architectural Components
The POS Application (or Application) is an Application that uses one or more
UnifiedPOS devices.

UnifiedPOS Devices are divided into categories called Device Categories, such
as Cash Drawer and POS Printer.

Each UnifiedPOS Device is a combination of these components:

• Control for a device category. The Control class provides the interface
between the Application and the device category. It contains no graphical
component and is therefore invisible at runtime.

The Control has been designed so that all implementations of a device
category’s control will be compatible. Therefore, the Control can be
developed independently of the Service for the same device category (they
can even be developed by different companies).

 POS Application

 UnifiedPOS Control

 UnifiedPOS Service

 Physical (or logical) Device

UnifiedPOS Device

6
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
• Service, which is a component called by the Control through the Service
Interface. The Service is used by the Control to implement UnifiedPOS-
prescribed functionality for a Physical Device. It can also call special event
methods provided by the Control to deliver events to the Application.

A set of Service classes can be implemented to support Physical Devices with
multiple Device Categories.

The Application manipulates the Physical Device (the hardware unit or
peripheral) by calling the platform specific APIs which conform to the
UnifiedPOS standard. Some Physical Devices support more than one device
category. For example, some POS Printers include a Cash Drawer kickout, and
some Bar Code Scanners include an integrated Scale. However with UnifiedPOS,
an application treats each of these device categories as if it were an independent
Physical Device. The UnifiedPOS Device standard developer is responsible for
presenting the peripheral in this way.

Note: Occasionally, a Device may be implemented in software with no user-
exposed hardware, in which case it is called a Logical Device.

Use of UML
The UnifiedPOS standard includes the use of UML terminology and diagrams to
define device categories. Following is a brief description of the extensions to
UML to make it better fit the UnifiedPOS architecture (this extension is expected
and allowed by the UML, see Booch98 reference in the “UML References” on
page D-1).

Should any discrepancies exist between the UML diagrams and the specification
text, then the text takes precedence.

7Architectural Overview: Use of UML
Table of extensions to UML for UnifiedPOS.

Name
Applies to UML

Symbol
Meaning

<<capability>> Class attribute
stereotype which flags the attribute as a
UnifiedPOS capability

<<prop>> Class attribute
stereotype which flags the attribute as a
UnifiedPOS property

<<event>> Class

stereotype to indicate that the class/
interface will be mapped to a UnifiedPOS
event which in turn is mapped to a JavaPOS
event class or a COM event for OPOS

exclusive-use Class

constraint that indicates this device service
or service object follows the exclusive-use
behavior defined in the UnifiedPOS
documentation in section “Exclusive-Use
Devices” on page 14.

sharable Class

constraint that indicates this device service
or service object follows the sharable
behavior defined in the UnifiedPOS
documentation in section “Sharable
Devices” on page 14.

read-only

read-write
Class attribute

constraint that indicates the mutability of
the attribute. For example, in JavaPOS,
read-only attributes translate to having a
getter method for the attribute and read-
write attributes have getter and setter
methods for attributes.

 access after

<open>|

<open-claim>|

<open-enable>|

<open-claim-enable>

Class attribute

constraint that indicates this attribute is
accessible when the service is in the state
indicated. For example {access after
opened-claim-enable} indicates that the
attribute is accessible when the service has
been opened, claimed and enabled in the
order indicated.

raises-exception Class operation

constraint that indicates this method can
throw an exception if the implementation
language supports exception; otherwise,
some mechanism is used to notify the
application that an invalid condition
occurred. A value is returned to indicate the
error.

 use after

<open>|

<open-claim>|

<open-enable>|

<open-claim-enable>

Class operation

constraint that indicates this operation is
accessible when the service is in the state
indicated. For example {use after open-
claim-enable} indicates that the method is
accessible when the service has been
opened, claimed and enabled in the order
indicated.

8
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Package Diagram

UnifiedPOS uses Static Structure Diagrams to define common interfaces.

Note: This package diagram is included to give some logical structure to the
interfaces in the UnifiedPOS interfaces UML diagrams. Some implementations
may have a corresponding equivalence for the packages and some may not. Also,
note that the name ‘upos’ may be replaced by an implementation specific prefix
(eg. JavaPOS uses Java packages and maps the prefix ‘upos’ to ‘jpos’).

upos events

(from upos)

9Architectural Overview: Data Types
Data Types
UnifiedPOS uses textual references to data types which will be defined for
specific language usage:

For Java:
The convention of type[1] (an array of size 1) is used to pass a modifiable basic
type. This is required since Java’s primitive types, such as int and boolean, are
passed by value, and its primitive wrapper types, such as Integer and Boolean,
do not support modification. For strings and arrays, do not use a null value to
report no information. Instead use an empty string (““) or an empty array (zero
length). In some chapters, an integer may contain a “bit-wise mask”. That is, the
integer data may be interpreted one or more bits at a time. The individual bits are
numbered beginning with Bit 0 as the least significant bit.

UnifiedPOS JavaPOS OPOS UML UnifiedPOS text Usage
boolean boolean BOOL in

boolean
Boolean true or false.

boolean by
reference

boolean[1] BOOL* inout
boolean

Modifiable boolean.

binary byte[] BSTR in binary Array of bytes. Binary byte array,
may not be modified.

binary by
reference

byte[] BSTR* inout
binary

Array of bytes. May be modified,
but size of array cannot be changed.
Binary byte array by reference.

int32 int LONG in int32 32-bit integer.
int32 by
reference

int[1] LONG* inout
int32

Modifiable 32-bit integer.

currency long CURRENCY
or CY

in
currency

64-bit integer. Sometimes used for
currency values, where 4 decimal
places are implied. For example, if
the integer is “1234567”, then the
currency value is “123.4567”. See
footnotea

a. Six decimal place precision is required for all computations in conversion between
currencies but is not required for the representation of the solution.

currency by
reference

long[1] CURRENCY*
or CY*

inout
currency

64-bit integer by reference.

string String BSTR in string Text character string.
string by
reference

String[1] BSTR* inout
string

String by reference. Modifiable text
character string.

array of
points

Point[] BSTR inout
point[]

Array of points. Used by Signature
Capture.

object Object BSTR* inout
object

An object. This will usually be
subclassed to provide a Service-
specific parameter.

nls String LONG in nls Operating System National
Language Support data type.

10
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Device Behavior Models

Introduction to Properties, Methods, and Events
An application accesses a POS Device via platform specific APIs.

The three elements of UnifiedPOS standard for APIs are:

• Properties. Properties are device characteristics or settings. A type is
associated with each property, such as boolean or string. An application may
retrieve a property’s value, and it may set a writable property’s value.

• Methods. An application calls a method to perform or initiate some activity
at a device. Some methods require parameters of specified types for sending
and/or returning additional information.

• Events. A Device implementation may call back into the application via
events. The application must specifically register for each event type that it
needs to receive.

Properties (UML Attributes)
Note: For each interface a UML listing of the properties and methods of the
interface will be included in a table. The properties are indicated as attributes.
The generic UML naming pattern for attributes is the following:

visibility Name: type-expression = default-value { property-string }

where:

visibility in this document is always public for application visible interfaces but is
not explicitly shown.

Name is the name of the attribute

type-expression is the type of the attribute, which is one of UnifiedPOS types
defined in section “Data Types” on page 9.

default-value1 the default value of the attributes in UML, (optional)

property-string property value to apply to the element. For attributes, we define
two such strings: read-only and read-write, which indicates the mutability of the
attribute.

An example of a property attribute is as follows:

DeviceEnabled: boolean { read-write }

1.Not used by UnifiedPOS standard

11Device Behavior Models: Introduction to Properties, Methods, and Events
Methods (UML Operations)
The generic UML pattern for methods is the following:

visibility name (parameter-list): return-type-expr { property string }

where:

parameter - list is a comma separated list of formal parameters using the
following generic UML naming pattern:

kind name: type-expression (= default-value)2

where:

kind is either: ‘in’, ‘out’, or ‘inout’ with the default set to ‘in’ if absent

property-string is a property string to apply to the element. For methods an
additional property string called ‘raises-exception’ is defined which means that
this method can throw the exception if the implementation language supports
exception; otherwise, some mechanism is used to notify the application that an
invalid condition occurred.

An example of a method operation is as follows:

open (logicalDeviceName: string): void { raises-exception }

Events (UML Interfaces)
Events are being modeled as UML classes which will possibly contain attributes
stereotyped with the event stereotype. The generic UML pattern for events is a
UML box with the stereotype <<event>> (class diagram) with the event name
and a list of the properties. This representation is different from Properties and
Methods.

where:
XxxEvent stands for the UnifiedPOS event name and the second
compartment of the box would contain a list of attributes for the event.

2.default-value is not used by the UnifiedPOS standard

 << event >>
 XxxEvent

12
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Device Initialization and Finalization

Initialization
The first actions that an application must take to use a Device are:

• Obtain a reference to a Control,

• Prepare Control for the events that the application needs to receive, if
necessary.

To initiate activity with the Physical Device, an application calls the Control’s
open method:

The logicalDeviceName parameter specifies a logical device to associate with the
Device. The open method performs the following steps:

• Creates and initializes an instance of the proper Service class for the specified
name.

• Initializes many of the properties, including the descriptions and version
numbers of the Device.

More than one instance of a Control may have a Physical Device open at the same
time. Therefore, after the Device is opened, an application might need to call the
claim method to gain exclusive access to it. Claiming the Device ensures that
other Control instances do not interfere with the use of the Device. An application
can release the Device to share it with another Control instance– for example, at
the end of a transaction.

Before using the Device, an application must set the DeviceEnabled property to
true. This value brings the Physical Device to an operational state, while false
disables it. For example, if a Scanner Device is disabled, the Physical Device will
be put into its non-operational state (when possible). Whether physically
operational or not, any input is discarded until the Device is enabled.

Finalization
After an application finishes using the Physical Device, it should call the close
method. If the DeviceEnabled property is true, close disables the Device. If the
Claimed property is true, close releases the claim on the device.

Before exiting, an application should close all open Devices to free device
resources in a timely manner.

13Device Behavior Models: Device Initialization and Finalization
Summary
In general, an application follows this general sequence to open, use, and close a
Device:

Obtain a Control reference.

Prepare for events if necessary.

Call the open method to instantiate a Service and link it to the Control.

Call the claim method to gain exclusive access to the Physical
Device. Required for exclusive-use Devices; optional for some
sharable Devices. (See “Device Sharing Model” on page 14 for more
information).

Set the DeviceEnabled property to true to make the Physical
Device operational. (For sharable Devices, the Device may be
enabled without first claiming it.)

Use the device.

Set the DeviceEnabled property to false to disable the Physical
Device.

Call the release method to release exclusive access to the Physical
Device.

Call the close method to unlink the Service from the Control.

Release events receipt if necessary

Remove the reference to the Control

14
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Device Sharing Model

Devices fall into two sharing categories:

• Devices that are to be used exclusively by one Control instance.

• Devices that may be partially or fully shared by multiple Control instances.

Any Physical Device may be open by more than one Control instance at a time.
However, activities that an application can perform with a Control may be
restricted to the Control instance that has claimed access to the Physical Device.

Exclusive-Use Devices
The most common device type is called an exclusive-use device. An example is
the POS printer. Due to physical or operational characteristics, an exclusive-use
device can only be used by one Control at a time. An application must call the
Device’s claim method to gain exclusive access to the Physical Device before
most methods, properties, or events are legal. Until the Device is claimed and
enabled, calling methods or accessing properties may cause a failure condition to
occur.

An application may in effect share an exclusive-use device by calling the
Control’s claim method before a sequence of operations, and then calling the
release method when the device is no longer needed. While the Physical Device
is released, another Control instance can claim it.

When an application calls the claim method again (assuming it did not perform
the sequence of close method followed by open method on the device), some
settable device characteristics are restored to their condition at the release.
Examples of restored characteristics are the line display’s brightness, the MSR’s
tracks to read, and the printer’s characters per line. However, state characteristics
are not restored, such as the printer’s sensor properties. Instead, these are updated
to their current values.

Sharable Devices
Some devices are sharable devices. An example is the keylock. A sharable
device allows multiple Control instances to call its methods and access its
properties. Also, it may deliver its events to multiple Controls. A sharable device
may still limit access to some methods or properties to the Control that has
claimed it, or it may deliver some events only to the Control that has claimed it.

15Device Behavior Models: Events
Events

UnifiedPOS architecture uses events to inform the application of various
activities or changes with the Device. The five event types follow.

The Service must enqueue these events on an internally created and managed
queue. All events are delivered in a first-in, first-out manner. (The only exception
is that a special input error event is delivered early if some data events are also
enqueued. See “Device Input Model” on page 18.) Events are delivered by an
internally created and managed Service thread. The Service causes event delivery
by calling an event firing callback method in the Control, which then delivers the
event to the application.

The following conditions cause event delivery to be delayed until the condition is
corrected:

• The application has set the property FreezeEvents to true.

• The event type is a DataEvent or an input ErrorEvent, but the property
DataEventEnabled is false. (See “Device Input Model” on page 18.)

Rules for event queue management are:

• The Device may only enqueue new events while the Device is enabled.

• The Device delivers enqueued events until the application calls the release
method (for exclusive-use devices) or the close method (for any device), at
which time any remaining events are deleted.

• For input devices, the clearInput method clears data and input error events.

• For output devices, the clearOutput method clears data and output error
events.

Event Class Description
Supported When A

Device Category
Supports...

DataEvent Input data has been placed into device
class-category properties.

Event-driven input

ErrorEvent An error has occurred during event-
driven input or asynchronous output.

Event-driven input
-or-

Asynchronous
output

OutputCompleteEvent An asynchronous output has
successfully completed.

Asynchronous
output

StatusUpdateEvent A change in the Physical Device’s
status has occurred.
Devices may be able to report device
power state. See “Device Power
Reporting Model” on page 22.

Status change
notification

DirectIOEvent This event may be defined by a Service
provider for purposes not covered by
the specification.

Always, for Service-
specific use

16
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Errors
UnifiedPOS architecture deals with two kinds of errors as discussed in “Methods
(UML Operations)” on page 11 and explanation of exceptions:

• Errors that are “invalid or bad invocations” which are recognized by the
Service validation of the request. Method invocations and property accesses
may be valid or invalid. If the action is invalid, an invalid condition is set and
the application is notified in a fashion appropriate to the platform. For specific
implementations, OPOS would produce a ResultCode other than
OPOS_SUCCESS and JavaPOS would produce an exception.

• Errors that are caused by errant device behavior and produce error events.

Error Codes
This section lists the general meanings of the error code property when an invalid
condition occurs. In general, the property and method descriptions in later
chapters list error codes only when specific details or information are added to
these general meanings. In UML each error code is:

E_xxx : int32 { frozen }

The error code is set to one of the following values:

Value Meaning

E_CLOSED An attempt was made to access a closed Device.

E_CLAIMED An attempt was made to access a Physical Device that
is claimed by another Control instance. The other
Control must release the Physical Device before this
access may be made. For exclusive-use devices, the
application will also need to claim the Physical Device
before the access is legal.

E_NOTCLAIMED An attempt was made to access an exclusive-use device
that must be claimed before the method or property set
action can be used.
If the Physical Device is already claimed by another
Control instance, then the status E_CLAIMED is
returned instead.

E_NOSERVICE The Control cannot communicate with the Service,
normally because of a setup or configuration error.

E_DISABLED Cannot perform this operation while the Device is
disabled.

17Device Behavior Models: Error Codes
E_ILLEGAL An attempt was made to perform an illegal or
unsupported operation with the Device, or an invalid
parameter value was used.

E_NOHARDWARE The Physical Device is not connected to the system or
is not powered on.

E_OFFLINE The Physical Device is off-line.

E_NOEXIST The file name (or other specified value) does not exist.

E_EXISTS The file name (or other specified value) already exists.

E_FAILURE The Device cannot perform the requested procedure,
even though the Physical Device is connected to the
system, powered on, and on-line.

E_TIMEOUT The Service timed out waiting for a response from the
Physical Device, or the Control timed out waiting for a
response from the Service.

E_BUSY The current Service state does not allow this request.
For example, if asynchronous output is in progress,
certain methods may not be allowed.

E_EXTENDED A device category-specific error condition occurred.
The error condition code is held in an extended error
code.

When more than one result code is valid, the most descriptive code should be
selected. For example, the closed, claimed, not claimed, and disabled errors must
follow this order of error reporting precedence, from higher to lower:

E_CLOSED The device must be opened.

E_CLAIMED The device is opened but not claimed. Another application
has the device claimed, so it cannot be claimed at this time.

E_NOTCLAIMED The device is opened but not claimed. No other application
has the device claimed, so it can and must be claimed.

E_DISABLED The device is opened and claimed (if this is an exclusive-
use device), but not enabled.

Extended Error Code
The extended error code is set as follows:

• When the error code is E_EXTENDED, the extended error code is set to a
device category-specific value, and must match one of the values given in this
document under the appropriate device category chapter.

• When the error code is any other value, the extended error code may be set by
the Service to any Service-specific value. These values are only meaningful if
an application adds Service-specific code to handle them.

18
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Device Input Model

The standard UnifiedPOS input model for exclusive-use devices is event-driven
input. Event-driven input allows input data to be received after DeviceEnabled is
set to true. Received data is enqueued as a DataEvent, which is delivered to an
application.

If the AutoDisable property is true when data is received, then the Device will
automatically disable itself, setting DeviceEnabled to false. This will inhibit the
Device from enqueuing further input and, when possible, physically disable the
device.

When the application is ready to receive input from the Device, it sets the
DataEventEnabled property to true. Then, when input is received (usually as a
result of a hardware interrupt), the Device delivers a DataEvent. (If input has
already been enqueued, the DataEvent will be delivered immediately after
DataEventEnabled is set to true.) The DataEvent may include input status
information through its Status property. The Device places the input data plus
other information as needed into device category-specific properties just before
the event is delivered.

Just before delivering this event, the Device disables further data events by
setting the DataEventEnabled property to false. This causes subsequent input
data to be enqueued by the Device while an application processes the current
input and associated properties. When an application has finished the current
input and is ready for more data, it enables data events by setting
DataEventEnabled to true.

19Device Behavior Models: Device Input Model
Error Handling

If the Device encounters an error while gathering or processing event-driven
input, then the Device:

• Changes its State to S_ERROR.

• Enqueues an ErrorEvent with locus EL_INPUT to alert an application of the
error condition. This event is added to the end of the queue

• If one or more DataEvents are already enqueued for delivery, an additional
ErrorEvent with locus EL_INPUT_DATA is enqueued before the
DataEvents, as a pre-alert.

This event (or events) is not delivered until the DataEventEnabled property is
true, so that orderly application sequencing occurs.

ErrorLocus Description

EL_INPUT_DATA Only delivered if the error occurred when one or more
DataEvents are already enqueued.
This event gives the application the ability to immediately clear
the input, or to optionally alert the user to the error before
processing the buffered input. This error event is enqueued
before the oldest DataEvent, so that an application is alerted of
the error condition quickly.
This locus was created especially for the Scanner: When this
error event is received from a Scanner Device, the operator can
be immediately alerted to the error so that no further items are
scanned until the error is resolved. Then, the application can
process any backlog of previously scanned items before error
recovery is performed.

EL_INPUT Delivered when an error has occurred and there is no data
available.
If some input data was buffered when the error occurred, then
an ErrorEvent with the locus EL_INPUT_DATA was
delivered first, and then this error event is delivered after all
DataEvents have been delivered.
Note: This EL_INPUT event is not delivered if: an
EL_INPUT_DATA event was delivered and the application
event handler responded with an ER_CLEAR error response.

20
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
The application can cause the ErrorResponse property to be set one of the
following:

The Device exits the Error state when one of the following occurs:

• The application returns from the EL_INPUT ErrorEvent.

• The application calls the clearInput method.

• The application returns from the EL_INPUT_DATA ErrorEvent with
ErrorResponse set to ER_CLEAR.

Miscellaneous

For some Devices, the Application must call a method to begin event driven
input. After the input is received by the Device, then typically no additional input
will be received until the method is called again to reinitiate input. Examples are
the MICR and Signature Capture devices. This variation of event driven input is
sometimes called “asynchronous input.”

The DataCount property contains the number of DataEvents enqueued by the
Device.

Calling the clearInput method deletes all input enqueued by a Device.
clearInput may be called after open for sharable devices and after claim for
exclusive-use devices.

The general event-driven input model does not specifically rule out the definition
of device categories containing methods or properties that return input data
directly. Some device categories define such methods and properties in order to
operate in a more intuitive or flexible manner. An example is the Keylock Device.
This type of input is sometimes called “synchronous input.”

ErrorResponse Description

ER_CLEAR Clear the buffered DataEvents and ErrorEvents and exit
the error state, changing State to S_IDLE.
This is the default response for locus EL_INPUT.

ER_CONTINUE_INPUT This response acknowledges the error and directs the
Device to continue processing. The Device remains in the
error state, and will deliver additional data events as
directed by the DataEventEnabled property. When all
input has been delivered and the DataEventEnabled
property is again set to true, another ErrorEvent is
delivered with locus EL_INPUT.
This is the default response when the locus is
EL_INPUT_DATA, and is legal only with this locus.

ER_RETRY This response directs the Device to retry the input. The
error state is exited, and State is changed to S_IDLE.
This response may only be selected when the device
chapter specifically allows it and when the locus is
EL_INPUT. An example is the scale.

21Device Behavior Models: Device Output Models
Device Output Models

The UnifiedPOS output model consists of two output types: synchronous and
asynchronous. A device category may support one or both types, or neither type.

Synchronous Output
The application calls a category-specific method to perform output. The Device
does not return until the output is completed; this means the physical device has
performed the intended operation. For example the printer has successfully
transferred all the output data as ink on the paper.

This type of output is preferred when device output can be performed relatively
quickly. Its merit is simplicity.

Asynchronous Output
The application calls a category-specific method to start the output. The Device
validates the method parameters and produces and error condition immediately if
necessary. If the validation is successful, the Device does the following:

1. Buffers the request.

2. Sets the OutputID property to an identifier for this request.

3. Returns as soon as possible.

When the Device successfully completes a request, an OutputCompleteEvent is
enqueued for delivery to the application. A property of this event contains the
output ID of the completed request. If the request is terminated before
completion, due to reasons such as the application calling the clearOutput
method or responding to an ErrorEvent with a ER_CLEAR response, then no
OutputCompleteEvent is delivered.

This type of output is preferred when device output requires slow hardware
interactions. Its merit is perceived responsiveness, since the application can
perform other work while the device is performing the output.

Note: Asynchronous output is always performed on a first-in first-out basis.

22
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Device Power Reporting Model

Applications frequently need to know the power state of the devices they use.
Note: This model is not intended to report Workstation or POS Terminal power
conditions (such as “on battery” and “battery low”). Reporting of these conditions
is left to power management standards and APIs.

Model
UnifiedPOS architecture segments device power into three states:

• ONLINE. The device is powered on and ready for use. This is the
“operational” state.

• OFF. The device is powered off or detached from the terminal. This is a “non-
operational” state.

• OFFLINE. The device is powered on but is either not ready or not able to
respond to requests. It may need to be placed online by pressing a button, or it
may not be responding to terminal requests. This is a “non-operational” state.

In addition, one combination state is defined:

• OFF_OFFLINE. The device is either off or offline, and the Service cannot
distinguish these states.

Power reporting only occurs while the device is open, claimed (if the device is
exclusive-use), and enabled.

Note - Enabled/Disabled vs. Power States

These states are different and usually independent. UnifiedPOS defines “disabled” /
“enabled” as a logical state, whereas the power state is a physical state. A device may
be logically “enabled” but physically “offline”. It may also be logically “disabled” but
physically “online”. Regardless of the physical power state, UnifiedPOS only reports
the state while the device is enabled. (This restriction is necessary because a Service
typically can only communicate with the device while enabled.)
If a device is “offline”, then a Service may choose to fail an attempt to “enable” the
device. However, once enabled, the Service may not disable a device based on its power
state.

23Device Behavior Models: Device Power Reporting Model
Power State Diagram

PowerState Unknown

PS_UNKNOWN

Known PowerStates

PowerState Online

PS_ONLINE

Off/Offline States

PowerState Standard Off/Offline

PS_OFF_OFFLINE

Advanced Off/Offline States

 PowerState Advanced Offline

PS_OFFLINE

PowerState Advanced Off
PS_OFF

PowerState Online

PS_ONLINE

Off/Offline States

PowerState Standard Off/Offline

PS_OFF_OFFLINE

Advanced Off/Offline States

 PowerState Advanced Offline

PS_OFFLINE

PowerState Advanced Off
PS_OFF

PowerState Standard Off/Offline

PS_OFF_OFFLINE

[Device is Online]

[Device is Off or Offline]

Advanced Off/Offline States

 PowerState Advanced Offline

PS_OFFLINE

PowerState Advanced Off
PS_OFF

 PowerState Advanced Offline

PS_OFFLINE

PowerState Advanced Off
PS_OFF

[Device is Offline]

[CapPowerReporting == PR_ADVANCED]

[D evice is closed]

[Device is closed]

[Device is Off]

24
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Power Properties

The UnifiedPOS device power reporting model adds the following common
elements across all device classes.

• CapPowerReporting property. Identifies the reporting capabilities of the
device. The UML pattern for the property is:

PR_xxx : int32 { frozen }

 This property may be one of:

• PR_NONE. The Service cannot determine the state of the device.
Therefore, no power reporting is possible.

• PR_STANDARD. The Service can determine and report two of the power
states - OFF_OFFLINE (that is, off or offline) and ONLINE.

• PR_ADVANCED. The Service can determine and report all three power
states - ONLINE, OFFLINE, and OFF.

• PowerState property. Maintained by the Service at the current power
condition, if it can be determined. The UML pattern for the property is:

PS_xxx : int32 { frozen }

 This property may be one of:

• PS_UNKNOWN

• PS_ONLINE

• PS_OFF

• PS_OFFLINE

• PS_OFF_OFFLINE

• PowerNotify property. The application may set this property to enable power
reporting via StatusUpdateEvents and the PowerState property. This
property may only be changed while the device is disabled (that is, before
DeviceEnabled is set to true). This restriction allows simpler implementation
of power notification with no adverse effects on the application. The
application is either prepared to receive notifications or doesn't want them,
and has no need to switch between these cases. The UML pattern for the
property is:

PN_xxx : int32 { frozen }

 This property may be one of:

• PN_DISABLED

• PN_ENABLED

25Device Behavior Models: Device Power Reporting Model
Power Reporting Requirements for DeviceEnabled

The following semantics are added to DeviceEnabled when

CapPowerReporting is not PR_NONE, and
PowerNotify is PN_ENABLED:

• When the Control changes from DeviceEnabled false to true, then begin
monitoring the power state:

• If the Physical Device is ONLINE, then:

PowerState is set to PS_ONLINE.

A StatusUpdateEvent is enqueued with its Status property set to
SUE_POWER_ONLINE.

• If the Physical Device’s power state is OFF, OFFLINE, or
OFF_OFFLINE, then the Service may choose to fail the enable by
notifying the application with error code E_NOHARDWARE or
E_OFFLINE.

However, if there are no other conditions that cause the enable to fail, and
the Service chooses to return success for the enable, then:

PowerState is set to PS_OFF, PS_OFFLINE, or
PS_OFF_OFFLINE.

A StatusUpdateEvent is enqueued with its Status property set to
SUE_POWER_OFF, SUE_POWER_OFFLINE, or
SUE_POWER_OFF_OFFLINE.

• When the Device changes from DeviceEnabled true to false, UnifiedPOS
assumes that the Device is no longer monitoring the power state and sets the
value of PowerState to PS_UNKNOWN

26
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Device States

UnifiedPOS defines a property State with the following values:

S_CLOSED
S_IDLE
S_BUSY
S_ERROR

The State property is set as follows:

• State is initially S_CLOSED.

• State is changed to S_IDLE when the open method is successfully called.

• State is set to S_BUSY when the Service is processing output. The State is
restored to S_IDLE when the output has completed.

• The State is changed to S_ERROR when an asynchronous output encounters
an error condition, or when an error is encountered during the gathering or
processing of event-driven input.

After the Service changes the State property to S_ERROR, it notifies the
application of this error. The properties of this event are the error code and
extended error code, the locus of the error, and a modifiable response to the
error.

27Device Behavior Models: Device States
Device State Diagram

Opened

Idle
State == S_IDLE

Busy
State == S_BUSY

Error
State == S_ERROR

Closed
State == S_CLOSED

Idle
State == S_IDLE

Busy
State == S_BUSY

Error
State == S_ERROR

/open

/close

[input event error]

[async output in progress]

[error event done and no async output]

[error event done and async output]

[async output done]

[async output error or input event error]

28
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Version Handling

As UnifiedPOS evolves, additional releases will introduce enhanced versions of
some Devices. UnifiedPOS imposes the following requirements on Control and
Service versions:

• Control requirements. A Control for a device category must operate with
any Service for that category, as long as its major version number matches the
Service's major version number. If they match, but the Control's minor version
number is greater than the Service’s minor version number, then the Control
may support some new methods or properties that are not supported by the
Service’s release. If an application calls one of these methods or accesses one
of these properties, the application will be notified of an error condition
(E_NO_SERVICE).

• Service requirements. A Service for a device category must operate with any
Control for that category, as long as its major version number matches the
Control's major version number. If they match, but the Service's minor version
number is greater than the Control's minor version number, then the Service
may support some methods or properties that cannot be accessed from the
Control.

When an application wishes to take advantage of the enhancements of a version,
it must first determine that the Control and Service are at the proper major version
and at or greater than the proper minor version. The versions are reported by the
properties DeviceControlVersion (see page 36) and DeviceServiceVersion (see
page 38).

C H A P T E R 1

Common Properties, Methods, and Events

The following Properties, Methods, and Events are used for all device categories
unless noted otherwise in the Usage Notes table entry. For an overview of the
general rules and usage guidelines, see “Device Behavior Models” on page 10.

Summary

Usage Notes:

1.Used only with Devices that have Event Driven Input.

2.Used only with Asynchronous Output Devices.

Properties (UML attributes)

Name Type Mutability Version

Usage
Notes

AutoDisable: boolean { read-write } 1.2 1

CapPowerReporting: int32 { read-only } 1.3

CheckHealthText: string { read-only } 1.0

Claimed: boolean { read-only } 1.0

DataCount: int32 { read-only } 1.2 1

DataEventEnabled: boolean { read-write } 1.0 1

DeviceEnabled: boolean { read-write } 1.0

FreezeEvents: boolean { read-write } 1.0

OutputID: int32 { read-only } 1.0 2

PowerNotify: int32 { read-write } 1.3

PowerState: int32 { read-only } 1.3

State: int32 { read-only } 1.0

DeviceControlDescription: string { read-only } 1.0

DeviceControlVersion: int32 { read-only } 1.0

DeviceServiceDescription: string { read-only } 1.0

DeviceServiceVersion: int32 { read-only } 1.0

PhysicalDeviceDescription: string { read-only } 1.0

PhysicalDeviceName: string { read-only } 1.0

30
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
Usage Notes:

1.Used only with Devices that have Event Driven Input.

2.Used only with Asynchronous Output Devices.

Methods (UML operations)

Name Version

open (logicalDeviceName: string):
 void { raises-exception }

1.0

close ():
 void { raises-exception }

1.0

claima (timeout: int32):
 void { raises-exception }

1.0

releasea ():
 void { raises-exception }

1.0

checkHealth (level: int32):
 void { raises-exception }

1.0

clearInput ():
 void { raises-exception }

1.0

clearOutput ():
 void { raises-exception }

1.0

directIO (command: int32, inout data: int32, inout obj: object):
 void { raises-exception }

1.0

a. Note: In the OPOS environment starting with Release 1.5, the Claim and
Release methods are also defined as ClaimDevice and ReleaseDevice due
to Release being a reserved method used by Microsoft’s Component
Object Model (COM).

Events (UML interfaces)

Name Type Mutability Version

Usage
Notes

upos::events::DataEvent
 Status: int32 { read-only }

1.0 1

upos::events::DirectIOEvent
 EventNumber:
 Data:
 Obj:

int32
int32
object

{ read-only }
{ read-write }
{ read-write }

1.0

upos::events::ErrorEvent
 ErrorCode:
 ErrorCodeExtended:
 ErrorLocus:
 ErrorResponse:

int32
int32
int32
int32

{ read-only }
{ read-only }
{ read-only }
{ read-write }

1.0

upos::events::OutputCompleteEvent
 OutputID: int32 { read-only }

1.0 2

upos::events::StatusUpdateEvent
 Status: int32 { read-only }

1.0

31 General Information
General Information

This section lists properties, methods, and events that are common to many of the
peripheral devices covered in this standard.

The summary section of each device category marks those common properties,
methods, and events that do not apply to that category as “Not Supported.” Items
identified in this fashion are not present in the Control’s class.

A good understanding of the features of the UnifiedPOS architecture model is
required. Please see “Device Behavior Models” on page 10 for additional
information.

32
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
The following diagram shows the relationships between the Common classes.

UposConst
(from upos)

<<utility>>

UposException
(from upos)

<<exception>>

BumpBarControl
(from upos)

<<Interface>>

POSPrinterControl
(from upos)

<<Interface>>

<DevCat> == all UnifiedPOS device
category names e.g. CashDrawer,
Scanner, MICR, ...

MSRControl
(from upos)

<<Interface>>

<DevCat>Control
(from upos)

<<Interface>>

<<uses>>
<<sends>>

<<sends>>

<<uses>>
<<uses>>

<<sends>>
<<sends>>

<<uses>>

UposEvent
(from events)

<<event>>
BaseControl

<<capability>> CapPowerReporting : int32
<<prop>> AutoDisable : boolean
<<prop>> CheckHealthText : string
<<prop>> Claimed : boolean
<<prop>> DataCount : int32
<<prop>> DataEventEnabled : boolean
<<prop>> DeviceEnabled : boolean
<<prop>> FreezeEvents : boolean
<<prop>> PowerNotify : int32
<<prop>> PowerState : int32
<<prop>> State : int32
<<prop>> DeviceControlDescription : string
<<prop>> DeviceControlVersion : int32
<<prop>> DeviceServiceDescription : string
<<prop>> DeviceServiceVersion : int32
<<prop>> PhysicalDeviceDescription : string
<<prop>> PhysicalDeviceName : string

open(logicalDeviceName : string) : void
close() : void
release() : void
claim(timeout : int32) : void
checkHealth(level : int32) : void
directIO(command : int32, inout data : int32, inout obj : object) : void

(from upos)

<<Interface>>

<<uses>>

<<sends>>

fires

33 Properties (UML attributes)
Properties (UML attributes)

AutoDisable Property

Syntax AutoDisable: boolean { read-write }

Remarks If true, the UnifiedPOS Service will set DeviceEnabled to false after it receives
and enqueues data as a DataEvent. Before any additional input can be received,
the application must set DeviceEnabled to true.

If false, the UnifiedPOS Service does not automatically disable the device when
data is received.

This property provides the application with an additional option for controlling the
receipt of input data. If an application wants to receive and process only one input,
or only one input at a time, then this property should be set to true. This property
applies only to event-driven input devices.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also “Device Input Model” on page 18.

CapPowerReporting Property

Syntax CapPowerReporting: int32 { read-only }

Remarks Identifies the reporting capabilities of the Device. It has one of the following
values:

Value Meaning

PR_NONE The UnifiedPOS Service cannot determine the state of
the device. Therefore, no power reporting is possible.

PR_STANDARD The UnifiedPOS Service can determine and report two
of the power states - OFF_OFFLINE (that is, off or
offline) and ONLINE.

PR_ADVANCED The UnifiedPOS Service can determine and report all
three power states - OFF, OFFLINE, and ONLINE.

This property is initialized by the open method.

Errors None.

See Also “Device Power Reporting Model” on page 22, PowerState Property,
PowerNotify Property.

34
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
CheckHealthText Property

Syntax CheckHealthText: string { read-only }

Remarks Holds the results of the most recent call to the checkHealth method. The
following examples illustrate some possible diagnoses:

• “Internal HCheck: Successful”

• “External HCheck: Not Responding”

• “Interactive HCheck: Complete”

This property is empty (“”) before the first call to the checkHealth method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16

See Also checkHealth Method.

Claimed Property

Syntax Claimed: boolean { read-only }

Remarks If true, the device is claimed for exclusive access. If false, the device is released
for sharing with other applications.

Many devices must be claimed before the Control will allow access to many of its
methods and properties, and before it will deliver events to the application.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also “Device Initialization and Finalization” on page 12, “Device Sharing Model” on
page 14, claim Method, release Method.

DataCount Property

Syntax DataCount: int32 { read-only }

Remarks Holds the number of enqueued DataEvents.

The application may read this property to determine whether additional input is
enqueued from a device, but has not yet been delivered because of other
application processing, freezing of events, or other causes.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also “Device Input Model” on page 18, DataEvent.

35 Properties (UML attributes)
DataEventEnabled Property

Syntax DataEventEnabled: boolean { read-write }

Remarks If true, a DataEvent will be delivered as soon as input data is enqueued. If changed
to true and some input data is already queued, then a DataEvent is delivered
immediately. (Note that other conditions may delay “immediate” delivery: if
FreezeEvents is true or another event is already being processed at the
application, the DataEvent will remain queued at the UnifiedPOS Service until
the condition is corrected.)

If false, input data is enqueued for later delivery to the application. Also, if an
input error occurs, the ErrorEvent is not delivered while this property is false.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also “Events” on page 15, DataEvent.

DeviceControlDescription Property

Syntax DeviceControlDescription: string { read-only }

Remarks Holds an identifier for the UnifiedPOS Control and the company that produced it.

A sample returned string is:

“POS Printer UnifiedPOS Compatible Control, (C) 1998
Epson”

This property is always readable.

Errors None.

See Also DeviceControlVersion Property.

36
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
DeviceControlVersion Property

Syntax DeviceControlVersion: int32 { read-only }

Remarks Holds the UnifiedPOS Control version number.

Three version levels are specified, as follows:

Version Level Description

Major The “millions” place.
A change to the UnifiedPOS major version level for a
device class reflects significant interface enhancements,
and may remove support for obsolete interfaces from
previous major version levels.

Minor The “thousands” place.
A change to the UnifiedPOS minor version level for a
device class reflects minor interface enhancements, and
must provide a superset of previous interfaces at this
major version level.

Build The “units” place.
Internal level provided by the UnifiedPOS Control
developer. Updated when corrections are made to the
UnifiedPOS Control implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major
version 1, minor version 2, build 38 of the UnifiedPOS Control.

This property is always readable.

Errors None.

See Also “Version Handling” on page 28, DeviceControlDescription Property.

37 Properties (UML attributes)
DeviceEnabled Property

Syntax DeviceEnabled: boolean { read-write }

Remarks If true, the device is in an operational state. If changed to true, then the device is
brought to an operational state.

If false, the device has been disabled. If changed to false, then the device is
physically disabled when possible, any subsequent input will be discarded, and
output operations are disallowed.

Changing this property usually does not physically affect output devices. For
consistency, however, the application must set this property to true before using
output devices.

The Device’s power state may be reported while DeviceEnabled is true; See
“Device Power Reporting Model” on page 22 for details.

This property is initialized to false by the open method. Note that an exclusive use
device must be claimed before the device may be enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also “Device Initialization and Finalization” on page 12.

DeviceServiceDescription Property

Syntax DeviceServiceDescription: string { read-only }

Remarks Holds an identifier for the UnifiedPOS Service and the company that produced it.

A sample returned string is:

“TM-U950 Printer UnifiedPOS Compatible Service Driver,
(C) 1998 Epson”

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

38
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
DeviceServiceVersion Property

Syntax DeviceServiceVersion: int32 { read-only }

Remarks Holds the UnifiedPOS Service version number.

Three version levels are specified, as follows:

Version Level Description

Major The “millions” place.
A change to the UnifiedPOS major version level for a
device class reflects significant interface enhancements,
and may remove support for obsolete interfaces from
previous major version levels.

Minor The “thousands” place.
A change to the UnifiedPOS minor version level for a
device class reflects minor interface enhancements, and
must provide a superset of previous interfaces at this
major version level.

Build The “units” place.
Internal level provided by the UnifiedPOS Service
developer. Updated when corrections are made to the
UnifiedPOS Service implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major version
1, minor version 2, build 38 of the UnifiedPOS Service.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also “Version Handling” on page 28, DeviceServiceDescription Property.

39 Properties (UML attributes)
FreezeEvents Property

Syntax FreezeEvents: boolean { read-write }

Remarks If true, the UnifiedPOS Control will not deliver events. Events will be enqueued
until this property is set to false.

If false, the application allows events to be delivered. If some events have been
held while events were frozen and all other conditions are correct for delivering
the events, then changing this property to false will allow these events to be
delivered. An application may choose to freeze events for a specific sequence of
code where interruption by an event is not desirable.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

OutputID Property

Syntax OutputID: int32 { read-only }

Remarks Holds the identifier of the most recently started asynchronous output.

When a method successfully initiates an asynchronous output, the Device assigns
an identifier to the request. When the output completes, an
OutputCompleteEvent will be enqueued with this output ID as a parameter.

The output ID numbers are assigned by the UnifiedPOS Service and are
guaranteed to be unique among the set of outstanding asynchronous outputs. No
other facts about the ID should be assumed.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also “Device Output Models” on page 21, OutputCompleteEvent.

40
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
PowerNotify Property

Syntax PowerNotify: int32 { read-write }

Remarks Contains the type of power notification selection made by the Application. It has
one of the following values:

Value Meaning

PN_DISABLED The UnifiedPOS Service will not provide any power
notifications to the application. No power notification
StatusUpdateEvents will be fired, and PowerState
may not be set.

PN_ENABLED The UnifiedPOS Service will fire power notification
StatusUpdateEvents and update PowerState,
beginning when DeviceEnabled is set to true. The level
of functionality depends upon CapPowerReporting.

PowerNotify may only be set while the device is disabled; that is, while
DeviceEnabled is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following occurred:

The device is already enabled.

PowerNotify = PN_ENABLED but
CapPowerReporting = PR_NONE.

See Also “Device Power Reporting Model” on page 22, CapPowerReporting Property,
PowerState Property.

41 Properties (UML attributes)
PowerState Property

Syntax PowerState: int32 { read-only }

Remarks Identifies the current power condition of the device, if it can be determined.
It has one of the following values:

Value Meaning

PS_UNKNOWN Cannot determine the device’s power state for one of the
following reasons:

CapPowerReporting = PR_NONE; the device does not
support power reporting.

PowerNotify = PN_DISABLED; power notifications
are disabled.

DeviceEnabled = false; Power state monitoring does
not occur until the device is enabled.

PS_ONLINE The device is powered on and ready for use. Can be
returned if CapPowerReporting = PR_STANDARD or
PR_ADVANCED.

PS_OFF The device is powered off or detached from the POS
terminal. Can only be returned if CapPowerReporting
= PR_ADVANCED.

PS_OFFLINE The device is powered on but is either not ready or not
able to respond to requests. Can only be returned if
CapPowerReporting = PR_ADVANCED.

PS_OFF_OFFLINE The device is either off or offline. Can only be returned
if CapPowerReporting = PR_STANDARD.

This property is initialized to PS_UNKNOWN by the open method. When
PowerNotify is set to enabled and DeviceEnabled is true, then this property is
updated as the UnifiedPOS Service detects power condition changes.

Errors None.

See Also “Device Power Reporting Model” on page 22, CapPowerReporting Property,
PowerNotify Property.

42
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
PhysicalDeviceDescription Property

Syntax PhysicalDeviceDescription: string { read-only }

Remarks Holds an identifier for the physical device.

A sample returned string is:

“NCR 7192-0184 Printer, Japanese Version”

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also PhysicalDeviceName Property.

PhysicalDeviceName Property

Syntax PhysicalDeviceName: string { read-only }

Remarks Holds a short name identifying the physical device. This is a short version of
PhysicalDeviceDescription and should be limited to 30 characters.

This property will typically be used to identify the device in an application
message box, where the full description is too verbose. A sample returned string
is:

“IBM Model II Printer, Japanese”

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also PhysicalDeviceDescription Property.

43 Properties (UML attributes)
State Property

Syntax State: int32 { read-only }

Remarks Holds the current state of the Device. It has one of the following values:

Value Meaning

S_CLOSED The Device is closed.

S_IDLE The Device is in a good state and is not busy.

S_BUSY The Device is in a good state and is busy performing
output.

S_ERROR An error has been reported, and the application must
recover the Device to a good state before normal I/O can
resume.

This property is always readable.

Errors None.

See Also “Device States” on page 26.

44
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
Methods (UML operations)

checkHealth Method

Syntax checkHealth (level: int32):
 void { raises-exception }

The level parameter indicates the type of health check to be performed on the
device. The following values may be specified:

Value Meaning

CH_INTERNAL Perform a health check that does not physically change
the device. The device is tested by internal tests to the
extent possible.

CH_EXTERNAL Perform a more thorough test that may change the
device. For example, a pattern may be printed on the
printer.

CH_INTERACTIVE Perform an interactive test of the device. The supporting
UnifiedPOS Service will typically display a modal
dialog box to present test options and results.

Remarks Tests the state of a device.

A text description of the results of this method is placed in the
CheckHealthText property. The health of many devices can only be determined
by a visual inspection of these test results.

This method is always synchronous.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The specified health check level is not supported by the
UnifiedPOS Service.

See Also CheckHealthText Property.

45 Methods (UML operations)
claim Method

Syntax claim (timeout: int32):
 void { raises-exception }

The timeout parameter gives the maximum number of milliseconds to wait for
exclusive access to be satisfied. If zero, then immediately either returns (if
successful) or throws an appropriate exception. If FOREVER (-1), the method
waits as long as needed until exclusive access is satisfied.

Remarks Requests exclusive access to the device. Many devices require an application to
claim them before they can be used.

When successful, the Claimed property is changed to true.

Errors A UposException may be thrown when this method is invoked. For further
information, “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL This device cannot be claimed for exclusive access, or
an invalid timeout parameter was specified.

E_TIMEOUT Another application has exclusive access to the device,
and did not relinquish control before timeout
milliseconds expired.

See Also “Device Sharing Model” on page 14, release Method.

clearInput Method

Syntax clearInput ():
 void { raises-exception }

Remarks Clears all device input that has been buffered.

Any data events or input error events that are enqueued – usually waiting for
DataEventEnabled to be set to true and FreezeEvents to be set to false – are also
cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

See Also “Device Input Model” on page 18.

46
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
clearOutput Method

Syntax clearOutput ():
 void { raises-exception }

Remarks Clears all device output that has been buffered. Also, when possible, halts outputs
that are in progress.

Any output error events that are enqueued – usually waiting for FreezeEvents to
be set to false – are also cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

See Also “Device Output Models” on page 21.

close Method

Syntax close ():
 void { raises-exception }

Remarks Releases the device and its resources.

If the DeviceEnabled property is true, then the device is disabled.

If the Claimed property is true, then exclusive access to the device is released.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

See Also “Device Initialization and Finalization” on page 12, open Method.

47 Methods (UML operations)
directIO Method

Syntax directIO (command: int32, inout data: int32, inout obj: object):
 void { raises-exception }

Parameter Description

command Command number whose specific values are assigned
by the UnifiedPOS Service.

data An array of one modifiable integer whose specific
values or usage vary by command and UnifiedPOS
Service.

obj Additional data whose usage varies by command and
UnifiedPOS Service.

Remarks Communicates directly with the UnifiedPOS Service.

This method provides a means for a UnifiedPOS Service to provide functionality
to the application that is not otherwise supported by the standard UnifiedPOS
Control for its device category. Depending upon the UnifiedPOS Service’s
definition of the command, this method may be asynchronous or synchronous.

Use of this method will make an application non-portable. The application may,
however, maintain portability by performing directIO calls within conditional
code. This code may be based upon the value of the DeviceServiceDescription,
PhysicalDeviceDescription, or PhysicalDeviceName property.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

See Also DirectIOEvent.

48
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
open Method

Syntax open (logicalDeviceName: string):
 void { raises-exception }

The logicalDeviceName parameter specifies the device name to open.

Remarks Opens a device for subsequent I/O.

The device name specifies which of one or more devices supported by this
UnifiedPOS Control should be used. The logicalDeviceName must exist in the
operating system’s reference locator system (such as the JavaPOS Configurator/
Loader (JCL) or the Window’s Registry) for this device category so that its
relationship to the physical device can be determined. Entries in the reference
locator system are created by a setup or configuration utility.

When this method is successful, it initializes the properties Claimed,
DeviceEnabled, DataEventEnabled, and FreezeEvents, as well as descriptions
and version numbers of the UnifiedPOS software layers. Additional category-
specific properties may also be initialized.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The UnifiedPOS Control is already open.

E_NOEXIST The specified logicalDeviceName was not found.

E_NOSERVICE Could not establish a connection to the corresponding
UnifiedPOS Service.

See Also “Device Initialization and Finalization” on page 12, “Version Handling” on page
28, close Method.

49 Methods (UML operations)
release Method

Syntax release ():
 void { raises-exception }

Remarks Releases exclusive access to the device.

If the DeviceEnabled property is true, and the device is an exclusive-use device,
then the device is also disabled (this method does not change the device enabled
state of sharable devices).

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The application does not have exclusive access to the
device.

See Also “Device Sharing Model” on page 14, claim Method.

50
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
Events (UML interfaces)

The UnifiedPOS standard utilizes a common UML base control structure to derive
a specific implementation case. The UML event base control model and interfaces
are shown below for the events.

upos::BaseControl

UposConst

(from upos)

<<utility>>

UposException

(from upos)

<<exception>>

BaseControl

(from upos)

<<Interface>>

UposEvent
(from events)

<<event>>
fires

<<uses>>

<<sends>>

51 Events (UML interfaces)
upos::events interfaces

UposEvent
(from events)

<<event>>

DataEvent

<<prop>> Status : int32
(from events)

<<event>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

OutputCompleteEvent

<<prop>> OutputID : int32

(from events)

<<event>>

52
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
DataEvent

<<event>> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application that input data is available from the device.

Attribute This event contains the following attribute:

Attribute Type Description

Status int32 The input status with its value dependent upon the
device category; it may describe the type or qualities of
the input data.

Remarks When this event is delivered to the application, the DataEventEnabled property
is changed to false, so that no further data events will be delivered until the
application sets DataEventEnabled back to true. The actual byte array input data
is placed in one or more device-specific properties.

If DataEventEnabled is false at the time that data is received, then the data is
enqueued in an internal buffer, the device-specific input data properties are not
updated, and the event is not delivered. When DataEventEnabled is subsequently
changed back to true, the event will be delivered immediately if input data is
enqueued and FreezeEvents is false.

See Also “Events” on page 15, “Device Input Model” on page 18, DataEventEnabled
Property, FreezeEvents Property.

53 Events (UML interfaces)
DirectIOEvent

<<event>> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Description Provides UnifiedPOS Service information directly to the application. This event
provides a means for a vendor-specific UnifiedPOS Service to provide events to
the application that are not otherwise supported by the UnifiedPOS Control.

Attributes This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
UnifiedPOS Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the UnifiedPOS Service. This
attribute is settable.

Obj object Additional data whose usage varies by the EventNumber
and the UnifiedPOS Service. This attribute is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described as part of the UnifiedPOS standard. Use of this event may
restrict the application program from being used with other vendor’s devices
which may not have any knowledge of the UnifiedPOS Service’s need for this
event.

See Also “Events” on page 15, directIO Method.

54
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
ErrorEvent

<<event>> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected and a suitable response is
necessary to process the error condition.

Attributes This event contains the following attributes:

Attribute Type Description

ErrorCode int32 Error Code causing the error event. See the list of
ErrorCodes under “Error Codes” on page 16.

ErrorCodeExtended int32 Extended Error Code causing the error event. These
values are device category specific.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application (i.e., this attribute is settable). See
values below.

The ErrorLocus attribute has one of the following values:

Value Meaning

E_EL_OUTPUT Error occurred while processing asynchronous output.

E_EL_INPUT Error occurred while gathering or processing event-
driven input. No input data is available.

E_EL_INPUT_DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

The application’s error event handler can set the ErrorResponse attribute to one of
the following values:

Value Meaning

E_ER_RETRY Retry the asynchronous output. The error state is exited.
May be valid only when locus is E_EL_INPUT. Default
when locus is E_EL_OUTPUT.

E_ER_CLEAR Clear the asynchronous output or buffered input data.
The error state is exited. Default when locus is
E_EL_INPUT.

55 Events (UML interfaces)
E_ER_CONTINUEINPUT
Acknowledges the error and directs the Device to
continue input processing. The Device remains in the
error state and will deliver additional DataEvents as
directed by the DataEventEnabled property. When all
input has been delivered and DataEventEnabled is
again set to true, then another ErrorEvent is delivered
with locus E_EL_INPUT.
Use only when locus is E_EL_INPUT_DATA. Default
when locus is E_EL_INPUT_DATA.

Remarks This event is enqueued when an error is detected and the Device’s State transitions
into the error state. This event is not delivered until DataEventEnabled is true, so
that proper application sequencing occurs.

See Also “Device Input Model” on page 18, “Device States” on page 26.

OutputCompleteEvent

<<event>> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the
OutputID attribute has completed successfully.

Attribute This event contains the following attribute:

Attribute Type Description

OutputID int32 The ID number of the asynchronous output request that
is complete.

Remarks This event is enqueued after the request’s data has been both sent and the
UnifiedPOS Service has confirmation that is was processed by the device
successfully.

See Also “Device Output Models” on page 21.

56
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
StatusUpdateEvent

<<event>> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when a device has detected an operation status change.

Attribute This event contains the following attribute:

Attribute Type Description

Status int32 Device category-specific status, describing the type of
status change.

Power State Reporting adds additional Status values of:

Value Meaning

SUE_POWER_ONLINE
The device is powered on and ready for use. Can be
returned if CapPowerReporting =
PR_STANDARD or PR_ADVANCED.

SUE_POWER_OFF The device is off or detached from the terminal. Can
only be returned if CapPowerReporting =
PR_ADVANCED.

SUE_POWER_OFFLINE
The device is powered on but is either not ready or not
able to respond to requests. Can only be returned if
CapPowerReporting = PR_ADVANCED.

POS_SUE_POWER_OFF_OFFLINE
The device is either off or offline. Can only be returned
if CapPowerReporting = PR_STANDARD.

The common property PowerState is also maintained at
the current power state of the device.

Remarks This event is enqueued when a Device needs to alert the application of a device
status change. Examples are a change in the cash drawer position (open vs. closed)
or a change in a POS printer sensor (form present vs. absent).

When a device is enabled, the Control may deliver this event to inform the
application of the device state. This behavior, however, is not required.

See Also “Events” on page 15, “Device Power Reporting Model” on page 22,
CapPowerReporting Property, PowerNotify Property.

C H A P T E R 2

Bump Bar

This Chapter defines the Bump Bar device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.3 Not Supported

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.3 open

Claimed: boolean { read-only } 1.3 open

DataCount: int32 { read-only } 1.3 open

DataEventEnabled: boolean { read-write } 1.3 open

DeviceEnabled: boolean { read-write } 1.3 open & claim

FreezeEvents: boolean { read-write } 1.3 open

OutputID: int32 { read-only } 1.3 open

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.3 --

DeviceControlDescription: string { read-only } 1.3 --

DeviceControlVersion: int32 { read-only } 1.3 --

DeviceServiceDescription: string { read-only } 1.3 open

DeviceServiceVersion: int32 { read-only } 1.3 open

PhysicalDeviceDescription: string { read-only } 1.3 open

PhysicalDeviceName: string { read-only } 1.3 open

58
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
Properties (Continued)

Specific Type Mutability Version May Use After

AsyncMode: boolean { read-write } 1.3 open, claim, & enable

AutoToneDuration: int32 { read-write } 1.3 open, claim, & enable

AutoToneFrequency: int32 { read-write } 1.3 open, claim, & enable

BumpBarDataCount: int32 { read-only } 1.3 open, claim, & enable

CapTone: boolean { read-only } 1.3 open, claim, & enable

CurrentUnitID: int32 { read-write } 1.3 open, claim, & enable

ErrorString: string { read-only } 1.3 open

ErrorUnits: int32 { read-only } 1.3 open

EventString: string { read-only } 1.3 open & claim

EventUnitID: int32 { read-only } 1.3 open & claim

EventUnits: int32 { read-only } 1.3 open & claim

Keys: int32 { read-only } 1.3 open, claim, & enable

Timeout: int32 { read-write } 1.3 open

UnitsOnline: int32 { read-only } 1.3 open, claim, & enable

59 Summary
Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.3

close ():
void { raises-exception, use after open }

1.3

claim (timeout: int32):
void { raises-exception, use after open }

1.3

release ():
void { raises-exception, use after open, claim }

1.3

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.3

clearInput ():
void { raises-exception, use after open, claim }

1.3

clearOutput ():
void { raises-exception, use after open, claim }

1.3

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.3

Specific

Name

bumpBarSound (units: int32, frequency: int32, duration: int32,
numberOfCycles: int32, interSoundWait: int32):

void { raises exception, use after open, claim, enable }

1.3

setKeyTranslation (units: int32, scanCodes: int32, logicalKey: int32):
void { raises exception, use after open, claim, enable }

1.3

60
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.3

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.3

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.3

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse int32 { read-write }

upos::events::OutputCompleteEvent 1.3

 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }

61 General Information
General Information

The Bump Bar programmatic name is “BumpBar”.

Capabilities

The Bump Bar Control has the following minimal set of capabilities:

• Supports broadcast methods that can communicate with one, a range, or all
bump bar units online.

• Supports bump bar input (keys 0-255).

The Bump Bar Control may also have the following additional capabilities:

• Supports bump bar enunciator output with frequency and duration.

• Supports tactile feedback via an automatic tone when a bump bar key is
pressed.

62
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
Bump Bar Class Diagram

The following diagram shows the relationships between the Bump Bar classes.

UposConst
(from upos)

<<utility>>
BumpBarConst

(from upos)

<<utility>>
BaseControl

(from upos)

<<Interface>>

UposException
(from upos)

<<exception>>

<<uses>>

<<sends>>

DataEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

ErrorEvent
(from events)

<<event>>
StatusUpdateEvent

(from events)

<<event>>
OutputCompleteEvent

(from events)

<<event>>

BumpBarControl

<<capability>> CapTone : boolean
<<prop>> AsyncMode : boolean
<<prop>> Timeout : int32
<<prop>> UnitsOnline : int32
<<prop>> CurrentUnitID : int32
<<prop>> AutoToneDuration : int32
<<prop>> AutoToneFrequency : int32
<<prop>> BumpBarDataCount : int32
<<prop>> Keys : int32
<<prop>> ErrorUnits : int32
<<prop>> ErrorString : string
<<prop>> EventUnitID : int32
<<prop>> EventUnits : int32
<<prop>> EventString : string

bumpBarSound(units : int32, frequency : int32, duration : int32, numCycles : int32) : void
setKeyTranslation(units : int32, scanCodes : int32, logicalKey : int32) : void

(from upos)

<<Interface>>

fires

fires

fires fires

<<uses>>
<<uses>>

<<sends>>

fires

63 General Information
Model

The general model of a bump bar is:

• The bump bar device class is a subsystem of bump bar units. The initial
targeted environment is food service, to control the display of order
preparation and fulfillment information. Bump bars typically are used in
conjunction with remote order displays.

The subsystem can support up to 32 bump bar units.

One application on one workstation or POS Terminal will typically manage
and control the entire subsystem of bump bars. If applications on the same or
other workstations and POS Terminals will need to access the subsystem, then
this application must act as a subsystem server and expose interfaces to other
applications.

• All specific methods are broadcast methods. This means that the method can
apply to one unit, a selection of units or all online units. The units parameter
is an int32, with each bit identifying an individual bump bar unit. (One or more
of the constants BB_UID_1 through BB_UID_32 are bitwise ORed to form
the bitmask.) The Service will attempt to satisfy the method for all unit(s)
indicated in the units parameter. If an error is received from one or more units,
the ErrorUnits property is updated with the appropriate units in error. The
ErrorString property is updated with a description of the error or errors
received. The method will then notify the application of the error condition. In
the case where two or more units encounter different errors, the Service should
determine the most severe error to report.

• The common methods checkHealth, clearInput, and clearOutput are not
broadcast methods and use the unit ID indicated in the CurrentUnitID
property. (One of the constants BB_UID_1 through BB_UID_32 are
selected.) See the description of these common methods to understand how
the current unit ID property is used.

• When the current unit ID property is set by the application, all the
corresponding properties are updated to reflect the settings for that unit.

If the CurrentUnitID property is set to a unit ID that is not online, the depen-
dent properties will contain non-initialized values.

The CurrentUnitID uniquely represents a single bump bar unit. The defini-
tions range from BB_UID_1 to BB_UID_32. These definitions are also used
to create the bitwise parameter, units, used in the broadcast methods.

64
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
Input – Bump Bar

The Bump Bar follows the general “Device Input Model” for event-driven input
with some differences:

• When input is received, a DataEvent is enqueued.

• This device does not support the AutoDisable property, so the device will not
automatically disable itself when a DataEvent is enqueued.

• An enqueued DataEvent can be delivered to the application when the
DataEventEnabled property is true and other event delivery requirements are
met. Just before delivering this event, data is copied into corresponding
properties, and further data events are disabled by setting the
DataEventEnabled property to false. This causes subsequent input data to be
enqueued while the application processes the current input and associated
properties. When the application has finished the current input and is ready for
more data, it reenables events by setting DataEventEnabled to true.

• An ErrorEvent or events are enqueued if an error is encountered while
gathering or processing input, and are delivered to the application when the
DataEventEnabled property is true and other event delivery requirements are
met.

• The BumpBarDataCount property may be read to obtain the number of
bump bar DataEvents for a specific unit ID enqueued. The DataCount
property can be read to obtain the total number of data events enqueued.

• Queued input may be deleted by calling the clearInput method. See
clearInput method description for more details.

The Bump Bar Service provider must supply a mechanism for translating its inter-
nal key scan codes into user-defined codes which are returned by the data event.
Note that this translation must be end-user configurable. The default translated
key value is the scan code value.

65 General Information
Output – Tone

The bump bar follows the general “Device Output Model,” with some enhance-
ments:

• The bumpBarSound method is performed either synchronously or
asynchronously, depending on the value of the AsyncMode property.

• When AsyncMode is false, then this method operates synchronously and the
Device returns to the application after completion. When operating
synchronously, the application is notified of an error if the method could not
complete successfully.

• When AsyncMode is true, then this method operates as follows:

• The Device buffers the request, sets the OutputID property to an
identifier for this request, and returns as soon as possible. When the
device completes the request successfully, the EventUnits property is
updated and an OutputCompleteEvent is enqueued. A property of this
event contains the output ID of the completed request.

• If an error occurs while performing an asynchronous request, an
ErrorEvent is enqueued. The EventUnits property is set to the unit or
units in error. The EventString property is also set.
Note: ErrorEvent updates EventUnits and EventString. If an error is
reported by a broadcast method, then ErrorUnits and ErrorString are
set instead.

The event handler may call synchronous bump bar methods (but not asynchronous
methods), then can either retry the outstanding output or clear it.

• Asynchronous output is performed on a first-in first-out basis.

• All output buffered may be deleted by setting the CurrentUnitID
property and calling the clearOutput method. An
OutputCompleteEvent will not be enqueued for cleared output. This
method also stops any output that may be in progress (when possible).

Device Sharing

The bump bar is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many
bump bar specific properties.

• The application must claim and enable the device before calling methods that
manipulate the device.

• When a claim method is called again, settable device characteristics are
restored to their condition at release.

• See the “Summary” table for precise usage prerequisites.

66
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
Bump Bar State Diagram

Closed
Opened

Claimed

/claim

Enabled

Normal Busy

Error

/close

/open

/release/close

/setDeviceEnabled(false)

/release
/close

Normal Busy

Error

/setDeviceEnabled(true)

[error event done and no async requests]

[async request I/O error or bump bar input error]

[AsyncMode == true]/bumpBarSound

[bump bar input error]

[async requests done]

[error event done and async requests]

67 Properties (UML attributes)
Properties (UML attributes)

AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open-claim-enable }

Remarks If true, then the bumpBarSound method will be performed asynchronously.
If false, tones are generated synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also bumpBarSound Method, “Device Output Models” on page 21.

AutoToneDuration Property

Syntax AutoToneDuration: int32 { read-write, access after open-claim-enable }

Remarks Holds the duration (in milliseconds) of the automatic tone for the bump bar unit
specified by the CurrentUnitID property.

This property is initialized to the default value for each online bump bar unit when
the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrentUnitID Property.

AutoToneFrequency Property

Syntax AutoToneFrequency: int32 { read-write, access after open-claim-enable }

Remarks Holds the frequency (in Hertz) of the automatic tone for the bump bar unit
specified by the CurrentUnitID property.

This property is initialized to the default value for each online bump bar unit when
the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrentUnitID Property.

68
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
BumpBarDataCount Property

Syntax BumpBarDataCount: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of DataEvents enqueued for the bump bar unit specified by the
CurrentUnitID property.

The application may read this property to determine whether additional input is
enqueued from a bump bar unit, but has not yet been delivered because of other
application processing, freezing of events, or other causes.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrentUnitID Property, DataEvent.

CapTone Property

Syntax CapTone: boolean { read-only, access after open-claim-enable }

Remarks If true, the bump bar unit specified by the CurrentUnitID property supports an
enunciator.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrentUnitID Property.

69 Properties (UML attributes)
CurrentUnitID Property

Syntax CurrentUnitID: int32 { read-write, access after open-claim-enable }

Remarks Holds the current bump bar unit ID. Up to 32 units are allowed for one bump bar
device. The unit ID definitions range from BB_UID_1 to BB_UID_32.

Setting this property will update other properties to the current values that apply to
the specified unit.The following properties and methods apply only to the selected
bump bar unit ID:

• Properties: AutoToneDuration, AutoToneFrequency, BumpBarDataCount,
CapTone, and Keys.

• Methods: checkHealth, clearInput, clearOutput.

This property is initialized to BB_UID_1 when the device is first enabled
following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

DataCount Property
Syntax DataCount: int32 { read-only, access after open }

Remarks Holds the total number of DataEvents enqueued. All units online are included in
this value. The number of enqueued events for a specific unit ID is stored in the
BumpBarDataCount property.

The application may read this property to determine whether additional input is
enqueued, but has not yet been delivered because of other application processing,
freezing of events, or other causes.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also BumpBarDataCount Property, DataEvent Event, “Device Input Model” on
page 18.

70
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
ErrorString Property

Syntax ErrorString: string { read-only, access after open }

Remarks Holds a description of the error which occurred on the unit(s) specified by the
ErrorUnits property, when an error occurs for any method that acts on a bitwise
set of bump bar units.

If an error occurs during processing of an asynchronous request, the ErrorEvent
updates the property EventString instead.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also ErrorUnits Property.

ErrorUnits Property

Syntax ErrorUnits: int32 { read-only, access after open }

Remarks Holds a bitwise mask of the unit(s) that encountered an error, when an error occurs
for any method that acts on a bitwise set of bump bar units.

If an error occurs during processing of an asynchronous request, the ErrorEvent
updates the property EventUnits instead.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also ErrorString Property.

EventString Property

Syntax EventString: string { read-only, access after open-claim }

Remarks Holds a description of the error which occurred to the unit(s) specified by the
EventUnits property, when an ErrorEvent is delivered.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also EventUnits Property, ErrorEvent.

71 Properties (UML attributes)
EventUnitID Property

Syntax EventUnitID: int32 { read-only, access after open-claim }

Remarks Holds the bump bar unit ID causing a DataEvent. This property is set just before
a DataEvent is delivered. The unit ID definitions range from BB_UID_1 to
BB_UID_32.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also DataEvent.

EventUnits Property

Syntax EventUnits: int32 { read-only, access after open-claim }

Remarks Holds a bitwise mask of the unit(s) when an OutputCompleteEvent,
ErrorEvent, or StatusUpdateEvent is delivered.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also OutputCompleteEvent, ErrorEvent, StatusUpdateEvent.

Keys Property

Syntax Keys: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of keys on the bump bar unit specified by the CurrentUnitID
property.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrentUnitID Property.

72
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
Timeout Property

Syntax Timeout: int32 { read-write, access after open }

Remarks Holds the timeout value in milliseconds used by the bump bar device to complete
all output methods supported. If the device cannot successfully complete an
output method within the timeout value, then the method notifies the application
of the error.

This property is initialized to a Service dependent timeout following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also AsyncMode Property, ErrorString Property, bumpBarSound Method.

UnitsOnline Property

Syntax UnitsOnline: int32 { read-only, access after open-claim-enable }

Remarks Bitwise mask indicating the bump bar units online, where zero or more of the unit
constants BB_UID_1 (bit 0 on) through BB_UID_32 (bit 31 on) are bitwise ORed.
32 units are supported.

This property is initialized when the device is first enabled following the open
method. This property is updated as changes are detected, such as before a
StatusUpdateEvent is enqueued and during the checkHealth method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also checkHealth Method, StatusUpdateEvent.

73 Methods (UML operations)
Methods (UML operations)
bumpBarSound Method

Syntax bumpBarSound (units: int32, frequency: int32, duration: int32,
numberOfCycles: int32, interSoundWait: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which bump bar unit(s) to
operate on.

frequency Tone frequency in Hertz.

duration Tone duration in milliseconds.

numberOfCycles If FOREVER, then start bump bar sounding and, repeat
continuously. Else perform the specified number of
cycles.

interSoundWait When numberOfCycles is not one, then pause for
interSoundWait milliseconds before repeating the tone
cycle (before playing the tone again)

Remarks Sounds the bump bar enunciator for the bump bar(s) specified by the units
parameter.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

The duration of a tone cycle is:

duration parameter + interSoundWait parameter (except on the last tone cycle)

After the bump bar has started an asynchronous sound, then the sound may be
stopped by using the clearOutput method. (When a numberOfCycles value of
FOREVER was used to start the sound, then the application must use clearOutput
to stop the continuous sounding of tones.)

74
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:

numberOfCycles is neither a positive, non-zero value
nor FOREVER.

numberOfCycles is FOREVER when AsyncMode is
false.

A negative interSoundWait was specified.

units is zero or a non-existent unit was specified.

A unit in units does not support the CapTone capability.

The ErrorUnits and ErrorString properties may be
updated before the exception is thrown.

E_FAILURE An error occurred while communicating with one of the
bump bar units specified by the units parameter. The
ErrorUnits and ErrorString properties are updated
before the exception is thrown. (Can only occur if
AsyncMode is false.)

See Also AsyncMode Property, ErrorUnits Property, ErrorString Property, CapTone
Property, clearOutput Method.

75 Methods (UML operations)
checkHealth Method (Common)

Syntax checkHealth (level: int32):
void { raises-exception, use after open-claim-enable }

The level parameter indicates the type of health check to be performed on the
device. The following values may be specified:

Value Meaning

 CH_INTERNAL Perform a health check that does not physically change
the device. The device is tested by internal tests to the
extent possible.

 CH_EXTERNAL Perform a more thorough test that may change the
device.

 CH_INTERACTIVE Perform an interactive test of the device. The Device
Service will typically display a modal dialog box to
present test options and results.

Remarks When CH_INTERNAL or CH_EXTERNAL level is requested, the method will
check the health of the bump bar unit specified by the CurrentUnitID property.
When the current unit ID property is set to a unit that is not currently online, the
device will attempt to check the health of the bump bar unit and report a
communication error if necessary. The CH_INTERACTIVE health check
operation is up to the Service designer.

A text description of the results of this method is placed in the CheckHealthText
property.

The UnitsOnline property will be updated with any changes before returning to
the application.

This method is always synchronous.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_FAILURE An error occurred while communicating with the bump
bar unit specified by the CurrentUnitID property.

See Also CurrentUnitID Property, UnitsOnline Property.

76
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
clearInput Method (Common)

Syntax clearInput ():
void { raises-exception, use after open-claim }

Remarks Clears the device input that has been buffered for the unit specified by the
CurrentUnitID property.

Any data events that are enqueued – usually waiting for DataEventEnabled to be
set to true and FreezeEvents to be set to false – are also cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

See Also CurrentUnitID Property, “Device Input Model” on page 18.

clearOutput Method (Common)

Syntax clearOutput ():
void { raises-exception, use after open-claim }

Remarks Clears the tone outputs that have been buffered for the unit specified by the
CurrentUnitID property.

Any output complete and output error events that are enqueued – usually waiting
for DataEventEnabled to be set to true and FreezeEvents to be set to false – are
also cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

See Also CurrentUnitID Property, “Device Output Models” on page 21.

77 Methods (UML operations)
setKeyTranslation Method

Syntax setKeyTranslation (units: int32, scanCode: int32, logicalKey: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which bump bar unit(s) to set
key translation for.

scanCode The bump bar generated key scan code. Valid values 0-
255.

logicalKey The translated logical key value. Valid values 0-255.

Remarks Assigns a logical key value to a device-specific key scan code for the bump bar
unit(s) specified by the units parameter. The logical key value is used during
translation during the DataEvent.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:

scanCode or logicalKey are out of range.

units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are
updated prior to notifying the application of the error.

See Also ErrorUnits Property, ErrorString Property, DataEvent.

78
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
Events (UML interfaces)

DataEvent

<< event >> upos::events::DataEvent
Status: int32 {read-only }

Description Notifies the application when status from the bump bar is available.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 See below.

The Status property is divided into four bytes. Depending on the Event Type,
located in the low word, the remaining 2 bytes will contain additional data. The
diagram below indicates how the Status property is divided:

Remarks Enqueued to present input data from a bump bar unit to the application. The low
word contains the Event Type. The high word contains additional data depending
on the Event Type. When the Event Type is BB_DE_KEY, the low byte of the
high word contains the LogicalKeyCode for the key pressed on the bump bar unit.
The LogicalKeyCode value is device independent. It has been translated by the
Service from its original hardware specific value. Valid ranges are 0-255.

The EventUnitID property is updated before delivering the event.

See Also “Device Input Model” on page 18, EventUnitID Property, DataEventEnabled
Property, FreezeEvents Property.

High Word Low Word (Event Type)

High Byte Low Byte

Unused. Always zero. LogicalKeyCode BB_DE_KEY

79 Events (UML interfaces)
DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific Bump Bar Service to provide events to the application
that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Device Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Device Service. This property is
settable.

Obj object Additional data whose usage varies by the EventNumber
and Device Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Bump Bar devices which may not have any
knowledge of the Device Service’s need for this event.

See Also “Events” on page 15, directIO Method.

80
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a Bump Bar error has been detected and a suitable
response by the application is necessary to process the error condition.

Attributes This event contains the following properties:

Attributes Type Description

ErrorCode int32 Result code causing the error event. See a list of Error
Codes on page 16.

ErrorCodeExtended int32 Extended Error code causing the error event. If
ErrorCode is E_EXTENDED, then see values below.
Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application (i.e., this property is settable). See
values below.

The ErrorLocus property may be one of the following:

Value Meaning

 EL_OUTPUT Error occurred while processing asynchronous output.

 EL_INPUT Error occurred while gathering or processing event-
driven input. No input data is available.

 EL_INPUT_DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

81 Events (UML interfaces)
The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error event listener may change ErrorResponse
to one of the following values:

Value Meaning

 ER_RETRY Use only when locus is EL_OUTPUT.
Retry the asynchronous output. The error state is exited.
Default when locus is EL_OUTPUT.

 ER_CLEAR Clear the buffered input data. The error state is exited.
Default when locus is EL_INPUT.

 ER_CONTINUEINPUT
Use only when locus is EL_INPUT_DATA.
Acknowledges the error and directs the Device to
continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and the DataEventEnabled property is
again set to true, then another ErrorEvent is delivered
with locus EL_INPUT.
Default when locus is EL_INPUT_DATA.

Remarks Enqueued when an error is detected while gathering data from or processing
asynchronous output for the bump bar.

Input error events are not delivered until the DataEventEnabled property is true,
so that proper application sequencing occurs.

The EventUnits and EventString properties are updated before the event is
delivered.

See Also “Device Output Models” on page 21, “Device States” on page 26,
DataEventEnabled Property, EventUnits Property, EventString Property.

82
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the
OutputID attribute has completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description

OutputID int32 The ID number of the asynchronous output request that
is complete. The EventUnits property is updated before
delivering.

Remarks Enqueued when a previously started asynchronous output request completes
successfully.

See Also EventUnits Property, “Device Output Models” on page 21.

.

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that the bump bar has had an operation status change.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Reports a change in the power state of a bump bar unit.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on page 56.

Remarks Enqueued when the bump bar device detects a power state change.

Deviation from the standard StatusUpdateEvent (See “StatusUpdateEvent”
description on page 56)

• Before delivering the event, the EventUnits property is set to the units for
which the new power state applies.

• When the bump bar device is enabled, then a StatusUpdateEvent is enqueued
to specify the bitmask of online units.

• While the bump bar device is enabled, a StatusUpdateEvent is enqueued
when the power state of one or more units change. If more than one unit
changes state at the same time, the Service may choose to either enqueue
multiple events or to coalesce the information into a minimal number of events
applying to EventUnits.

See Also EventUnits Property.

C H A P T E R 3

Cash Changer

This Chapter defines the Cash Changer device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean {read-write} 1.2 Not Supported

CapPowerReporting: int32 {read-only} 1.3 open

CheckHealthText: string {read-only} 1.2 open

Claimed: boolean {read-only} 1.2 open

DataCount: int32 {read-only} 1.5 open

DataEventEnabled: boolean {read-write} 1.5 open

DeviceEnabled: boolean {read-write} 1.2 open & claim

FreezeEvents: boolean {read-write} 1.2 open

OutputID: int32 {read-only} 1.2 Not Supported

PowerNotify: int32 {read-write} 1.3 open

PowerState: int32 {read-only} 1.3 open

State: int32 {read-only} 1.2 --

DeviceControlDescription: string {read-only} 1.2 --

DeviceControlVersion: int32 {read-only} 1.2 --

DeviceServiceDescription: string {read-only} 1.2 open

DeviceServiceVersion: int32 {read-only} 1.2 open

PhysicalDeviceDescription: string {read-only} 1.2 open

PhysicalDeviceName: string {read-only} 1.2 open

84
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Changer
Properties (Continued)

Specific Type Mutability Version May Use After

CapDeposit: boolean {read-only} 1.5 open

CapDepositDataEvent: boolean {read-only} 1.5 open

CapDiscrepancy: boolean {read-only} 1.2 open

CapEmptySensor: boolean {read-only} 1.2 open

CapFullSensor: boolean {read-only} 1.2 open

CapNearEmptySensor: boolean {read-only} 1.2 open

CapNearFullSensor: boolean {read-only} 1.2 open

CapPauseDeposit: boolean {read-only} 1.5 open

CapRepayDeposit: boolean {read-only} 1.5 open

AsyncMode: boolean {read-write} 1.2 open

AsyncResultCode: int32 {read-only} 1.2 open, claim, & enable

AsyncResultCodeExtended: int32 {read-only} 1.2 open, claim, & enable

CurrencyCashList: string {read-only} 1.2 open

CurrencyCode: string {read-write} 1.2 open

CurrencyCodeList: string {read-only} 1.2 open

CurrentExit: int32 {read-write} 1.2 open

DepositAmount: int32 {read-only} 1.5 open

DepositCashList: string {read-only} 1.5 open

DepositCodeList: string {read-only} 1.5 open

DepositCounts: string {read-only} 1.5 open

DepositStatus: int32 {read-only} 1.5 open, claim, & enable

DeviceExits: int32 {read-only} 1.2 open

DeviceStatus: int32 {read-only} 1.2 open, claim, & enable

ExitCashList: string {read-only} 1.2 open

FullStatus: int32 {read-only} 1.2 open, claim, & enable

85 Summary
Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.2

close ():
void { raises-exception, use after open }

1.2

claim (timeout: int32):
void { raises-exception, use after open }

1.2

release ():
void { raises-exception, use after open, claim }

1.2

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.2

clearInput ():
void { raises-exception, use after open, claim }

1.5

clearOutput ():
void { }

Not
supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.2

Specific

Name

beginDeposit ():
void { raises exception, use after open, claim, enable }

1.5

dispenseCash (cashCounts: string):
void { raises exception, use after open, claim, enable }

1.2

dispenseChange (amount: int32):
void { raises exception, use after open, claim, enable }

1.2

endDeposit (success: int32):
void { raises exception, use after open, claim, enable }

1.5

fixDeposit ():
void { raises exception, use after open, claim, enable }

1.5

pauseDeposit (control: int32):
void { raises exception, use after open, claim, enable }

1.5

readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises exception, use after open, claim, enable }

1.2

86
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Changer
Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.5

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.2

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not Supported

upos::events::OutputCompleteEvent Not Supported

upos::events::StatusUpdateEvent 1.2

 Status: int32 { read-only }

87 General Information
General Information

The Cash Changer programmatic name is “CashChanger”.

Capabilities
The Cash Changer has the following capabilities:

• Reports the cash units and corresponding unit counts available in the Cash
Changer.

• Dispenses a specified amount of cash from the device in either bills, coins, or
both into a user-specified exit.

• Dispenses a specified number of cash units from the device in either bills,
coins, or both into a user-specified exit.

• Reports jam conditions within the device.

• Supports more than one currency.

The Cash Changer may also have the following additional capabilities:

• Reporting the fullness levels of the Cash Changer’s cash units. Conditions
which may be indicated include empty, near empty, full, and near full states.

• Reporting of a possible (or probable) cash count discrepancy in the data
reported by the readCashCounts method.

Release 1.5 and later – Support for the cash acceptance is added
as an option.

• The money (bills and coins) which is deposited into the device between the
start and end of cash acceptance is reported to the application. The contents of
the report are cash units and cash counts.

88
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Changer
CashChanger Class Diagram

The following diagram shows the relationships between the CashChanger classes.

CashChangerConst

(from upos)

<<utility>>
UposConst

(from upos)

<<utility>>

UposException
(from upos)

<<exception>>
BaseControl

(from upos)

<<Interface>>

<<uses>>

<<sends>>

DataEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

CashChangerControl

<<capability>> CapDeposit : boolean
<<capability>> CapDepositDataEvent : boolean
<<capability>> CapDiscrepancy : boolean
<<capability>> CapEmptySensor : boolean
<<capability>> CapFullSensor : boolean
<<capability>> CapNearEmptySensor : boolean
<<capability>> CapNearFullSensor : boolean
<<capability>> CapPauseDeposit : boolean
<<capability>> CapRepayDeposit : boolean
<<prop>> AsyncMode : boolean
<<prop>> AsyncResultCode : int32
<<prop>> AsyncResultCodeExtended : int32
<<prop>> CurrencyCashList : string
<<prop>> CurrencyCode : string
<<prop>> CurrencyCodeList : string
<<prop>> CurrentExit : int32
<<prop>> DepositCashList : string
<<prop>> DepositCodeList : string
<<prop>> DepositCounts : string
<<prop>> DepositAmount : int32
<<prop>> DeviceExits : int32
<<prop>> ExitCashList : string
<<prop>> DepositStatus : int32
<<prop>> DeviceStatus : int32
<<prop>> FullStatus : int32

beginDeposit()
dispenseCash(cashCounts : string)
dispenseChange(amount : int32)
endDeposit(success : int32)
fixDeposit()
pauseDeposit(control : int32)
readCashCounts(cashCounts : string, discrepancy : boolean)

(from upos)

<<Interface>>

fires

fires

fires

ErrorEvent
(from events)

<<event>> fires

<<uses>>

<<sends>><<uses>>

89 General Information
Model

The general model of a Cash Changer is:

• Supports several cash types such as coins, bills, and combinations of coins and
bills. The supported cash type for a particular currency is noted by the list of
cash units in the CurrencyCashList property.

• Consists of any combination of features to aid in the cash processing functions
such as a cash entry holding bin, a number of slots or bins which can hold the
cash, and cash exits.

• Prior to Release 1.5 this specification provides programmatic control only for
the dispensing of cash. The accepting of cash by the device (for example, to
replenish cash) cannot be controlled by the APIs provided in this model. The
application can call readCashCounts to retrieve the current unit count for
each cash unit, but cannot control when or how cash is added to the device.

• May have multiple exits. The number of exits is specified in the DeviceExits
property. The application chooses a dispensing exit by setting the
CurrentExit property. The cash units which may be dispensed to the current
exit are indicated by the ExitCashList property. When CurrentExit is 1, the
exit is considered the “primary exit” which is typically used during normal
processing for dispensing cash to a customer following a retail transaction.
When CurrentExit is greater than 1, the exit is considered an “auxiliary exit.”
An “auxiliary exit” typically is used for special purposes such as dispensing
quantities or types of cash not targeted for the “primary exit.”

• Dispenses cash into the exit specified by CurrentExit when either
dispenseChange or dispenseCash is called. With dispenseChange, the
application specifies a total amount to be dispensed, and it is the responsibility
of the Cash Changer device or the Control to dispense the proper amount of
cash from the various slots or bins. With dispenseCash, the application
specifies a count of each cash unit to be dispensed.

• Dispenses cash either synchronously or asynchronously, depending on the
value of the AsyncMode property.

When AsyncMode is false, then the cash dispensing methods are performed
synchronously and the dispense method returns the completion status to the
application.

When AsyncMode is true and no exception is thrown by either
dispenseChange or dispenseCash, then the method is performed
asynchronously and its completion is indicated by a StatusUpdateEvent with
its Data property set to CHAN_STATUS_ASYNC. The request’s completion
status is set in the AsyncResultCode and AsyncResultCodeExtended
properties.

The values of AsyncResultCode and AsyncResultCodeExtended are the
same as those for the ErrorCode and ErrorCodeExtended properties of a
UposException when an error occurs during synchronous dispensing.

Nesting of asynchronous Cash Changer operations is illegal; only one
asynchronous method can be processed at a time.

90
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Changer
The readCashCounts method may not be called while an asynchronous
method is being performed since doing so could likely report incorrect cash
counts.

• May support more than one currency. The CurrencyCode property may be
set to the currency, selecting from a currency in the list CurrencyCodeList.
CurrencyCashList, ExitCashList, dispenseCash, dispenseChange and
readCashCounts all act upon the current currency only.

• Sets the cash slot (or cash bin) conditions in the DeviceStatus property to
show empty and near empty status, and in the FullStatus property to show full
and near full status. If there are one or more empty cash slots, then
DeviceStatus is CHAN_STATUS_EMPTY, and if there are one or more full
cash slots, then FullStatus is CHAN_STATUS_FULL.

• After Release 1.5 — Support for cash acceptance is added as an
option.

• The cash acceptance model is as follows:

• Note that the AsyncMode property has no affect on methods that have been
added for cash acceptance, since these are treated as input methods.

• The dispensing of change function of this device is not dependent upon the
availability of a “cash acceptance” function option. Dispensing of change and
collection of money are two independent functions.

• Receipt of cash (cash acceptance function) is an option that may be provided
by the Cash Changer device. Cash acceptance into the “cash acceptance
mechanism” is started by invoking the beginDeposit method. The previous
values of the properties DepositCounts and DepositAmount are initialized to
zero.

• The total amount of cash placed into the device continues to be accumulated
until either the fixDeposit method or the pauseDeposit method is executed.
When the fixDeposit method is executed, the total amount of accumulated
cash is stored in the DepositCounts and DepositAmount properties. If the
CapDepositDataEvent capability was previously set to true, then a
DataEvent is generated to inform the application that cash has been collected.
If the pauseDeposit method is executed with a parameter value of
CHAN_DEPOSIT_PAUSE, then the counting of the deposited cash is
suspended and the current amount of accumulated cash is also updated to the
DepositCounts and DepositAmount properties. When pauseDeposit
method is executed with a parameter value of CHAN_DEPOSIT_RESTART,
counting of deposited cash is resumed and added to the accumulated totals.
When the fixDeposit method is executed, the current amount of accumulated
cash is updated in the DepositCounts and DepositAmount properties, and the
process remains static until an endDeposit method is executed. At this point
the “cash acceptance” mechanism is notified to stop accepting cash. If
endDeposit method receives a CHAN_DEPOSIT_CHANGE parameter, then
the mechanism will dispense cash change back to the user. If endDeposit is
invoked with a CHAN_DEPOSIT_NOCHANGE parameter, then the
mechanism will not dispense cash change back to the user. Finally, if
endDeposit is invoked with a CHAN_DEPOSIT_REPAY parameter, then all
collected cash is returned back to the user by the mechanism.

91 General Information
• Two types of Cash Changer mechanisms are covered by this standard. In one
case where CapRepayDeposit is true, the bins that are used for collecting the
cash are the same bins that are used for dispensing the cash as change. In the
other case where CapRepayDeposit is false, the bins that are used for
collecting the cash are different from the bins that are used for dispensing the
change. In the first case, if a transaction is aborted for any reason, the same
cash the user input to the mechanism will be returned to the user. In the second
case, it is up to the application to dispense an equivalent amount of cash (not
the same physical cash collected) back to the user for an aborted transaction.

• The Cash Changer mechanisms can only be used in one mode at a time. While
the mechanism is collecting deposited cash, it can not dispense change at the
same time. Therefore, while beginDeposit method is being executed, no
payment of change can occur. Only after an endDeposit method call can the
proper amount of change be determined (either by the application or by a
“smart” Cash Changer) and dispensed to the user. Each Cash Changer
manufacturer must determine the amount of time it takes to process the
received cash and place in storage bins before it completes the endDeposit
method.

• When the clearInput method is executed, the queued DataEvent associated
with the receipt of cash is cleared. The DepositCounts and DepositAmount
properties remain set and are not cleared.

92
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Changer
• The processing flow of cash acceptance is shown in the following diagram.

beginDeposit ()

DepositCounts Property value &
DepositAmount Property value
are initialized.

pauseDeposit (Pause)

pauseDeposit (Restart)

fixDeposit ()

endDeposit (Change/Nochange/Repayment)

dispenseChange () or dispenseCash ()

DataEvent DepositCounts Property value &
DepositAmount Property value
are updated.

DepositCounts Property value &
DepositAmount Property value
are finalized.

If there is change, then this is
dispensed as follows

Dispense bills & coins.

Pause of cash acceptance.
(If CapPauseDeposit == true)

cash acceptance
(option)

Accepting cash

Application Cash Changer

No

Yes

Read amount of cash accepted
through the DepositAmount
Property. Check amount accepted
is > amount of sale.Compare

93 General Information
Cash Changer State Diagram

94
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Changer
Device Sharing

The Cash Changer is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some of the
properties, dispensing or collecting, or receiving events.

• See the “Summary” table for precise usage prerequisites.

95 Properties (UML attributes)
Properties (UML attributes)

AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, the dispenseCash and dispenseChange methods will be performed
asynchronously. If false, these methods will be performed synchronously.
This property is initialized to false by the Open method.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

See Also AsyncResultCode Property, AsyncResultCodeExtended Property,
dispenseChange Method, dispenseCash Method.

AsyncResultCode Property

Syntax AsyncResultCode: int32 { read-only, access after open-claim-enable }

Remarks Holds the completion status of the last asynchronous dispense request (i.e., when
dispenseCash or dispenseChange was called with AsyncMode true).
This property is set before a StatusUpdateEvent event is delivered with a Status
value of CHAN_STATUS_ASYNC.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also AsyncMode Property, dispenseCash Method, dispenseChange Method.

AsyncResultCodeExtended Property

Syntax AsyncResultCodeExtended: int32 { read-only, access after open-claim-
enable}

Remarks Holds the completion status of the last asynchronous dispense request (i.e., when
dispenseCash or dispenseChange was called with AsyncMode true).
This property is set before a StatusUpdateEvent event is delivered with a Status
value of CHAN_STATUS_ASYNC.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also AsyncMode Property, dispenseCash Method, dispenseChange Method.

96
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Changer
CapDeposit Property Added in Release 1.5

Syntax CapDeposit: boolean { read-only, access after open }

Remarks If true, the Cash Changer supports cash acceptance.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also beginDeposit Method, endDeposit Method, fixDeposit Method, pauseDeposit
Method.

CapDepositDataEvent Property Added in Release 1.5

Syntax CapDepositDataEvent: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report a cash acceptance event.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also beginDeposit Method, endDeposit Method, fixDeposit Method, pauseDeposit
Method.

CapDiscrepancy Property

Syntax CapDiscrepancy: boolean { read-only, access after open }

Remarks If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also readCashCounts Method.

CapEmptySensor Property

Syntax CapEmptySensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report the condition that some cash slots are empty.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also DeviceStatus Property, StatusUpdateEvent.

97 Properties (UML attributes)
CapFullSensor Property

Syntax CapFullSensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report the condition that some cash slots are full.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also FullStatus Property, StatusUpdateEvent.

CapNearEmptySensor Property

Syntax CapNearEmptySensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report the condition that some cash slots are nearly
empty.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also DeviceStatus Property, StatusUpdateEvent.

CapNearFullSensor Property

Syntax CapNearFullSensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report the condition that some cash slots are nearly
full.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also FullStatus Property, StatusUpdateEvent.

CapPauseDeposit Property Added in Release 1.5

Syntax CapPauseDeposit: boolean { read-only, access after open }

Remarks If true, the Cash Changer has the capability to suspend cash acceptance processing
temporarily.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also pauseDeposit Method.

98
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Changer
CapRepayDeposit Property Added in Release 1.5

Syntax CapRepayDeposit: boolean { read-only, access after open }

Remarks If true, the Cash Changer has the capability to return money that was deposited.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also endDeposit Method.

CurrencyCashList Property

Syntax CurrencyCashList: string { read-only, access after open }

Remarks Holds the cash units supported in the Cash Changer for the currency represented
by the CurrencyCode Property.

The string consists of ASCII numeric comma delimited values which denote the
units of coins, then the ASCII semicolon character (“;”) followed by ASCII
numeric comma delimited units of bills that can be used with the Cash Changer. If
a semicolon (“;”) is absent, then all units represent coins.

Below are sample CurrencyCashList values in Japan.
• “1,5,10,50,100,500” ---

1, 5, 10, 50, 100, 500 yen coin.

• “1,5,10,50,100,500;1000,5000,10000” ---
1, 5, 10, 50, 100, 500 yen coin and 1000, 5000, 10000 yen bill.

• “;1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when
CurrencyCode is set.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrencyCode Property.

99 Properties (UML attributes)
CurrencyCode Property

Syntax CurrencyCode: string { read-write, access after open }

Remarks Contains the active currency code to be used by Cash Changer operations. This
property is initialized to an appropriate value by the open method. This value is
guaranteed to be one of the set of currencies specified by the CurrencyCodeList
property.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL A value was specified that is not within
CurrencyCodeList.

See Also CurrencyCodeList Property.

CurrencyCodeList Property

Syntax CurrencyCodeList: string { read-only, access after open }

Remarks Holds a list of ASCII three-character ISO 4217 currency codes separated by
commas. For example, if the string is “JPY,USD”, then the Cash Changer supports
both Japanese and U.S. monetary units.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrencyCode Property.

100
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Changer
CurrentExit Property

Syntax CurrentExit: int32 { read-write, access after open }

Remarks Holds the current cash dispensing exit. The value 1 represents the primary exit (or
normal exit), while values greater then 1 are considered auxiliary exits. Legal
values range from 1 to DeviceExits.

Below are examples of typical property value sets in Japan. CurrencyCode is
“JPY” and CurrencyCodeList is “JPY”.

• Cash Changer supports coins; only one exit supported:
CurrencyCashList = “1,5,10,50,100,500”
DeviceExits = 1
CurrentExit = 1 : ExitCashList = “1,5,10,50,100,500”

• Cash Changer supports both coins and bills; an auxiliary exit is used for
larger quantities of bills:
CurrencyCashList = “1,5,10,50,100,500;1000,5000,10000”
DeviceExits = 2
When CurrentExit = 1 : ExitCashList =
“1,5,10,50,100,500;1000,5000”
When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

• Cash Changer supports bills; an auxiliary exit is used for larger quantities
of bills:
CurrencyCashList = “;1000,5000,10000”
DeviceExits = 2
When CurrentExit = 1 : ExitCashList = “;1000,5000”
When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

This property is initialized to 1 by the open method.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid CurrentExit value was specified.

See Also CurrencyCashList Property, DeviceExits Property, ExitCashList Property.

101 Properties (UML attributes)
DepositAmount Property Added in Release 1.5

Syntax DepositAmount: int32 { read-only, access after open }

Remarks The total amount of deposited cash.

For example, if the currency is Japanese yen and DepositAmount is set to 18057,
after the call to the beginDeposit method, there would be 18,057 yen in the Cash
Changer.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrencyCode Property.

DepositCashList Property Added in Release 1.5

Syntax DepositCashList: string { read-only, access after open }

Remarks Holds the cash units supported in the Cash Changer for the currency represented
by the CurrencyCode property. It is set to null when the cash acceptance process
is not supported.

It consists of ASCII numeric comma delimited values which denote the units of
coins, then the ASCII semicolon character (“;”) followed by ASCII numeric
comma delimited values for the bills that can be used with the Cash Changer. If
the semicolon (“;”) is absent, then all units represent coins.

Below are sample DepositCashList values in Japan.
• “1,5,10,50,100,500” ---

1, 5, 10, 50, 100, 500 yen coin.

• “1,5,10,50,100,500;1000,5000,10000” ---
1, 5, 10, 50, 100, 500 yen coin and 1000, 5000, 10000 yen bill.

• “;1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when
CurrencyCode is set.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrencyCode Property.

102
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Changer
DepositCodeList Property Added in Release 1.5

Syntax DepositCodeList: string { read-only, access after open }

Remarks Holds the currency code indicators for cash accepted. It is set to null when the cash
acceptance process is not supported.

 It is a list of ASCII three-character ISO 4217 currency codes separated by com-
mas. For example, if the string is “JPY,USD”, then the Cash Changer supports
both Japanese and U.S. monetary units.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrencyCode Property.

DepositCounts Property Added in Release 1.5

Syntax DepositCounts: string { read-only, access after open }

Remarks Holds the total of the cash accepted by the cash units. The format of the string is
the same as cashCounts in the dispenseCash method. Cash units inside the string
are the same as the DepositCashList property, and are in the same order. It is set
to null when the cash acceptance function is not supported.

For example if the currency is Japanese yen and string of the DepositCounts
property is set to

1:80,5:77,10:0,50:54,100:0,500:87

After the call to the beginDeposit method, there would be 80 one yen coins, 77
five yen coins, 54 fifty yen coins, and 87 five hundred yen coins in the Cash
Changer.

This property is initialized by the open method
.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrencyCode Property.

103 Properties (UML attributes)
DepositStatus Property Added in Release 1.5

Syntax DepositStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current status of the cash acceptance operation. It may be one of the
following values:

Value Meaning

CHAN_STATUS_DEPOSIT_START
Cash acceptance started.

CHAN_STATUS_DEPOSIT_END
Cash acceptance stopped.

CHAN_STATUS_DEPOSIT_NONE
Cash acceptance not supported.

CHAN_STATUS_DEPOSIT_COUNT
Counting or repaying the deposited money.

CHAN_STATUS_DEPOSIT_JAM
A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This
property is set to CHAN_STATUS_DEPOSIT_END after initialization, or to
CHAN_STATUS_DEPOSIT_NONE if the device does not support cash
acceptance.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

DeviceExits Property

Syntax DeviceExits: int32 { read-only, access after open }

Remarks The number of exits for dispensing cash.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrentExit Property.

104
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Changer
DeviceStatus Property

Syntax DeviceStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current status of the Cash Changer. It may be one of the following:

Value Meaning

CHAN_STATUS_OK The current condition of the Cash Changer is
satisfactory.

CHAN_STATUS_EMPTY
Some cash slots are empty.

CHAN_STATUS_NEAREMPTY
Some cash slots are nearly empty.

CHAN_STATUS_JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. If more
than one condition is present, then the order of precedence starting at the highest
is: fault, empty, and near empty.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

ExitCashList Property

Syntax ExitCashList: string { read-only, access after open }

Remarks Holds the cash units which may be dispensed to the exit which is denoted by
CurrentExit property. The supported cash units are either the same as
CurrencyCashList, or a subset of it. The string format is identical to that of
CurrencyCashList.
This property is initialized by the open method, and is updated when
CurrencyCode or CurrentExit is set.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrencyCode Property, CurrencyCashList Property, CurrentExit Property.

FullStatus Property

Syntax FullStatus: int32 { read-only, access after open }

Remarks Holds the current full status of the cash slots. It may be one of the following:

Value Meaning

CHAN_STATUS_OK All cash slots are neither nearly full nor full.
CHAN_STATUS_FULL Some cash slots are full.
CHAN_STATUS_NEARFULL

Some cash slots are nearly full.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

105 Methods (UML operations)
Methods (UML operations)

beginDeposit Method Added in Release 1.5

Syntax beginDeposit ():
void { raises-exception, use after open-claim-enable }

Remarks Cash acceptance is started.

The following property values are initialized by the call to this method:
• The value of each cash unit of the DepositCounts property is set to zero.

• The DepositAmount property is set to zero.

After calling this method, if CapDepositDataEvent is true, cash acceptance is
reported by DataEvents until fixDeposit is called while the deposit process is not
paused.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL Either the Cash Changer does not support cash
acceptance, or the call sequence is not correct.

See Also DepositCounts Property, DepositAmount Property, CapDepositDataEvent
Property, endDeposit Method, fixDeposit Method, pauseDeposit Method.

106
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Changer
dispenseCash Method

Syntax dispenseCash (cashCounts: string):
void { raises-exception, use after open-claim-enable }

The cashCounts parameter contains the dispensing cash units and counts,
represented by the format of “cash unit:cash counts, ..;.., cash unit:cash counts”.
Units before “;” represent coins, and units after “;” represent bills. If “;” is absent,
then all units represent coins.

Remarks Dispenses the cash from the Cash Changer into the exit specified by CurrentExit.
The cash dispensed is specified by pairs of cash units and counts.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Some cashCounts examples, using Japanese yen as the currency, are shown below.

• “10:5,50:1,100:3,500:1”
Dispense 5 ten yen coins, 1 fifty yen coins, 3 one hundred yen coins, 1 five
hundred yen coins.

• “10:5,100:3;1000:10”
Dispense 5 ten yen coins, 3 one hundred yen coins, and 10 one thousand
yen bills.

• “;1000:10,10000:5”
Dispense 10 one thousand yen bills and 5 ten thousand yen bills.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cash cannot be dispensed because an asynchronous
method is in progress.

E_ILLEGAL One of the following errors occurred:
• The cashCounts parameter value was illegal for the

current exit.
• Cash could not be dispensed because cash

acceptance was in progress.

E_EXTENDED ErrorCodeExtended = ECHAN_OVERDISPENSE:
The specified cash cannot be dispensed because of a
cash shortage.

See Also AsyncMode Property, CurrentExit Property.

107 Methods (UML operations)
dispenseChange Method

Syntax dispenseChange (amount: int32):
void { raises-exception, use after open-claim-enable }

The amount parameter contains the amount of change to be dispensed. It is up to
the Cash Changer to determine what combination of bills and coins will satisfy the
tender requirements from its available supply of cash.

Remarks Dispenses the specified amount of cash from the Cash Changer into the exit
represented by CurrentExit.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY The specified change cannot be dispensed because an
asynchronous method is in progress.

E_ILLEGAL One of the following errors occurred:
• A negative or zero amount was specified.
• The amount could not be dispensed based on the

values specified in ExitCashList for the current
exit.

• Change could not be dispensed because cash
acceptance was in progress.

E_EXTENDED ErrorCodeExtended = ECHAN_OVERDISPENSE:
The specified change can not be dispensed because of a
cash shortage.

See Also AsyncMode Property, CurrentExit Property.

108
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Changer
endDeposit Method Added in Release 1.5

Syntax endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was
deposited. Contains one of the following values:

Parameter Description

CHAN_DEPOSIT_CHANGE The deposit is accepted and the deposited
amount is greater than the amount required.

CHAN_DEPOSIT_NOCHANGE The deposit is accepted and the deposited
amount is equal to or less than the amount
required.

CHAN_DEPOSIT_REPAY The deposit is to be repaid through the cash
deposit exit or the cash payment exit.

Remarks Cash acceptance is completed.

Before calling this method, the application must calculate the difference between
the amount of the deposit and the amount required.

If the deposited amount is greater than the amount required then success is set to
CHAN_DEPOSIT_CHANGE. If the deposited amount is equal to or less than the
amount required then success is set to CHAN_DEPOSIT_NOCHANGE.

If success is set to CHAN_DEPOSIT_REPAY then the deposit is repaid through
either the cash deposit exit or the cash payment exit without storing the actual
deposited cash.

When the deposit is repaid, it is repaid in the exact cash unit quantities that were
deposited. Depending on the actual device, the cash repaid may be the exact same
bills and coins that were deposited, or it may not.

The application must call the fixDeposit method before calling this method.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:
• Cash acceptance is not supported.
• The call sequence is invalid. beginDeposit and

fixDeposit must be called in sequence before
calling this method.

See Also DepositCounts Property, DepositAmount Property, CapDepositDataEvent
Property, beginDeposit Method, fixDeposit Method, pauseDeposit Method.

109 Methods (UML operations)
fixDeposit Method Added in Release 1.5

Syntax fixDeposit ():
void { raises-exception, use after open-claim-enable }

Remarks When this method is called, all property values are updated to reflect the current
values in the Cash Changer.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:
• Cash acceptance is not supported.
• The call sequence is invalid. beginDeposit must be

called before calling this method.

See Also DepositCounts Property, DepositAmount Property, beginDeposit Method,
endDeposit Method, pauseDeposit Method.

110
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Changer
pauseDeposit Method Added in Release 1.5

Syntax pauseDeposit (control: int32):
void { raises-exception, use after open-claim-enable }

The control parameter contains one of the following values:

Parameter Description

CHAN_DEPOSIT_PAUSE Cash acceptance is paused.

CHAN_DEPOSIT_RESTART Cash acceptance is resumed.

Remarks Called to suspend or resume the process of depositing cash.

If control is CHAN_DEPOSIT_PAUSE, the cash acceptance operation is paused.
The deposit process will remain paused until this method is called with control set
to CHAN_DEPOSIT_RESTART. It is valid to call fixDeposit then endDeposit
while the deposit process is paused.

When the deposit process is paused, the depositCounts and depositAmount
properties are updated to reflect the current state of the Cash Changer. The
property values are not changed again until the deposit process is resumed.

If control is CHAN_DEPOSIT_RESTART, the deposit process is resumed.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:
• Cash acceptance is not supported.
• The call sequence is invalid. beginDeposit must be

called before calling this method.
• The deposit process is already paused and control is

set to CHAN_DEPOSIT_PAUSE, or the deposit
process is not paused and control is set to
CHAN_DEPOSIT_RESTART.

See Also DepositCounts Property, DepositAmount Property, CapDepositDataEvent
Property, CapPauseDeposit Property, beginDeposit Method, endDeposit
Method, fixDeposit Method.

111 Methods (UML operations)
readCashCounts Method

Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cash count data is placed into the string cashCounts.

discrepancy If discrepancy is set to true by this method, then there is
some cash which was not able to be included in the
counts reported in cashCounts; otherwise it is set false.

Remarks The format of the string cashCounts is the same as cashCounts in the
dispenseCash method. Each unit in cashCounts matches a unit in the
CurrencyCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is
set to:

1:80,5:77,10:0,50:54,100:0,500:87
as a result of calling the readCashCounts method, then there would be 80 one
yen coins, 77 five yen coins, 54 fifty yen coins, and 87 five hundred yen coins in
the Cash Changer.

If CapDiscrepancy property is false, then discrepancy is always false.

Usually, the cash total calculated by cashCounts parameter is equal to the cash
total in a Cash Changer. There are some cases where a discrepancy may occur
because of existing uncountable cash in a Cash Changer. An example would be
when a cash slot is “overflowing” such that the device has lost its ability to
accurately detect and monitor the cash.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cash units and counts can not be read because an
asynchronous method is in process.

See Also dispenseCash Method, CapDiscrepancy Property, CurrencyCashList Property.

112
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Changer
Events (UML interfaces)
DataEvent Added in Release 1.5

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when the Cash Changer has a status change.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 The Status parameter contains zero.

DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific Cash Changer Service to provide events to the
application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Device Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Device Service. This property is
settable.

Obj object Additional data whose usage varies by the EventNumber
and Device Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Cash Changer devices which may not have
any knowledge of the Device Service’s need for this event.

See Also “Events” on page 15, directIO Method.

113 Events (UML interfaces)
StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Cash
Changer device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the status of the unit. See values
below.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on page 56.

The Status parameter contains the Cash Changer status condition:

Value Meaning

CHAN_STATUS_EMPTY Some cash slots are empty.

CHAN_STATUS_NEAREMPTY Some cash slots are nearly empty.

CHAN_STATUS_EMPTYOK No cash slots are either empty or nearly
empty.

CHAN_STATUS_FULL Some cash slots are full.

CHAN_STATUS_NEARFULL Some cash slots are nearly full.

CHAN_STATUS_FULLOK No cash slots are either full or nearly full.

CHAN_STATUS_JAM A mechanical fault has occurred.

CHAN_STATUS_JAMOK A mechanical fault has recovered.

CHAN_STATUS_ASYNC Asynchronously performed method has
completed.

Remarks Fired when the Cash Changer detects a status change.

For changes in the fullness levels, the Cash Changer is only able to fire
StatusUpdateEvents when the device has a sensor capable of detecting the full,
near full, empty, and/or near empty states and the corresponding capability
properties for these states are set.

Jam conditions may be reported whenever this condition occurs; likewise for
asynchronous method completion.

The completion statuses of asynchronously performed methods are placed in the
AsyncResultCode and AsyncResultCodeExtended properties.

See Also AsyncResultCode Property, AsyncResultCodeExtended Property, “Events” on
page 15.

114
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Changer

C H A P T E R 4

Cash Drawer

This Chapter defines the Cash Drawer device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 Not Supported

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.2 Not Supported

DataEventEnabled: boolean { read-write } 1.0 Not Supported

DeviceEnabled: boolean { read-write } 1.0 open

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 Not Supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open

116
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Drawer
Properties (Continued)

Specific Type Mutability Version May Use After

CapStatus: boolean { read-only } 1.0 open

CapStatusMultiDrawerDetect: boolean { read-only } 1.5 open

DrawerOpened: boolean { read-only } 1.0 open & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, enable } Note

1.0

clearInput ():
void { }

Not
supported

clearOutput ():
void { }

Not
supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

Specific

Name

openDrawer (timeout: int32):
void { raises exception, use after open, enable } Note

1.0

waitForDrawerClose (timeout: int32):
void { raises exception, use after open, enable } Note

1.0

Note: Also requires that no other application has claimed the cash
drawer.

117 Summary
Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not Supported

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not Supported

upos::events::OutputCompleteEvent Not Supported

upos::events::StatusUpdateEvent 1.0

 Status: int32 { read-only }

118
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Drawer
General Information

The Cash Drawer programmatic name is “CashDrawer”.

Capabilities

The Cash Drawer Control has the following capability:

• Supports a command to “open” the cash drawer.

The cash drawer may have the following additional capability:

• Drawer status reporting of such a nature that the service can determine
whether a particular drawer is open or closed in environments where the
drawer is the only drawer accessible via a hardware port.

• Drawer unique status reporting of such a nature that the service can determine
whether a particular drawer is open or closed in environments where more
than one drawer is accessible via the same hardware port.

119 General Information
Cash Drawer Class Diagram

The following diagram shows the relationships between the Cash Drawer classes.

Device Sharing

The cash drawer is a sharable device. Its device sharing rules are:

• After opening and enabling the device, the application may access all
properties and methods and will receive status update events.

• If more than one application has opened and enabled the device, each of these
applications may access its properties and methods. Status update events are
delivered to all of these applications.

• If one application claims the cash drawer, then only that application may call
openDrawer and waitForDrawerClose. This feature provides a degree of
security, such that these methods may effectively be restricted to the main
application if that application claims the device at startup.

• See the “Summary” table for precise usage prerequisites.

UposEx ce ption

(from upos)

<<ex ce ption>>

CashDra w erConst
(from upos)

<<utility>>

UposConst

(from upos)

<<uti li ty>>

Sta tusUpdateEve nt

<<prop>> Sta tus : int32

(from e ve nts)

<<e ve nt>>

Di re ct IO Event

<<prop>> Eve ntNum be r : int32
<<prop>> Da ta : int32
<<prop>> Obj : obje ct

(f rom events)

<<event>>

CashDra w e rControl

<<capabili ty>> Ca pSta tus : boolea n
<<capability>> Ca pSta tusMultiDra w e rDetect : boolea n
<<prop>> Dra w erOpened : boolea n

ope nDra w e r(tim eout : int32) : void
w aitForDra w e rClose (time out : int32) : void

(from upos)

<<Inte rfa ce>>

<<sends>> <<use s>>fi res

fi re s

Ba se Control

(from upos)

<<Inte rface>>

<<use s>>

<<sends>>

120
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Drawer
Properties (UML attributes)
CapStatus Property

Syntax CapStatus: boolean { read-only, access after open }

Remarks If true, the drawer can report status. If false, the drawer is not able to determine
whether the cash drawer is open or closed.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapStatusMultiDrawerDetect Property Added in Release 1.5

Syntax CapStatusMultiDrawerDetect: boolean { read-only, access after open }

Remarks If true, the status unique to each drawer in a multiple cash drawer configuration1
can be reported.

If false, the following possibilities exist:

DrawerOpened: value of false indicates that there are no drawers open.

DrawerOpened: value of true indicates that at least one drawer is open and it
might be the particular drawer in question. This case can occur in multiple cash
drawer configurations where only one status is reported indicating either a) all
drawers are closed, or b) one or more drawers are open.

Note: A multiple cash drawer configuration is defined as one where a terminal or
printer supports opening more than one cash drawer independently via the same
channel or hardware port. A typical example is a configuration where a “Y” cable,
connected to a single hardware printer port, has separate drawer open signal lines
but the drawer open status from each of the drawers is “wired-or” together. It is not
possible to determine which drawer is open.

This property is only meaningful if CapStatus is true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CapStatus Property, DrawerOpened Property.

1. Multiple cash drawer configuration -- A hardware configuration where a printer or terminal
controls more than one cash drawer independently via the same channel or hardware port. A
typical example is a configuration with a “Y” cable connected to a single hardware port that
controls two cash drawers.

121 Properties (UML attributes)
DrawerOpened Property

Syntax DrawerOpened: boolean { read-only, access after open }

Remarks If true, the drawer is open. If false, the drawer is closed.

If the capability CapStatus is false, then the device does not support status
reporting, and this property is always false.

Note: If the capability CapStatusMultiDrawerDetect is false, then a
DrawerOpened value of true indicates at least one drawer is open, and it might be
the particular drawer in question in a multiple cash drawer configuration. See
CapStatusMultiDrawerDetect for further clarification.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CapStatus Property, CapStatusMultiDrawerDetect Property.

122
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Drawer
Methods (UML operations)
openDrawer Method

Syntax openDrawer ():
void { raises-exception, use after open-enable }

Remarks Opens the drawer.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

waitForDrawerClose Method

Syntax waitForDrawerClose (beepTimeout: int32, beepFrequency: int32,
beepDuration: int32, beepDelay: int32):
void { raises-exception, use after open-enable }

Parameter Description

beepTimeout Number of milliseconds to wait before starting an alert
beeper.

beepFrequency Audio frequency of the alert beeper in hertz.

beepDuration Number of milliseconds that the beep tone will be
sounded.

beepDelay Number of milliseconds between the sounding of beeper
tones.

Remarks Waits until the cash drawer is closed. If the drawer is still open after beepTimeout
milliseconds, then the system alert beeper is started.

Not all POS implementations may support the typical PC speaker system alert
beeper. However, by setting these parameters the application will insure that the
system alert beeper will be utilized if it is present.

Unless a UposException is thrown, this method will not return to the application
while the drawer is open. In addition, in a multiple cash drawer configuration
where the CapStatusMultiDrawerDetect property is false, this method will not
return to the application while any of the drawers are open. When all drawers are
closed, the beeper is turned off.

If CapStatus is false, then the device does not support status reporting, and this
method will return immediately.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

See Also CapStatus Property, CapStatusMultiDrawerDetect Property.

123 Events (UML interfaces)
Events (UML interfaces)

DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific Cash Drawer Service to provide events to the
application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Cash Drawer devices which may not have any
knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.

124
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Drawer
StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the status of the Cash Drawer changes.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 The status reported from the Cash Drawer.

The Status property has one of the following values:

Value Meaning

CASH_SUE_DRAWERCLOSED The drawer is closed.

CASH_SUE_DRAWEROPEN The drawer is open.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” on page 56.

Remarks If CapStatus is false, then the device does not support status reporting, and this
event will never be delivered to report status changes.

If CapStatusMultiDrawerDetect is false, then a CASH_SUE_DRAWEROPEN
value indicates that at least one cash drawer is open and it might be the particular
drawer in question for multiple cash drawer configurations.

See Also “Events” on page 15, CapStatus Property, CapStatusMultiDrawerDetect
Property.

C H A P T E R 5

CAT - Credit Authorization Terminal

This Chapter defines the Credit Authorization Terminal device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.4 Not Supported

CapPowerReporting: int32 { read-only } 14 open

CheckHealthText: string { read-only } 1.4 open

Claimed: boolean { read-only } 1.4 open

DataCount: int32 { read-only } 1.4 Not Supported

DataEventEnabled: boolean { read-write } 1.4 Not Supported

DeviceEnabled: boolean { read-write } 1.4 open & claim

FreezeEvents: boolean { read-write } 1.4 open

OutputID: int32 { read-only } 1.4 open

PowerNotify: int32 { read-write } 1.4 open

PowerState: int32 { read-only } 1.4 open

State: int32 { read-only } 1.4 --

DeviceControlDescription: string { read-only } 1.4 --

DeviceControlVersion: int32 { read-only } 1.4 --

DeviceServiceDescription: string { read-only } 1.4 open

DeviceServiceVersion: int32 { read-only } 1.4 open

PhysicalDeviceDescription: string { read-only } 1.4 open

PhysicalDeviceName: string { read-only } 1.4 open

126
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
Properties (Continued)

Specific Type Mutability Version May Use After

AccountNumber: string { read-only } 1.4 open

AdditionalSecurityInformation: string { read-write } 1.4 open

ApprovalCode: string { read-only } 1.4 open

AsyncMode:

CapAdditionalSecurityInformation:

boolean

boolean

{ read-write }

{ read-only }

1.4

1.4

open

open

CapAuthorizeCompletion:

CapAuthorizePreSales:

CapAuthorizeRefund:

CapAuthorizeVoid:

CapAuthorizeVoidPreSales:

CapCenterResultCode:

CapCheckCard:

CapDailyLog:

CapInstallments:

CapPaymentDetail:

CapTaxOthers:

CapTransactionNumber:

CapTrainingMode:

CardCompanyID:

CenterResultCode:

DailyLog:

PaymentCondition:

PaymentDetail:

PaymentMedia:

SequenceNumber:

SlipNumber:

TrainingMode:

TransactionNumber:

TransactionType:

boolean

boolean

boolean

boolean

boolean

boolean

boolean

int32

boolean

boolean

boolean

boolean

boolean

string

string

string

int32

string

int32

int32

string

boolean

string

int32

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-write }

{ read-only }

{ read-only }

{ read-write }

{ read-only }

{ read-only }

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.5

1.4

1.4

1.4

1.4

1.4

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

127 Summary

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.4

close ():
void { raises-exception, use after open }

1.4

claim (timeout: int32):
void { raises-exception, use after open }

1.4

release ():
void { raises-exception, use after open, claim }

1.4

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.4

clearInput ():
void { }

Not
supported

clearOutput ():
void { raises-exception, use after open, claim }

1.4

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.4

Specific

Name

accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32):
void { raises exception, use after open, claim, enable }

1.4

authorizeCompletion (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises exception, use after open, claim, enable }

1.4

authorizePreSales (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises exception, use after open, claim, enable }

1.4

authorizeRefund (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
 void { raises exception, use after open, claim, enable }

1.4

authorizeSales (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises exception, use after open, claim, enable }

1.4

authorizeVoid (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises exception, use after open, claim, enable }

1.4

authorizeVoidPreSales (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises exception, use after open, claim, enable }

1.4

checkCard (sequenceNumber: int32, timeout: int32):
void { raises exception, use after open, claim, enable }

1.4

128
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not supported

upos::events::DirectIOEvent 1.4

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.4

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse int32 { read-write }

upos::events::OutputCompleteEvent 1.4

 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.4

 Status: int32 { read-only }

129 General Information
General Information

The CAT programmatic name is “CAT”.

Description of terms
• Authorization method

Methods defined by this device class that have the Authorize prefix in their
name. These methods require communication with an approval agency.

• Authorization operation

The period from the invocation of an authorization method until the
authorization is completed. This period differs depending upon whether
operating in synchronous or asynchronous mode.

• Credit Authorization Terminal (CAT) Device

A CAT device typically consists of a display, keyboard, magnetic stripe card
reader, receipt printing device, and a communications device. CAT devices
are predominantly used in Japan where they are required by law. Essentially a
CAT device can be considered a device that shields the encryption, message
formatting, and communication functions of an electronic funds transfer
(EFT) operation from an application.

• Purchase

The transaction that allows credit card or debit card payment at the POS. It is
independent of payment methods (for example, lump-sum payment, payment
in installments, revolving payment, etc.).

• Cancel Purchase

The transaction to request voiding a purchase on the date of purchase.

• Refund Purchase

The transaction to request voiding a purchase after the date of purchase. This
differs from cancel purchase in that a cancel purchase operation can often be
handled by updating the daily log at the CAT device, while the refund
purchase operation typically requires interaction with the approval agency.

• Authorization Completion

The state of a purchase when the response from the approval agency is
“suspended”. The purchase is later completed after a voice approval is
received from the card company.

• Pre-Authorization

The transaction to reserve an estimated amount in advance of the actual
purchase with customer's credit card presentation and card entry at CAT.

• Cancel Pre-Authorization

The transaction to request canceling pre-authorization.

130
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
• Card Check

The transaction to perform a negative card file validation of the card presented
by the customer. Typically negative card files contain card numbers that are
known to fail approval. Therefore the Card Check operation removes then
need for communication to the approval agency in some instances.

• Daily log

The daily log of card transactions that have been approved by the card
companies.

• Payment condition

Condition of payment such as lump-sum payment, payment by bonus,
payment in installments, revolving payment, and the combination of those
payments. Debit payment is also available. See the PaymentCondition,
PaymentMedia, and PaymentDetail properties for details.

• Approval agency

The agency to decide whether or not to approve the purchase based on the card
information, the amount of purchase, and payment type. The approval agency
is generally the card company.

Capabilities
The CAT control is capable of the following general mode of operation:

• This standard defines the application interface with the CAT control and does
not depend on the CAT device hardware implementation. Therefore, the
hardware implementation of a CAT device may be as follows:

• Separate type (POS interlock)

The dedicated CAT device is externally connected to the POS (for
instance, via an RS-232 connection).

• Built-in type

The hardware structure is the same as the separate type but is installed
within the POS housing.

• The CAT device receives each authorization request containing a purchase
amount and tax from CAT control.

• The CAT device generally requests the user to swipe a magnetic card when it
receives an authorization request from CAT control.

• Once a magnetic card is swiped at the CAT device, the device sends the
purchase amount and tax to the approval agency using the communications
device.

• The CAT device returns the result from the approval agency to the CAT
control. The returned data will be stored in the authorization properties by the
CAT control for access by applications.

131 General Information
CAT Class Diagram

UposConst
(from upos)

<<utility>>

UposException
(from upos)

<<exception>>

BaseControl
(from upos)

<<Interface>>
<<uses>> <<sends>>

CATConst
(from upos)

<<utility>>

ErrorEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

OutputCompleteEvent
(from events)

<<event>>

CATControl

<<capability>> CapAdditionalSecurityInformation : boolean
<<capability>> CapAuthorizeCompletion : boolean
<<capability>> CapAuthorizePreSales : boolean
<<capability>> CapAuthorizeRefund : boolean
<<capability>> CapAuthorizeVoidPreSales : boolean
<<capability>> CapCenterResultCode : boolean
<<capability>> CapCheckCard : boolean
<<capability>> CapDailyLog : int32
<<capability>> CapInstallments : boolean
<<capability>> CapPaymentDetail : boolean
<<capability>> CapTaxOthers : boolean
<<capability>> CapTransactionNumber : boolean
<<capability>> CapTrainingMode : boolean
<<prop>> AccountNumber : string
<<prop>> AdditionalSecurityInformation : string
<<prop>> ApprovalCode : string
<<prop>> AsyncMode : boolean
<<prop>> CardCompanyID : string
<<prop>> CenterResultCode : string
<<prop>> DailyLog : string
<<prop>> PaymentCondition : int32
<<prop>> PaymentDetail : string
<<prop>> PaymentMedia : int32
<<prop>> SequenceNumber : int32
<<prop>> SlipNumber : int32
<<prop>> TrainingMode . BOOLEAN
<<prop>> TransactionNumber : string
<<prop>> TransactionType : int32

accessDailyLog()
authorizeCompletion()
authorizePreSales()
authorizeRefund()
authorizeSales()
authorizeVoid()
authorizeVoidPreSales()
checkCard()

(from upos)

<<Interface>>

<<uses>>

fires

fires

fires

<<sends>><<uses>>

fires

132
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
Model
The general models for the CAT control are shown below:

• The CAT control basically follows the output device model. However,
multiple methods cannot be issued for asynchronous output; only 1
outstanding asynchronous request is allowed.

• The CAT control issues requests to the CAT device for different types of
authorization by invoking the following methods.

• The CAT control issues requests to the CAT device for special processing
local to the CAT device by invoking the following methods.

• The CAT control stores the authorization results in the following properties
when an authorization operation successfully completes:

Function Method name Corresponding Cap property

Purchase authorizeSales None

Cancel Purchase authorizeVoid CapAuthorizeVoid

Refund Purchase authorizeRefund CapAuthorizeRefund

Authorization Completion authorizeCompletion CapAuthorizeCompletion

Pre-Authorization authorizePreSales CapAuthorizePreSales

Cancel Pre-Authorization authorizeVoidPreSales CapAuthorizeVoidPreSales

Function Method name Corresponding Cap property

Card Check checkCard CapCheckCard

Daily log accessDailyLog CapDailyLog

Description Property Name Corresponding Cap Property

Credit Account number AccountNumber None

Additional information AdditionalSecurityIn-
formation

CapAdditionalSecurityInfor-
mation

Approval code ApprovalCode None

Card company ID CardCompanyID None

Code from the approval
agency

CenterResultCode CapCenterResultCode

Payment condition PaymentCondition None

Payment detail PaymentDetail CapPaymentDetail

Sequence number SequenceNumber None

Slip number SlipNumber None

Center transaction number TransactionNumber CapTransactionNumber

Transaction type TransactionType None

133 General Information
• The accessDailyLog method sets the following property

• Sequence numbers are used to validate that the properties set at completion of
a method are indeed associated with the completed method. An incoming
SequenceNumber argument for each method is compared with the resulting
SequenceNumber property after the operation associated with the method
has completed. If the numbers do not match, or if an application fails to
identify the number, there is no guarantee that the values of the properties
listed in the two tables correspond to the completed method.

• The AsyncMode property determines if methods are run synchronously or
asynchronously.

• When AsyncMode is false, methods will be executed synchronously and their
corresponding properties will contain data when the method returns.

• When AsyncMode is true, methods will return immediately to the application.
When the operation associated with the method completes, each
corresponding property will be updated by the CAT control prior to an
OutputCompleteEvent. When AsyncMode is true, methods cannot be
issued immediately after issuing a prior method; only one outstanding
asynchronous method is allowed at a time. However, clearOutput is an
exception because its purpose is to cancel an outstanding asynchronous
method.

The methods supported and their corresponding properties vary depending on
the CAT control implementation. Applications should verify that particular
Cap properties are supported before utilizing the capability dependent
methods and properties.

• Results of synchronous calls to methods and writable properties will be stored
in ErrorCode. Results of asynchronous processing will be indicated by an
OutputCompleteEvent or returned in the Errorcode argument of an
ErrorEvent. If ErrorCode or the ErrorCode argument is E_EXTENDED,
detailed device specific information may be stored to ErrorCodeExtended in
synchronous mode and stored to ErrorEvent argument ErrorCodeExtended
in asynchronous mode. The result code from the approval agency will be
stored in CenterResultCode in either mode.

• Training mode occurs continually when TrainingMode is true. To
discontinue training mode, set TrainingMode to false.

• An outstanding asynchronous method can be canceled via the clearOutput
method.

• The Daily log can be collected by the accessDailyLog method. Collection will
be run either synchronously or asynchronously according to the value of
AsyncMode.

Description Property Name Corresponding Cap Property

Daily log DailyLog CapDailyLog

134
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
• Following is the general usage sequence of the CAT control.

Synchronous Mode:

- open

- claim

- setDeviceEnabled (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()

- Check UposException of the authorizeSales method

- Verify that the SequenceNumber property matches the value of the
authorizeSales() sequenceNumber argument

- Access the properties set by authorizeSales()

- setDeviceEnabled (false)

- release

- Close

Asynchronous Mode:

- open

- claim

- setDeviceEnabled (true)

- setAsyncMode (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()

- Check UposException of the authorizeSales method

- Wait for OutputCompleteEvent

- Check the argument ErrorCode

- Verify that the SequenceNumber property matches the value of the
authorizeSales() SequenceNumber argument

- Access the properties set by authorizeSales()

- setDeviceEnabled (false)

- release

- close

135 General Information
Device Sharing

The CAT is an exclusive-use device, as follows:

• After opening the device, properties are readable.

• The application must claim the device before enabling it.

• The application must claim and enable the device before calling methods that
manipulate the device.

• See the “Summary” table for precise usage prerequisites.

136
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
CAT State Diagram

The following diagram depicts the CAT states.

open()

close()

claim()

release()

close()

clearOutput()
/set DeviceEnabled (false)

/set DeviceEnabled (true)

accessDailyLog()

authorizeXyz(),
checkCard()Synchronous

Mode

authorizeXyz(),
checkCard()

release()

close()

Async Mode

Closed Opened Claimed

EnabledLogging
Processing

Clear Output
Processing

Done delivering event

Method processing

ErrorEvent
Processing

OutputCompleteEvent
Processing

137 Properties (UML attributes)
Properties (UML attributes)
AccountNumber Property

Syntax AccountNumber: string { read-only, access after open }

Remarks This property is initialized to NULL by the open method and is updated when an
authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

AdditionalSecurityInformation Property

Syntax AdditionalSecurityInformation: string { read-write, access after open }

Remarks An application can send data to the CAT device by setting this property before
issuing an authorization method. Also, data obtained from the CAT device and not
stored in any other property as the result of an authorization operation (for
example, the account code for a loyalty program) can be provided to an application
by storing it in this property. Since the data stored here is device specific, this
should not be used for any development that requires portability.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CapAdditionalSecurityInformation Property.

ApprovalCode Property

Syntax ApprovalCode: string { read-only, access after open }

Remarks This property is initialized to NULL by the open method and is updated when an
authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, the authorization methods will run asynchronously.

If false, the authorization methods will run synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also Authorization Methods.

138
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
CapAdditionalSecurityInformation Property

Syntax CapAdditionalSecurityInformation: boolean { read-only, access after open }

Remarks If true, the AdditionalSecurityInformation property may be utilized; otherwise
it is false.

This property is initialized by open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also AdditionalSecurityInformation Property.

CapAuthorizeCompletion Property

Syntax CapAuthorizeCompletion: boolean { read-only, access after open }

Remarks If true, the authorizeCompletion method has been implemented; otherwise it is
false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also authorizeCompletion Method.

CapAuthorizePreSales Property

Syntax CapAuthorizePreSales: boolean { read-only, access after open }

Remarks If true, the authorizePreSales method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also authorizePreSales Method.

CapAuthorizeRefund Property

Syntax CapAuthorizeRefund: boolean { read-only, access after open }

Remarks If true, the authorizeRefund method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also authorizeRefund Method.

139 Properties (UML attributes)
CapAuthorizeVoid Property

Syntax CapAuthorizeVoid: boolean { read-only, access after open }

Remarks If true, the authorizeVoid method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also authorizeVoid Method.

CapAuthorizeVoidPreSales Property

Syntax CapAuthorizeVoidPreSales: boolean { read-only, access after open }

Remarks If true, the authorizeVoidPreSales method has been implemented; otherwise it is
false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also authorizeVoidPreSales Method.

CapCenterResultCode Property

Syntax CapCenterResultCode: boolean { read-only, access after open }

Remarks If true, the CenterResultCode property has been implemented; otherwise it is
false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CenterResultCode Property.

CapCheckCard Property

Syntax CapCheckCard: boolean { read-only, access after open }

Remarks If true, the checkCard method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also checkCard Method.

140
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
CapDailyLog Property

Syntax CapDailyLog: int32 { read-only, access after open }

Remarks Shows the daily log ability of the device.

Value Meaning

CAT_DL_NONE The CAT device does not have the daily log functions.

CAT_DL_REPORTING The CAT device only has an intermediate total function
which reads the daily log but does not erase the log.

CAT_DL_SETTLEMENT The CAT device only has the “final total” and “erase
daily log” functions.

CAT_DL_REPORTING_SETTLEMENT
The CAT device has both the intermediate total function
and the final total and erase daily log function.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also DailyLog Property, accessDailyLog Method.

CapInstallments Property

Syntax CapInstallments: boolean { read-only, access after open }

Remarks If true, the item “Installments” which is stored in the DailyLog property as the
result of accessDailyLog will be provided; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also DailyLog Property.

CapPaymentDetail Property

Syntax CapPaymentDetail: boolean { read-only, access after open }

Remarks If true, the PaymentDetail property has been implemented; otherwise it is false.

This property is initialized by open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also PaymentDetail Property.

141 Properties (UML attributes)
CapTaxOthers Property

Syntax CapTaxOthers: boolean { read-only, access after open }

Remarks If true, the item “TaxOthers” which is stored in the DailyLog property as the result
of access DailyLog will be provided; otherwise it is false.

Note that this property is not related to the “TaxOthers” argument used with the
authorization methods.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also DailyLog Property.

CapTransactionNumber Property

Syntax CapTransactionNumber: boolean { read-only, access after open }

Remarks If true, the TransactionNumber property has been implemented; otherwise it is
false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also TransactionNumber Property.

CapTrainingMode Property

Syntax CapTrainingMode: boolean { read-only, access after open }

Remarks If true, the TrainingMode property has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also TrainingMode Property.

CardCompanyID Property

Syntax CardCompanyID: string { read-only, access after open }

Remarks This property is updated when an authorization operation successfully completes.
It shows credit card company ID.

The length of the ID string varies depending upon the CAT device.

This property is initialized to NULL by the open method

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

142
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
CenterResultCode Property

Syntax CenterResultCode: string { read-only, access after open }

Remarks Contains the code from the approval agency. Check the approval agency for the
actual codes to be stored.

This property is initialized to NULL by the open method and is updated when an
authorization operation successfully completes

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

DailyLog Property

Syntax DailyLog: string { read-only, access after open }

Remarks Stores the result of the accessDailyLog method. The data is delimited by
CR(13)+LF(10) for each transaction and is stored in ASCII code. The detailed data
of each transaction is comma separated [i.e. delimited by “,” (44)].

The details of one transaction are shown as follows:

No Item Property Corresponding Cap Property

1 Card company ID CardCompanyID None

2 Transaction type TransactionType None

3 Transaction date

Note 1)

None None

4 Transaction number

Note 3)

TransactionNumber CapTransactionNumber

5 Payment condition PaymentCondition None

6 Slip number SlipNumber None

7 Approval code ApprovalCode None

8 Purchase date

Note 5)

None None

9 Account number AccountNumber None

10 Amount

Note 4)

The argument Amount of the
authorization method or the
amount actually approved.

None

11 Tax/others

Note 3)

The argument TaxOthers of the
authorization method.

CapTaxOthers

12 Installments

Note 3)

None CapInstallments

13 Additional data

Note 2)

AdditionalSecurityInformation CapAdditionalSecurityInfor-
mation

143 Properties (UML attributes)
Notes from the previous table:

1) Format

Some CAT devices may not support seconds by the internal clock. In that
case, the seconds field of the transaction date is filled with “00”

2) Additional data

The area where the CAT device stores the vendor specific data. This enables
an application to receive data other than that defined in this specification. The
data stored here is vendor specific and should not be used for development
which places an importance on portability.

3) If the corresponding Cap property is false

Cap property is set to false if the CAT device provides no corresponding data.
In such instances, the item can't be displayed so the next comma delimiter
immediately follows. For example, if “Amount” is 1234 yen and “Tax/others”
is missing and “Installments” is 2, the description will be “1234,,2”. This
makes the description independent of Cap property and makes the position of
each data item consistent.

4) Amount

Amount always includes “Tax/others” even if item 11 is present.

5) Purchase date

The date manually entered for the purchase transaction after approval.

Item Format

Transaction date YYYYMMDDHHMMSS

Purchase date MMDD

144
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
Example An example of daily log content is shown below.

The actual data stored in DailyLog will be as follows:

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CapDailyLog Property, accessDailyLog Method.

Item Description Meaning

Card company ID 102 JCB

Transaction type CAT_TRANSACTION_S
ALES

Purchase

Transaction date 19980116134530 1/16/199813:45:30

Transaction number 123456 123456

Payment condition CAT_PAYMENT_INSTA
LLMENT_1

Installment 1

Slip number 12345 12345

Approval code 0123456 0123456

Purchase date None None

Account number 1234123412341234 1234-1234-1234-1234

Amount 12345 12345JPY

Tax/others None None

Number of

payments

2 2

Additional data 12345678 Specific information

102,10,19980116134530,123456,61,12345,0123456,,12341234123
41234,12345,,2,12345678[CR][LF]

145 Properties (UML attributes)
PaymentCondition Property

Syntax PaymentCondition: int32 { read-only, access after open }

Remarks Holds the payment condition of the most recent successful authorization
operation.

This property will be set to one of the following values. See PaymentDetail for the
detailed payment string that correlates to the following PaymentCondition values.

Value Meaning

CAT_PAYMENT_LUMP Lump-sum

CAT_PAYMENT_BONUS_1 Bonus 1

CAT_PAYMENT_BONUS_2 Bonus 2

CAT_PAYMENT_BONUS_3 Bonus 3

CAT_PAYMENT_BONUS_4 Bonus 4

CAT_PAYMENT_BONUS_5 Bonus 5

CAT_PAYMENT_INSTALLMENT_1 Installment 1

CAT_PAYMENT_INSTALLMENT_2 Installment 2

CAT_PAYMENT_INSTALLMENT_3 Installment 3

CAT_PAYMENT_BONUS_COMBINATION_1
Bonus combination payments 1

CAT_PAYMENT_BONUS_COMBINATION_2
Bonus combination payments 2

CAT_PAYMENT_BONUS_COMBINATION_3
Bonus combination payments 3

CAT_PAYMENT_BONUS_COMBINATION_4
Bonus combination payments 4

CAT_PAYMENT_ REVOLVING Revolving

CAT_PAYMENT_DEBIT Debit card

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also PaymentDetail Property.

146
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
PaymentDetail Property

Syntax PaymentDetail: string { read-only, access after open }

Remarks Contains payment condition details as the result of an authorization operation.
Payment details vary depending on the value of PaymentCondition. The data will
be stored as comma separated ASCII code. NULL means that no data is stored and
represents a string with zero length data.

*Maximum 6 installments

PaymentCondition PaymentDetail

CAT_PAYMENT_LUMP NULL

CAT_PAYMENT_BONUS_1 NULL

CAT_PAYMENT_BONUS_2 Number of bonus payments

CAT_PAYMENT_BONUS_3 1st bonus month

CAT_PAYMENT_BONUS_4* Number of bonus payments, 1st bonus month, 2nd bo-
nus month, 3rd bonus month, 4th bonus month, 5th bo-
nus month, 6th bonus month

CAT_PAYMENT_BONUS_5* Number of bonus payments, 1st bonus month, 1st bo-
nus amount, 2nd bonus month, 2nd bonus amount, 3rd
bonus month, 3rd bonus amount, 4th bonus month, 4th
bonus amount, 5th bonus month, 5th bonus amount, 6th
bonus month, 6th bonus amount

CAT_PAYMENT_INSTALLMENT_1 1st billing month, Number of payments

CAT_PAYMENT_INSTALLMENT_2* 1st billing month, Number of payments, 1st amount,
2nd amount, 3rd amount, 4th amount, 5th amount, 6th
amount

CAT_PAYMENT_INSTALLMENT_3 1st billing month, Number of payments, 1st amount

CAT_PAYMENT_BONUS_COMBINATION_1 1st billing month, Number of payments

CAT_PAYMENT_BONUS_COMBINATION_2 1st billing month, Number of payments, bonus amount

CAT_PAYMENT_BONUS_COMBINATION_3* 1st billing month, Number of payments, number of bo-
nus payments, 1st bonus month, 2nd bonus month, 3rd
bonus month, 4th bonus month, 5th bonus month, 6th
bonus month

CAT_PAYMENT_BONUS_COMBINATION_4* 1st billing month, Number of payments, number of bo-
nus payments, 1st bonus month, 1st bonus amount, 2nd
bonus month, 2nd bonus amount, 3rd bonus month, 3rd
bonus amount, 4th bonus month, 4th bonus amount, 5th
bonus month, 5th bonus amount, 6th bonus month, 6th
bonus amount

CAT_PAYMENT_REVOLVING NULL

CAT_PAYMENT_DEBIT NULL

147 Properties (UML attributes)
The payment types and names vary depending on the CAT device. The following
are the payment types and terms available for CAT devices. Note that there are
some differences between UnifiedPOS terms and those used by the CAT devices.
The goal of this table is to synchronize these terms.

G
en

er
al

 P
ay

m
en

t C
at

eg
or

y

E
nt

ry
 it

em

Pa
ym

en
tC

on
di

ti
on

 V
al

ue

CAT
Name

CAT
(Old CAT)

G-CAT JET-S SG-CAT Master-T

Credit
Card

Not
specified

Not
specified

JCB VISA MASTER

Unified
OPOS
Term

Card Company Terms

Lump-
sum

(None) 10 Lump-sum Lump-sum Lump-sum Lump-sum Lump-sum Lump-sum

Bonus (None) 21 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1

Number of
bonus
payments

22 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2

Bonus
month(s)

23 Bonus 3 Bonus 3 Does not ex-
ist.

Does not ex-
ist.

Bonus 3 Bonus 3

Number of
bonus
payments

Bonus
month (1)

Bonus
month (2)

Bonus
month (3)

Bonus
month (4)

Bonus
month (5)

Bonus
month (6)

24 Bonus 4 Bonus 4 Bonus 3 Bonus 3 Bonus 4
(Up to two
entries for
bonus
month)

Bonus 4

148
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
Number of
bonus
payments

Bonus
month (1)

Bonus
amount
(1)

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

25 Bonus 5 Bonus 5 Does not
 exist.

Does not
 exist.

Does not
 exist.

Bonus 5

Installm
ent

Payment
start
month

Number of
payments

61 Installment 1 Installment 1 Installment 1 Installment 1 Installment 1 Installment 1

149 Properties (UML attributes)
Payment
start
month

Number of
payments

Install-
ment
amount(1)

Install-
ment
amount(2)

Install-
ment
amount(3)

Install-
ment
amount(4)

Install-
ment
amount(5)

Install-
ment
amount(6)

62 Installment 2 Installment 2 Does not
 exist.

Does not
 exist.

Does not
 exist.

Does not
 exist.

Payment
start
month

Number of
payments

Initial
amount

63 Installment 3 Installment 3 Installment 2 Installment 2 Does not
 exist.

Installment 2

Combi-
nation

Payment
start
month

Number of
payments

31 Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Payment
start
month

Number of
payments

Bonus
amount

32 Bonus Com-
bination 2

Bonus Com-
bination 2

Does not
 exist.

Does not
 exist.

Bonus Com-
bination 2

Bonus Com-
bination 2

150
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
month (2)

Bonus
month (3)

Bonus
month (4)

Bonus
month (5)

Bonus
month (6)

33 Bonus Com-
bination 3

Bonus Com-
bination 3

Does not
 exist.

Does not
 exist.

Bonus Com-
bination 3
(Up to two
entries for
bonus
month)

Bonus Com-
bination 3

151 Properties (UML attributes)
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CapPaymentDetail Property.

Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
amount(1)

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

34 Bonus Com-
bination 4

Bonus Com-
bination 4

Bonus Com-
bination 2

Bonus Com-
bination 2

Bonus Com-
bination 4
(Up to two
entries for
bonus month
and amount)

Bonus Com-
bination 4

Revolvi
ng

(None) 80 Revolving Revolving Revolving Revolving Revolving Revolving

Debit (None) 110 Debit (Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

152
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
PaymentMedia Property Added in Release 1.5

Syntax PaymentMedia: int32 { read-write, access after open }

Remarks Holds the payment media type that the approval method should approve.

The application sets this property to one of the following values before issuing an
approval method call. “None specified” means that payment media will be
determined by the CAT device, not by the POS application.

Value Meaning

CAT_MEDIA_UNSPECIFIED None specified.

CAT_MEDIA_CREDIT Credit card.

CAT_MEDIA_DEBIT Debit card.

This property is initialized to CAT_MEDIA_UNSPECIFIED by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

SequenceNumber Property

Syntax SequenceNumber: int32 { read-only, access after open }

Remarks Stores a “sequence number” as the result of each method call. This number needs
to be checked by an application to see if it matches with the argument
sequenceNumber of the originating method.

If the “sequence number” returned from the CAT device is not numeric, the CAT
control set this property to zero.

This property is initialized to zero by the open method and is updated when an
authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

SlipNumber Property

Syntax SlipNumber: int32 { read-only, access after open }

Remarks Stores a “slip number” as the result of each authorization operation.

This property is initialized to NULL by the open method and is updated when an
authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

153 Properties (UML attributes)
TrainingMode Property

Syntax TrainingMode: boolean { read-write, access after open }

Remarks If true, each operation will be run in training mode; otherwise each operation will
be run in normal mode.

TrainingMode needs to be explicitly set to false by an application to exit from
training mode, because it will not automatically be set to false after the completion
of an operation.

This property will be initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL CapTrainingMode is false.

TransactionNumber Property

Syntax TransactionNumber: string { read-only, access after open }

Remarks Stores a “transaction number” as the result of each authorization operation.

This property is initialized to NULL by the open method and is updated when an
authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

TransactionType Property

Syntax TransactionType: int32 { read-only, access after open }

Remarks Stores a “transaction type” as the result of each authorization operation.

This property is initialized to zero by the open method and is updated when an
authorization operation successfully completes.

This property will be set to one of the following values.

Value Meaning

CAT_TRANSACTION_SALES Sales
CAT_TRANSACTION_VOID Cancellation
CAT_TRANSACTION_REFUND Refund purchase
CAT_TRANSACTION_COMPLETION Purchase after approval
CAT_TRANSACTION_PRESALES Pre-authorization
CAT_TRANSACTION_VOIDPRESALES Cancel pre-authorization approval

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

154
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
Methods (UML operations)
accessDailyLog Method

Syntax accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber The sequence number to get daily log.

type Specify whether the daily log is intermediate total or
final total and erase.

timeout The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Gets daily log from CAT.

Daily log will be retrieved and stored in DailyLog as specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Application must specify one of the following values for type for daily log type
(either intermediate total or adjustment). Legal values depend upon the
CapDailyLog value.

Value Meaning

CAT_DL_REPORTING Intermediate total.

CAT_DL_SETTLEMENT Final total and erase.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E_ILLEGAL Invalid or unsupported type or timeout parameter was
specified, or CapDailyLog is false.

E_TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapDailyLog Property, DailyLog Property.

155 Methods (UML operations)
authorizeCompletion Method

Syntax authorizeCompletion (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Purchase after approval is intended.

Sales after approval for amount and taxOthers is intended as the approval specified
by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E_ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeCompletion is false.

E_TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeCompletion Property.

156
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
authorizePreSales Method

Syntax authorizePreSales (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Makes a pre-authorization.

Pre-authorization for amount and taxOthers is made as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E_ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizePreSales is false.

E_TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizePreSales Property.

157 Methods (UML operations)
authorizeRefund Method

Syntax authorizeRefund (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Refund purchase approval is intended.

Refund purchase approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E_ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeRefund is false.

E_TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeRefund Property.

158
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
authorizeSales Method

Syntax authorizeSales (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Normal purchase approval is intended.

Normal purchase approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

 Some possible values of the exception's ErrorCode property are:

Value Meaning

E_ILLEGAL Invalid timeout parameter was specified.

E_TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

159 Methods (UML operations)
authorizeVoid Method

Syntax authorizeVoid (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Purchase cancellation approval is intended.

Cancellation approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E_ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeVoid is false.

E_TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeVoid Property.

160
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
authorizeVoidPreSales Method

Syntax authorizeVoidPreSales (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Pre-authorization cancellation approval is intended.

Pre-authorization cancellation approval for amount and taxOthers is intended as
the approval specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Normal cancellation could be used for CAT control and CAT devices which have
not implemented the pre-authorization approval cancellation. Refer to the
documentation supplied with CAT device and / or CAT control.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E_ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeVoidPreSales is false.

E_TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeVoidPreSales Property.

161 Methods (UML operations)
checkCard Method

Syntax checkCard (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

timeout The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Card Check is intended.

Card Check will be made as specified by SequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E_ILLEGAL Invalid timeout parameter was specified, or
CapCheckCard is false.

E_TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapCheckCard Property.

162
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
Events (UML interfaces)

DirectIOEvent

<<event>> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific CAT Service to provide events to the application that
are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This attribute is settable.

Obj object Additional data whose usage varies by the EventNumber
and the Service. This attribute is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s CAT devices which may not have any
knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method

ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-only }

Description Notifies the application that a CAT error has been detected and suitable response
by the application is necessary to process the error condition.

163 Events (UML interfaces)
Attributes This event contains the following properties:

Attributes Type Description

ErrorCode int32 The code which caused the error event. Remarks
ErrorCode for the value below for the value.

ErrorCodeExtended int32 The extended code which caused the error event.
Remarks the value below for the value.

ErrorLocus int32 EL_OUTPUT is specified. An error occurred during
asynchronous action.

ErrorResponse int32 Pointer to the error event response. See values below.

If ErrorCode is E_EXTENDED, ErrorCodeExtended will be set to one of the
following values:

Value Meaning

ECAT_CENTERERROR

An error was returned from the approval agency. The
detail error code is defined in CenterResultCode.

ECAT_COMMANDERROR
The command sent to CAT is wrong. This error is never
returned so long as CAT control is working correctly.

ECAT_RESET CAT was stopped during processing by CAT reset key
(stop key) and so on.

ECAT_COMMUNICATIONERROR
Communication error has occurred between the
approval agency and CAT.

ECAT_DAILYLOGOVERFLOW
Daily log was too big to be stored. Keeping daily log has
been stopped and the value of DailyLog property is
uncertain.

The content of the position specified by ErrorResponse will be preset to the default
value of ER_RETRY. An application sets one of the following values.

Value Meaning

ER_RETRY Retries the asynchronous processing. The error state is
exited.

ER_CLEAR Clear the asynchronous processing. The error state is
exited.

Remarks Fired when an error is detected while processing an asynchronous authorize group
method or the accessDailyLog method. The control’s State transitions into the
error state.

See Also “Device Output Models” on page 21, Device States on page 26.

164
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
OutputCompleteEvent

<<event>> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the
OutputID attribute has completed successfully.

Attribute This event contains the following attribute:

Attribute Type Description

OutputID int32 The ID number of the asynchronous output request that
is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service
has confirmation that is was processed by the device successfully.

See Also “Device Output Models” on page 21.

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the CAT
device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the power status of the unit.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on page 56.

Remarks Enqueued when the CAT device detects a power state change.

See Also “Events” on page 15.

C H A P T E R 6

Coin Dispenser

This Chapter defines the Coin Dispenser device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 Not Supported

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.2 Not Supported

DataEventEnabled: boolean { read-write } 1.0 Not Supported

DeviceEnabled: boolean { read-write } 1.0 open & claim

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 Not Supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open

166
UnifiedPOS Retail Peripheral Architecture Chapter 6

Coin Dispenser

Properties (Continued)

Specific Type Mutability Version May Use After

CapEmptySensor: boolean { read-only } 1.0 open

CapJamSensor: boolean { read-only } 1.0 open

CapNearEmptySensor: boolean { read-only } 1.0 open

DispenserStatus: int32 { read-only } 1.0 open, claim, & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { }

Not
supported

clearOutput ():
void { }

Not
supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

Specific

Name

dispenseChange (amount: int32):
void { raises exception, use after open, claim, enable }

1.0

167 Summary
Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not Supported

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not Supported

upos::events::OutputCompleteEvent Not Supported

upos::events::StatusUpdateEvent

 Status: int32 { read-only } 1.0

168
UnifiedPOS Retail Peripheral Architecture Chapter 6

Coin Dispenser
General Information

The Coin Dispenser programmatic name is “CoinDispenser”.

Capabilities

The coin dispenser has the following capability:

• Supports a method that allows a specified amount of change to be dispensed
from the device.

The coin dispenser may have the following additional capability:

• Status reporting, which indicates empty coin slot conditions, near empty coin
slot conditions, and coin slot jamming conditions.

169 General Information
Coin Dispenser Class Diagram

The following diagram shows the relationships between the Coin Dispenser
classes.

UposException
(from upos)

<<exception>>

UposConst
(from upos)

<<utility>>

CoinDispenserConst
(from upos)

<<utility>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

CoinDispenserControl

<<capabili ty >> CapEmptySensor : boolean
<<capabili ty >> CapJamSensor : boolean
<<capabili ty >> CapNearEmptySensor : boolean
<<capabili ty >> DispenserStatus : int32

dispenseChange(amount : int32) : void

(from upos)

<<Interface>>

<<sends>>

<<uses>>

f ires

fires

BaseControl
(from upos)

<<Interface>> <<uses>>

<<sends>>

170
UnifiedPOS Retail Peripheral Architecture Chapter 6

Coin Dispenser
Model

The general model of a coin dispenser is:

• Consists of a number of coin slots which hold the coinage to be dispensed. The
application using the Coin Dispenser Service is not concerned with
controlling the individual slots of coinage, but rather calls a method with the
amount of change to be dispensed. It is the responsibility of the coin dispenser
device or the Service to dispense the proper amount of change from the
various slots.

Device Sharing

The coin dispenser is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some of the
properties, dispensing change, or receiving status update events.

• See the “Summary” table for precise usage prerequisites.

171 Properties (UML attributes)
Properties (UML attributes)
CapEmptySensor Property

Syntax CapEmptySensor: boolean { read-only, access after open }

Remarks If true, the coin dispenser can report an out-of-coinage condition.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapJamSensor Property

Syntax CapJamSensor: boolean { read-only, access after open }

Remarks If true, the coin dispenser can report a mechanical jam or failure condition.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapNearEmptySensor Property

Syntax CapNearEmptySensor: boolean { read-only, access after open }

Remarks If true, the coin dispenser can report when it is almost out of coinage.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

DispenserStatus Property

Syntax DispenserStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current status of the dispenser. It has one of the following values:

Value Meaning

COIN_STATUS_OK Ready to dispense coinage. This value is also set when
the dispenser is unable to detect an error condition.

COIN_STATUS_EMPTY
Cannot dispense coinage because the dispenser is
empty.

COIN_STATUS_NEAREMPTY
Can still dispense coinage, but the dispenser is nearly
empty.

COIN_STATUS_JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

172
UnifiedPOS Retail Peripheral Architecture Chapter 6

Coin Dispenser
Methods (UML operations)

dispenseChange Method

Syntax dispenseChange (amount: int32):
 void { raises exception, use after open-claim-enable }

The amount parameter contains the amount of change to be dispensed.

Remarks Dispenses change. The value represented by the amount parameter is a count of
the currency units to dispense (such as cents or yen).

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An amount parameter value of zero was specified, or the
amount parameter contained a negative value or a value
greater than the device can dispense.

173 Events (UML interfaces)
Events (UML interfaces)

DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific Coin Dispenser Service to provide events to the
application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Coin Dispenser devices which may not have
any knowledge of the Device Service’s need for this event.

See Also “Events” on page 15, directIO Method.

174
UnifiedPOS Retail Peripheral Architecture Chapter 6

Coin Dispenser
StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application of a sensor status change.

Attributes This event contains the following attribute:

Attribute Type Description

Status int32 The status reported from the Coin Dispenser.

The Status attribute has one of the following values:

Value Meaning

COIN_STATUS_OK Ready to dispense coinage. This value is also set when
the dispenser is unable to detect an error condition.

COIN_STATUS_EMPTY
Cannot dispense coinage because the dispenser is
empty.

COIN_STATUS_NEAREMPTY
Can still dispense coinage, but the dispenser is nearly
empty.

COIN_STATUS_JAM A mechanical fault has occurred.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on page 56.

Remarks This event applies for status changes of the sensor types supported, as indicated by
the capability properties. It also applies if Power State Reporting is enabled.

See Also “Events” on page 15.

C H A P T E R 7

Fiscal Printer

This Chapter defines the Fiscal Printer device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.3 Not Supported

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.3 open

Claimed: boolean { read-only } 1.3 open

DataCount: int32 { read-only } 1.3 Not Supported

DataEventEnabled: boolean { read-write } 1.3 Not Supported

DeviceEnabled: boolean { read-write } 1.3 open & claim

FreezeEvents: boolean { read-write } 1.3 open

OutputID: int32 { read-only } 1.3 open

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.3 --

DeviceControlDescription: string { read-only } 1.3 --

DeviceControlVersion: int32 { read-only } 1.3 --

DeviceServiceDescription: string { read-only } 1.3 open

DeviceServiceVersion: int32 { read-only } 1.3 open

PhysicalDeviceDescription: string { read-only } 1.3 open

PhysicalDeviceName: string { read-only } 1.3 open

176
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
Properties (Continued)

Specific Type Mutability Version May Use After

CapAdditionalHeader:

CapAdditionalLines:

CapAdditionalTrailer:

CapAmountAdjustment:

CapAmountNotPaid:

CapChangeDue:

CapCheckTotal:

CapCoverSensor: (1)

CapDoubleWidth:

CapDuplicateReceipt:

CapEmptyReceiptIsVoidable:

CapFiscalReceiptStation:

CapFiscalReceiptType:

CapFixedOutput:

CapHasVatTable:

CapIndependentHeader:

CapItemList:

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

1.6

1.3

1.6

1.3

1.3

1.6

1.3

1.3

1.3

1.3

1.6

1.6

1.6

1.3

1.3

1.3

1.3

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

CapJrnEmptySensor: (1)

CapJrnNearEndSensor: (1)

CapJrnPresent: (1)

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

1.3

1.3

1.3

open

open

open

CapMultiContractor:

CapNonFiscalMode:

CapOnlyVoidLastItem:

CapOrderAdjustmentFirst:

CapPackageAdjustment:

CapPercentAdjustment:

CapPositiveAdjustment:

CapPostPreLine:

CapPowerLossReport:

CapPredefinedPaymentLines:

CapReceiptNotPaid:

boolean
boolean
boolean
boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

1.6

1.3

1.6

1.3

1.6

1.3

1.3

1.6

1.3

1.3

1.3

open

open

open

open

open

open

open

open

open

open

open

CapRecEmptySensor: (1)

CapRecNearEndSensor: (1)

CapRecPresent: (1)

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

1.3

1.3

1.3

open

open

open

177 Summary
Properties (Continued)

Specific (continued) Type Mutability Version May Use After

CapRemainingFiscalMemory:

CapReservedWord:

CapSetCurrency:

CapSetHeader:

CapSetPOSID:

CapSetStoreFiscalID:

CapSetTrailer:

CapSetVatTable:

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

1.3

1.3

1.6

1.3

1.3

1.3

1.3

1.3

open

open

open

open

open

open

open

open

CapSlpEmptySensor: (1)

CapSlpFiscalDocument:

 CapSlpFullSlip: (1)

CapSlpNearEndSensor: (1)

CapSlpPresent: (1)

CapSlpValidation:

CapSubAmountAdjustment:

CapSubPercentAdjustment:

CapSubtotal:

CapTotalizerType:

CapTrainingMode:

CapValidateJournal:

CapXReport:

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.6

1.3

1.3

1.3

open

open

open

open

open

open

open

open

open

open

open

open

open

ActualCurrency:

AdditionalHeader:

AdditionalTrailer:

AmountDecimalPlaces:

AsyncMode:

ChangeDue:

CheckTotal:

ContractorId:

CountryCode:

CoverOpen: (1)

DateType:

DayOpened:

DescriptionLength:

DuplicateReceipt:

ErrorLevel:

int32

string

string

int32

boolean

string

boolean

int32

int32

boolean

int32

boolean

int32

boolean

int32

{ read-only }

{ read-write }

{ read-write }

{ read-only }

{ read-write }

{ read-write }

{ read-write }

{ read-write }

{ read-only }

{ read-only }

{ read-write }

{ read-only }

{ read-only }

{ read-write }

{ read-only }

1.6

1.6

1.6

1.3

1.3

1.6

1.3

1.6

1.3

1.3

1.6

1.3

1.3

1.3

1.3

open, claim, & enable

open, claim, & enable

open, claim, & enable

open, claim, & enable

open

open

open

open, claim, & enable

open, claim, & enable

open, claim, & enable

open, claim, & enable

open, claim, & enable

open

open

open

178
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
Properties (Continued)

Specific (continued) Type Mutability Version May Use After

ErrorOutID: int32 { read-only } 1.3 open, claim, & enable

ErrorState: int32 { read-only } 1.3 open

ErrorStation: int32 { read-only } 1.3 open

ErrorString: string { read-only } 1.3 open

FiscalReceiptStation: int32 { read-write } 1.6 open, claim, & enable

FiscalReceiptType: int32 { read-write } 1.6 open, claim, & enable

FlagWhenIdle: (1) boolean { read-write } 1.3 open

JrnEmpty: boolean { read-only } 1.3 open, claim, & enable

JrnNearEnd: boolean { read-only } 1.3 open, claim, & enable

MessageLength:

MessageType:

int32

int32

{ read-only }

{ read-write }

1.3

1.6

open

open

NumHeaderLines: int32 { read-only } 1.3 open

NumTrailerLines: int32 { read-only } 1.3 open

NumVatRates: int32 { read-only } 1.3 open

PostLine: string { read-write } 1.6 open, claim, & enable

PredefinedPaymentLines: string { read-only } 1.3 open

PreLine: string { read-write } 1.6 open, claim, & enable

PrinterState: int32 { read-only } 1.3 open, claim, & enable

QuantityDecimalPlaces: int32 { read-only } 1.3 open, claim, & enable

QuantityLength: int32 { read-only } 1.3 open, claim, & enable

RecEmpty: (1) boolean { read-only } 1.3 open, claim, & enable

RecNearEnd: (1) boolean { read-only } 1.3 open, claim, & enable

RemainingFiscalMemory: int32 { read-only } 1.3 open, claim, & enable

ReservedWord: string { read-only } 1.3 open

SlpEmpty: (1) boolean { read-only } 1.3 open, claim, & enable

SlpNearEnd: (1) boolean { read-only } 1.3 open, claim, & enable

SlipSelection: int32 { read-write } 1.3 open, claim, & enable

TotalizerType: int32 { read-write } 1.6 open, claim, & enable

TrainingModeActive: boolean { read-only } 1.3 open, claim, & enable

179 Summary
Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.3

close ():
void { raises-exception, use after open }

1.3

claim (timeout: int32):
void { raises-exception, use after open }

1.3

release ():
void { raises-exception, use after open, claim }

1.3

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.3

clearInput ():
void { }

Not
supported

clearOutput ():
void { raises-exception, use after open, claim }

1.3

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.3

Specific - Presetting Fiscal

setCurrency (newCurrency: int32):
void { raises exception, use after open, claim, enable }

1.6

setDate (date: string):
void { raises exception, use after open, claim, enable }

1.3

setHeaderLine (lineNumber: int32, text: string, doubleWidth: boolean):
void { raises exception, use after open, claim, enable }

1.3

setPOSID (POSID: string, cashierID: string):
void { raises exception, use after open, claim, enable }

1.3

setStoreFiscalID (ID: string):
void { raises exception, use after open, claim, enable }

1.3

setTrailerLine (lineNumber: int32, text: string, doubleWidth: boolean):
void { raises exception, use after open, claim, enable }

1.3

setVatTable ():
void { raises exception, use after open, claim, enable }

1.3

setVatValue (vatID: int32, vatValue: string):
void { raises exception, use after open, claim, enable }

1.3

Specific - Fiscal Receipt

beginFiscalReceipt (printHeader: boolean):
void { raises exception, use after open, claim, enable }

1.3

endFiscalReceipt (printHeader: boolean):
void { raises exception, use after open, claim, enable }

1.3

printDuplicateReceipt ():
void { raises exception, use after open, claim, enable }

1.3

180
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
printRecCash (amount: currency):
void { raises exception, use after open, claim, enable }

1.6

printRecItem (description: string, price: currency, quantity: int32,
vatInfo: int32, unitPrice: currency, unitName: string):
void { raises exception, use after open, claim, enable }

1.3

printRecItemAdjustment (adjustmentType: int32, description: string,
amount: currency, vatInfo: int32):
void { raises exception, use after open, claim, enable }

1.3

printRecItemFuel (description: string, price: currency, quantity: int32,
vatInfo: int32, unitPrice: currency, unitName: string,
specialTax: currency, specialTaxName: string):
void { raises exception, use after open, claim, enable }

1.6

printRecItemFuelVoid (description: string, price: currency, vatInfo: int32,
specialTax: currency):
void { raises exception, use after open, claim, enable }

1.6

printRecMessage (message: string):
void { raises exception, use after open, claim, enable }

1.3

printRecNotPaid (description: string, amount: currency):
void { raises exception, use after open, claim, enable }

1.3

printRecPackageAdjustment (adjustmentType: int32, description: string,
vatAdjustment: string):
void { raises exception, use after open, claim, enable }

1.6

printRecPackageAdjustVoid (adjustmentType: int32,
vatAdjustment: string):
void { raises exception, use after open, claim, enable }

1.6

printRecRefund (description: string, amount: currency, vatInfo: int32):
void { raises exception, use after open, claim, enable }

1.3

printRecRefundVoid (description: string, amount: currency, vatInfo: int32):
void { raises exception, use after open, claim, enable }

1.6

printRecSubtotal (amount: currency):
void { raises exception, use after open, claim, enable }

1.3

printRecSubtotalAdjustment (adjustmentType: int32, description: string,
amount: currency):
void { raises exception, use after open, claim, enable }

1.3

printRecSubtotalAdjustVoid (adjustmentType: int32, amount: currency):
void { raises exception, use after open, claim, enable }

1.6

printRecTaxID (taxId: string):
void { raises exception, use after open, claim, enable }

1.6

printRecTotal (total: currency, payment: currency, description: string):
void { raises exception, use after open, claim, enable }

1.3

printRecVoid (description: string):
void { raises exception, use after open, claim, enable }

1.3

printRecVoidItem (description: string, amount: currency, quantity: int32,
adjustmentType: int32, adjustment: currency, vatInfo: int32):
void { raises exception, use after open, claim, enable }

1.3

181 Summary
Specific - Fiscal Document

beginFiscalDocument (documentAmount: int32):
void { raises exception, use after open, claim, enable }

1.3

endFiscalDocument ():
void { raises exception, use after open, claim, enable }

1.3

printFiscalDocumentLine (documentLine: string):
void { raises exception, use after open, claim, enable }

1.3

Specific - Item Lists

beginItemList (vatID: int32):
void { raises exception, use after open, claim, enable }

1.3

endItemList ():
void { raises exception, use after open, claim, enable }

1.3

verifyItem (itemName: string, vatID: int32):
void { raises exception, use after open, claim, enable }

1.3

Specific - Fiscal Reports

printPeriodicTotalsReport (date1: string, date2: string):
void { raises exception, use after open, claim, enable }

1.3

printPowerLossReport ():
void { raises exception, use after open, claim, enable }

1.3

printReport (reportType: int32, startNum: string, endNum: string):
void { raises exception, use after open, claim, enable }

1.3

printXReport ():
void { raises exception, use after open, claim, enable }

1.3

printZReport ():
void { raises exception, use after open, claim, enable }

1.3

Specific - Slip Insertion

beginInsertion (timeout: int32):
void { raises exception, use after open, claim, enable } (1)

1.3

beginRemoval (timeout: int32):
void { raises exception, use after open, claim, enable } (1)

1.3

endInsertion ():
void { raises exception, use after open, claim, enable } (1)

1.3

endRemoval ():
void { raises exception, use after open, claim, enable } (1)

1.3

182
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
Specific - Non-Fiscal

beginFixedOutput (station: int32, documentType: int32):
void { raises exception, use after open, claim, enable }

1.3

beginNonFiscal ():
void { raises exception, use after open, claim, enable }

1.3

beginTraining ():
void { raises exception, use after open, claim, enable }

1.3

endFixedOutput ():
void { raises exception, use after open, claim, enable }

1.3

endNonFiscal ():
void { raises exception, use after open, claim, enable }

1.3

endTraining ():
void { raises exception, use after open, claim, enable }

1.3

printFixedOutput (documentType: int32, lineNumber: int32, data: string):
void { raises exception, use after open, claim, enable }

1.3

printNormal (station: int32, data: string):
void { raises exception, use after open, claim, enable } (1)

1.3

Specific - Data Requests

getData (dataItem: int32, inout optArgs: int32, inout data: string):
void { raises exception, use after open, claim, enable }

1.3

getDate (inout date: string):
void { raises exception, use after open, claim, enable }

1.3

getTotalizer (vatID: int32, optArgs: int32, inout data: string):
void { raises exception, use after open, claim, enable }

1.3

getVatEntry (vatID: int32, optArgs: int32, inout vatRate: int32):
void { raises exception, use after open, claim, enable }

1.3

Specific - Error Corrections

clearError ():
void { raises exception, use after open, claim, enable }

1.3

resetPrinter ():
void { raises exception, use after open, claim, enable }

1.3

183
Note:

(1) Properties and methods marked with (1) are adapted from the POS Printer
device.

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not Supported

upos::events::DirectIOEvent 1.3

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.3

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse int32 { read-write }

upos::events::OutputCompleteEvent 1.3

 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }

184
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
General Information

The Fiscal Printer programmatic name is “FiscalPrinter”.

The Fiscal Printer Control does not attempt to encapsulate a generic graphics
printer. Rather, for performance and ease of use considerations, the interfaces are
defined to directly control the normal printer functions.

Since fiscal rules differ between countries, this interface tries to generalize the
common requirements at the maximum extent specifications. This interface is
based upon the fiscal requirements of the following countries, but it may fit the
needs of other countries as well:

• Brazil

• Bulgaria

• Greece

• Hungary

• Italy

• Poland

• Romania

• Russia

• Turkey

The Fiscal Printer model defines three stations with the following general uses:

• Journal Used for simple text to log transaction and activity information. Kept
by the store for audit and other purposes.

• Receipt Used to print transaction information. It is mandatory to give a
printed fiscal receipt to the customer. Also often used for store reports.
Contains either a knife to cut the paper between transactions, or a tear bar to
manually cut the paper.

• Slip Used to print information on a form. Usually given to the customer.

The Slip station is also used to print “validation” information on a form. The
form type is typically a check or credit card slip.
It may also be used to print complete transaction information instead of
printing it on the receipt station.

Sometimes, limited forms-handling capability is integrated with the receipt or
journal station to permit validation printing. Often this limits the number of print
lines, due to the station’s forms-handling throat depth. The Fiscal Printer Control
nevertheless addresses this printer functionality as a slip station.

Configuration and initialization of the fiscal memory of the Fiscal Printer are not
covered in this specification. These low-level operations must be performed by
authorized technical assistance personnel.

185 General Information
Fiscal Printer Class Diagram

The following diagram shows the relationships between the Fiscal Printer classes.

<<uses>>

UposExcepti on
(from upos)

<<exception> >
UposConst
(from upos)

<<utility>>

Fisca lPrinte rConst

(from upos)

<<utility>>

DataEvent

<<prop>> Sta tus : int32

(from events)

<<event>>

Di rectIO Event

<<prop>> EventNum ber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : i nt32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : i nt32

(from events)

<<event>>

O utputComp le teEvent

<<prop>> OutputID : int32

(from events)

<<event>>
Sta tusUpdateEvent

<<prop>> Sta tus : int32

(from events)

<<event>>

Fisca lPri nte rControl

(from upos)

<<Inter face>>

<<se nds>>
<<uses>>

fires

fires

fires

fires fires

BaseControl
(from upos)

<<Interface>>

<<sends>>

186
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
General Requirements
Fiscal Printers do not simply print text similar to standard printers. They are used
to monitor and memorize all fiscal information about a sale transaction. A Fiscal
Printer has to accumulate totals, discounts, number of canceled receipts, taxes, etc.
and has to store this information in different totalizers, counters and the fiscal
memory. In order to perform these functions, it is not sufficient to send
unformatted strings of text to the Fiscal Printer; there is a need to separate each
individual field in a receipt line item, thus differentiating between descriptions,
prices and discounts. Moreover, it is necessary to define different printing
commands for each different sale functionality (such as refund, item or void).

Fiscal rules are different among countries. This interface tries to generalize these
requirements by summarizing the common requirements. Fiscal law requires that:

• Fiscal receipts must be printed and given to the customer.

• Fiscal Printers must be equipped with memory to store daily totals. Each
receipt line item must increment totals registers and, in most countries
(Greece, Poland, Brazil, Hungary, Romania, Bulgaria, Russia and Turkey) tax
registers as well.

• Discounts, canceled items and canceled receipts must increment their
associated registers on the Fiscal Printer.

• Fiscal Printer must include a clock to store date and time information relative
to each single receipt.

• Each fiscal receipt line item is normally printed both on the receipt and on the
journal (Italy, Greece, Poland), but as an extension it can also be printed on
the slip and journal.

• After a power failure (or a power off) the Fiscal Printer must be in the same
state as it was before this event occurred. This implies that care must be taken
in managing the Fiscal Printer status and that power failure events must be
managed by the application. In some countries, a power failure must be logged
and a report must be printed.

187 General Information
Fiscal Printer Modes
According to fiscal rules, it is possible for a Fiscal Printer to also offer
functionality beyond the required fiscal printing mode. These additional modes are
optional and may or may not be present on any particular Fiscal Printer.

There are three possible Fiscal Printer modes:

• Fiscal: This is the only required mode for a Fiscal Printer. In this mode the
application has access to all the methods needed to manage a sale transaction
and to print a fiscal receipt. It is assumed that any lines printed to the receipt
station while in fiscal mode are also printed on the journal station.

• Training: In this mode, the Fiscal Printer is used for training purposes (such
as cashier training). In this mode, the Fiscal Printer will accept fiscal
commands but the Fiscal Printer will indicate on each receipt or document that
the transaction is not an actual fiscal transaction. The Fiscal Printer will not
update any of its internal fiscal registers while in training mode. Such printed
receipts are usually marked as “training” receipts by Fiscal Printers.
CapTrainingMode will be true if the Fiscal Printer supports training mode,
otherwise it is false.

• Non-Fiscal: In this mode the Fiscal Printer can be used to print simple text
on the receipt station (echoed on the journal station) or the slip station. The
Fiscal Printer will print some additional lines along with the application
requested output to indicate that this output is not of a fiscal nature. Such
printed receipts are usually marked as “non-fiscal” receipts by Fiscal Printers.
CapNonFiscalMode will be true if the Fiscal Printer supports non-fiscal
printing, otherwise it is false.

188
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
Model
The Fiscal Printer follows the output model for devices, with some enhancements:

• Most methods are always performed synchronously. Synchronous methods
will throw a UposException if asynchronous output is outstanding.

• The following methods are performed either synchronously or
asynchronously, depending on the value of the AsyncMode property:

printFiscalDocumentLine
printFixedOutput
printNormal
printRecCash
printRecItem
printRecItemAdjustment
printRecItemFuel
printRecItemFuelVoid
printRecMessage
printRecNotPaid
printRecPackageAdjustment
printRecPackageAdjustVoid
printRecRefund
printRecRefundVoid
printRecSubtotal
printRecSubtotalAdjustment
printRecSubtotalAdjustVoid
printRecTaxID
printRecTotal
printRecVoid
printRecVoidItem

When AsyncMode is false, then these methods print synchronously.

When AsyncMode is true, then these methods operate as follows:

• The Device buffers the request, sets the OutputID property to an
identifier for this request, and returns as soon as possible. When the
device completes the request successfully, the OutputCompleteEvent is
enqueued. A parameter of this event contains the OutputID of the
completed request.

Asynchronous Fiscal Printer methods will not throw a UposException due to
a printing problem, such as out of paper or Fiscal Printer fault. These errors
will only be reported by an ErrorEvent. A UposException is thrown only if
the Fiscal Printer is not claimed and enabled, a parameter is invalid, or the re-
quest cannot be enqueued. The first two error cases are due to an application
error, while the last is a serious system resource exception.

• If an error occurs while performing an asynchronous request, an
ErrorEvent is enqueued. The ErrorStation property is set to the station
or stations that were printing when the error occurred. The ErrorLevel,
ErrorString and ErrorState and ErrorOutID properties are also set.

189 General Information
The event handler may call synchronous print methods (but not asynchronous
methods), then can either retry the outstanding output or clear it.

• Asynchronous output is performed on a first-in first-out basis.

• All output buffered may be deleted by calling the clearOutput method.
OutputCompleteEvents will not be delivered for cleared output. This
method also stops any output that may be in progress (when possible).

• The property FlagWhenIdle may be set to cause a StatusUpdateEvent
to be enqueued when all outstanding outputs have finished, whether
successfully or because they were cleared.

Error Model
The Fiscal Printer error reporting model is as follows:

• Most of the Fiscal Printer error conditions are reported by setting the
UposException’s (or ErrorEvent’s) ErrorCode to E_EXTENDED and then
setting ErrorCodeExtended to one of the following:

EFPTR_COVER_OPEN
The Fiscal Printer cover is open.

EFPTR_JRN_EMPTY
The journal station has run out of paper.

EFPTR_REC_EMPTY
The receipt station has run out of paper.

EFPTR_SLP_EMPTY
The slip station has run out of paper.

EFPTR_MISSING_DEVICES
Some of the other devices that according to the local fiscal legislation are
to be connected are missing. In some countries in order to use a Fiscal
Printer a full set of peripheral devices are to be connected to the POS
(such as cash drawer and customer display). In case one of these devices
is not present, sales are not allowed.

EFPTR_WRONG_STATE
The requested method could not be executed in the Fiscal Printer’s current
state.

EFPTR_TECHNICAL_ASSISTANCE
The Fiscal Printer has encountered a severe error condition. Calling for
Fiscal Printer technical assistance is required.

EFPTR_CLOCK_ERROR
The Fiscal Printer’s internal clock has failed.

EFPTR_FISCAL_MEMORY_FULL
The Fiscal Printer’s fiscal memory has been exhausted.

EFPTR_FISCAL_MEMORY_DISCONNECTED
The Fiscal Printer’s fiscal memory has been disconnected.

EFPTR_FISCAL_TOTALS_ERROR
The Grand Total in working memory does not match the one in the
EPROM.

190
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
EFPTR_BAD_ITEM_QUANTITY
The quantity parameter is invalid.

EFPTR_BAD_ITEM_AMOUNT
The amount parameter is invalid.

EFPTR_BAD_ITEM_DESCRIPTION
The description parameter is either too long, contains illegal characters or
contains a reserved word.

EFPTR_RECEIPT_TOTAL_OVERFLOW
The receipt total has overflowed.

EFPTR_BAD_VAT
The vat parameter is invalid.

EFPTR_BAD_PRICE
The price parameter is invalid.

EFPTR_BAD_DATE
The date parameter is invalid.

EFPTR_NEGATIVE_TOTAL
The Fiscal Printer’s computed total or subtotal is less than zero.

EFPTR_WORD_NOT_ALLOWED
The description contains the reserved word.

EFPTR_BAD_LENGTH
The length of the string to be printed as post or pre line is too long.

EFPTR_MISSING_SET_CURRENCY
The Fiscal Printer is expecting the activation of a new currency.

• Other Fiscal Printer errors are reported by setting the exception’s (or
ErrorEvent’s) ErrorCode to E_FAILURE or another error status. These
failures are typically due to a Fiscal Printer fault or jam, or to a more serious
error.

Device Sharing
The Fiscal Printer is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many
Fiscal Printer-specific properties.

• The application must claim and enable the device before calling methods that
manipulate the device.

See the “Summary” table for precise usage prerequisites.

191 General Information
Fiscal Printer State Diagram

192
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
Fiscal Printer States
As previously described, a Fiscal Printer is characterized by different printing
modes. Moreover, the set of commands that can be executed at a particular
moment depends upon the current state of the Fiscal Printer.

The current state of the Fiscal Printer is kept in the PrinterState property.

The Fiscal Printer has the following states:

• Monitor:
This is a neutral state. From this state, it is possible to move to most of the
other Fiscal Printer states. After a successful call to the claim method and
successful setting of the DeviceEnabled property to true the Fiscal Printer
should be in this state unless there is a Fiscal Printer error.

• Fiscal Receipt:
The Fiscal Printer is processing a fiscal receipt. All printRec… methods
except printRecMessage, printRecNotPaid and printRecTaxID are
available for use while in this state. This state is entered from the Monitor
state using the beginFiscalReceipt method.

• Fiscal Receipt Total:
The Fiscal Printer has already accepted at least one payment method, but the
receipt’s total amount has not yet been tendered. This state is entered from the
Fiscal Receipt state by use of the printRecTotal method. The Fiscal Printer
remains in this state while the total remains unpaid. This state can be left by
using the printRecTotal, printRecNotPaid or printRecVoid methods.

• Fiscal Receipt Ending:
The Fiscal Printer has completed the receipt up to the Total line. In this state,
it may be possible to print general messages using the printRecMessage
method or to print tax information using printRecTaxID method if this is
supported by the Fiscal Printer. This state is entered from the Fiscal Receipt
state via the printRecVoid method or from the Fiscal Receipt Total state
using either the printRecTotal, printRecNotPaid or printRecVoid
methods. This state is exited using the endFiscalReceipt method at which
time the Fiscal Printer returns to the Monitor state.

• Fiscal Document:
The Fiscal Printer is processing a fiscal document. The Fiscal Printer will
accept the printFiscalDocumentLine method while in this state.
This state is entered from the Monitor state using the beginFiscalDocument
method. This state is exited using the endFiscalDocument method at which
time the Fiscal Printer returns to the Monitor state.

• Monitor and TrainingModeActive are true:
The Fiscal Printer is being used for training purposes. All fiscal receipt and
document commands are available. This state is entered from the Monitor
state using the beginTraining method. This state is exited using the
endTraining method at which time the Fiscal Printer returns to the Monitor
state.

• Fiscal Receipt and TrainingModeActive are true:
The Fiscal Printer is being used for training purposes and a receipt is currently
opened. To each line of the receipt, special text will be added in order to
differentiate it from a fiscal receipt.

193 General Information
• Fiscal Total and TrainingModeActive are true:
The Fiscal Printer is in training mode and receipt total is being handled.

• Fiscal ReceiptEnding and TrainingModeActive are true:
The Fiscal Printer is being used for training is in the receipt ending phase.

• NonFiscal:
The Fiscal Printer is printing non-fiscal output on either the receipt (echoed on
the journal) or the slip. In this state the Fiscal Printer will accept the
printNormal method. The Fiscal Printer prints a message that indicates that
this is non-fiscal output with all application text. This state is entered from the
Monitor state using the beginNonFiscal method. This state is exited using the
endNonFiscal method at which time the Fiscal Printer returns to the Monitor
state.

• Fixed:
The Fiscal Printer is being used to print fixed, non-fiscal output to one of the
Fiscal Printer’s stations. In this state the Fiscal Printer will accept the
printFixedOutput method. This state is entered from the Monitor state using
the beginFixedOutput method. This state is exited using the
endFixedOutput method at which time the Fiscal Printer returns to the
Monitor state.

• ItemList:
The Fiscal Printer is currently printing a line item report. In this state the Fiscal
Printer will accept the verifyItem method. This state is entered from the
Monitor state using the beginItemList method. This state is exited using the
endItemList method at which time the Fiscal Printer returns to the Monitor
state.

• Report:
The Fiscal Printer is currently printing one of the supported types of reports.
This state is entered from the Monitor state using one of the printReport,
printPeriodicTotalsReport, printPowerLossReport, printXReport or
printZReport methods. When the report print completes, the Fiscal Printer
automatically returns to Monitor state.

• FiscalSystemBlocked:
The Fiscal Printer is no longer operational due to one of the following reasons:

• The Fiscal Printer has been disconnected or has lost power.

• The Fiscal Printer’s fiscal memory has been exhausted.

• The Fiscal Printer’s internal data has become inconsistent.

In this state the Fiscal Printer will only accept methods to print reports and
retrieve data. The Fiscal Printer cannot exit this state without the assistance of
an authorized technician.

194
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
When the application sets the property DeviceEnabled to true it also monitors its
current state. In a standard situation, the PrinterState property is set to
FPTR_PS_MONITOR after a successfully setting DeviceEnabled to true. This
indicates that there was no interrupted operation remaining in the Fiscal Printer.

If the Fiscal Printer is not in the FPTR_PS_MONITOR state, the state reflects the
Fiscal Printer’s interrupted operation and the PowerState property is set to
PS_OFF. In this situation, it is necessary to force the Fiscal Printer to a normal
state by calling the resetPrinter method.

 This means that a power failure occurred or the last application that accessed the
device left it in a not clear state.

Notice that even in this case the method returns successfully after setting
DeviceEnabled to true. It is required that the application checks the PowerState
property and checks for a received StatusUpdateEvent with the value
SUE_POWER_OFF in the Status property after successfully setting the
DeviceEnabled property.

195 General Information
Fiscal Printer PrinterState Diagram

196
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
Document Printing
Using a Fiscal Printer’s slip station it may be possible (depending upon the Fiscal
Printer’s capabilities and on special fiscal rules) to print the following kinds of
documents:

• Fiscal Documents:
In order to print fiscal documents an amount value must be sent to the Fiscal
Printer and recorded by it. CapSlpFiscalDocument will be true if the Fiscal
Printer supports printing fiscal documents. If fiscal documents are supported
they may be either full length (if CapSlpFullSlip is true) or validation (if
CapSlpValidation is true). The actual selection is made using the
SlipSelection property but only one totalizer is assigned to all the fiscal
documents.
A fiscal document is started using the beginFiscalDocument method and
terminated by using the endFiscalDocument method. A line is printed using
the printFiscalDocumentLine method.

• Non-Fiscal Full Length Documents:
Full-length slip documents may be printed if CapSlpFullSlip is true and
SlipSelection is set to FPTR_SS_FULL_LENGTH.
This document is started using the beginNonFiscal method and terminated by
using the endNonFiscal method. A line is printed using the printNormal
method.

• Non-Fiscal Validation Documents:
Validation documents may be printed if CapSlpValidation is true and
SlipSelection is set to FPTR_SS_VALIDATION.
This document is started using the beginNonFiscal method and terminated by
using the endNonFiscal method. A line is printed using the printNormal
method.

• Fixed Text Documents:
Fixed text documents may be printed if CapFixedOutput is true. If fixed text
documents are supported they may be either full length (if CapSlpFullSlip is
true) or validation (if CapSlpValidation is true). The actual selection is made
using the SlipSelection property.

197 General Information
Ordering of Fiscal Receipt Print Requests
A fiscal receipt is started using the beginFiscalReceipt method.

Each fiscal receipt consists of a mandatory receipt header and a mandatory receipt
trailer, normally with the country specific logotype. If CapFiscalReceiptType is
true the type of a fiscal receipt may be specified by the FiscalReceiptType
property.

The following receipt types are defined:

• Retail Sales Receipt:
The daily totalizers are updated, the printRec... methods must be used.

• Simplified Invoice Receipt:
The daily totalizers are updated, a special title is printed, the printRec...
methods can be used, except the printRecRefund and printRecRefundVoid
methods.

• Service Sales Receipt:
The daily totalizers are updated, but a special header line is printed to identify
this type of receipt. The printRec... methods must be used.

• Generic Receipt:
Free text can be printed using printNormal method, no totalizer is updated.
A special header line is printed to identify this type of receipt.

• Cash-In Receipt:
This type of receipt helps to reconcile the cash amount. The cash-in amount is
incremented by the amount given as an argument to the printRecCash
method. Free text can be printed using printNormal method, the receipt can
be cancelled.

• Cash-Out Receipt:
This type of receipt helps to reconcile the cash amount. The cash-in amount is
decremented by the amount given as an argument to the printRecCash
method. Free text can be printed using printNormal method, the receipt can
be cancelled.

If CapIndependentHeader is true, then it is up to the application to decide if the
fiscal receipt header lines are to be printed at this time or not. Otherwise, the
header lines are printed immediately prior to the first line item inside a fiscal
receipt. Printing the header lines at this time will decrease the amount of time
required to process the first fiscal receipt print method, but it may result in more
receipt voids as well. The beginFiscalReceipt method may only be called if the
Fiscal Printer is currently in the Monitor state and this call will change the Fiscal
Printer’s current state to Fiscal Receipt.

Before selling the first line item, it is possible to exit from the Fiscal Receipt state
by calling the endFiscalReceipt method. If header lines have already been printed,
this method will cause also receipt voiding.

Once when a Retail Sales Receipt is selected and the first line item has been
printed, the Fiscal Printer remains in the Fiscal Receipt state and the following
fiscal print methods are available:

198
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
printRecItem
printRecItemAdjustment
printRecItemFuel
printRecItemFuelVoid
printRecPackageAdjustment
printRecPackageAdjustVoid
printRecRefund
printRecRefundVoid
printRecSubtotal
printRecSubtotalAdjustment
printRecSubtotalAdjustVoid
printRecTotal
printRecVoid
printRecVoidItem

The printRecItem, printRecItemAdjustment, printRecItemFuel,
printRecItemFuelVoid, printRecPackageAdjustment,
printRecPackageAdjustVoid, printRecRefund, printRecRefundVoid,
printRecSubtotal, printRecSubtotalAdjustment,
printRecSubtotalAdjustVoid and printRecVoidItem will leave the Fiscal
Printer in the Fiscal Receipt state. The printRecTotal methods will change the
Fiscal Printer’s state to either Fiscal Receipt Total or Fiscal Receipt Ending,
depending upon whether the entire receipt total has been met. The printRecVoid
method will change the Fiscal Printer’s state to Fiscal Receipt Ending.

While in the Fiscal Receipt Total state the following fiscal print methods are
available:

printRecNotPaid
printRecTotal
printRecVoid

The printRecNotPaid (only available if CapReceiptNotPaid is true) and
printRecTotal methods will either leave the Fiscal Printer in the Fiscal Receipt
Total state or change the Fiscal Printer’s state to Fiscal Receipt Ending, depending
upon whether the entire receipt total has been met. The printRecVoid method will
change the Fiscal Printer’s state to Fiscal Receipt Ending.

While in the Fiscal Receipt Ending state the following fiscal methods are
available:

printRecMessage
printRecTaxID
endFiscalReceipt

The printRecMessage (only available if CapAdditionalLines is true) and
printRecTaxID methods will leave the Fiscal Printer in the Fiscal Receipt Ending
state. The endFiscalReceipt will cause receipt closing and will then change the
Fiscal Printer’s state to Monitor.

At no time can the Fiscal Printer’s total for the receipt be negative. If this occurs
the Fiscal Printer will generate an ErrorEvent.

199 General Information
Fiscal Receipt Layouts
The following is an example of a typical fiscal receipt layout:

• Header Lines:
Header lines contain all of the information about the store, such as telephone
number, address and name of the store. All of these lines are fixed and are
defined before selling the first item (using the setHeaderLine method).
If CapMultiContractor property is true, two sets of header lines can be
defined, assigned to the value of the ContractorId property. These lines may
either be printed when the beginFiscalReceipt method is called or when the
first fiscal receipt method is called.

• Additional Header Lines:
Header lines defined by the AdditionalHeader property to be printed after the
fixed header lines when the beginFiscalReceipt method is called.

• Transaction Lines:
All of the lines of a fiscal transaction, such as line items, discounts and
surcharges. Optionally they may be assigned to a specific contractor.

• Total Line:
The line containing the transaction total, tender amounts and possibly change
due.

• Message Lines:
These are lines printed after the Total Line using the printRecMessage
method.

• Trailer Lines:
These are fixed promotional messages stored on the Fiscal Printer (using the
setTrailerLine method). They are automatically printed when the
endFiscalReceipt method is called. In fact, depending upon fiscal legislation
and upon the Fiscal Printer vendor, the relative position of the trailer and the
fiscal logotype lines can vary.

• Fiscal Lines:
These are lines containing information to be inserted in the receipt due to
fiscal legislations such as the fiscal logotype, date, time and serial number.
They are also printed automatically when the endFiscalReceipt method is
called.

• Additional Trailer Lines:
These are receipt specific information defined in the AdditionalTrailer
property to be printed after the Fiscal Lines on the receipt before cutting it,
when the endFiscalReceipt method is called.

200
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
Example of a fiscal receipt

Fiscal receipt Definition of the
line

UPOS methods and
properties

name of the store fixed header lines beginFiscalReceipt
address data stored with

 ZIP code and place setHeaderLine and
fiscal identification of the store tax number line setFIscalID

Good Morning add. header line AdditionalHeader property

Milk 1.000 A transaction line printRecItem
Special offer pre item line PreLine property
Beer 4.000 B transaction line printRecItem
Discount Beer -500 B transaction line printRecItemAdjustment
Bread 3.500 A transaction line printRecItem
Storno Bread -3.500 A transaction line printRecItemVoid
Apples 2.000 A transaction line printRecItem

SUBTOTAL 6.500 subtotal line printRecSubtotal

Lamp 12.000 C transaction line printRecItem

VAT category A 3.000 VAT summary printRecTotal
VAT 7.50% 225 (… , 10000, “Check”)
VAT category B 3.500
VAT 12.00% 420
VAT category C 12.000
VAT 10.00% 1.200
sum of VAT 1.845

TOTALE 18.500 total line

Check 10.000 payment line
Cash 10.000 payment line printRecTotal

(… , 10000, “Cash”)
Return - 1.500 change line

Advertising messages a.s.o. message line printRecMessage
THANK YOU FOR BUYING AT trailer line endFiscalReceipt

SABERTINI trailer line data stored with
 setTrailerLine and

24/05/99 14:25 No 225 logo line at initialisation time
MF B5 012345678 logo line of the fiscal printer

Good Bye
CONGRATULATION Mrs. Smith!

You have won: 150 points of fidelity

additional trailer
lines

AdditionalTrailer property

201 General Information
Totalizers and Fiscal Memory
The Fiscal Printer is able to select the fiscal relevant data and to accumulate and
store them in following types of totalizers:

• Receipt Totalizers:
The different kind of amounts of the current receipt are accumulated in receipt
totalizers.

• Day Totalizers:
At the end of a fiscal receipt, when calling the endFiscalReceipt method, the
receipt totalizers are added to the day totalizers where the totals of a fiscal
period (day) are summarized. The contents of the current day totalizers are
printed when calling the printXReport method. At the end of a fiscal day or
period totalizers are printed when calling the printZReport method.

• Document Totalizers:
The different kind of amounts of the current document are accumulated in
document totalizers.

• Grand Totalizers:
Some of the totalizers are stored in the fiscal memory at the end of a fiscal
period when calling the printZReport method. These are the grand totalizers.
The application may print the contents of the fiscal memory by calling
printReport method.

The application may fetch the different totalizers using the getData method or the
getTotalizer method, whereas the type of totalizer can be specified by setting the
TotalizerType property and the assignment to a contractor by setting the
ContractorId property.

Counters
The Fiscal Printer is able to count some features of fiscal receipt and documents.
The application may fetch the different counters using the getData method.

VAT Tables
Some Fiscal Printers support storing VAT (Value Added Tax) tables in the Fiscal
Printer’s memory. Some of these Fiscal Printers will allow the application to set
and modify any of the table entries. Others allow only adding new table entries but
do not allow existing entries to be modified. Some Fiscal Printers allow the VAT
table to bet set only once.

If the Fiscal Printer supports VAT tables, CapHasVatTable is true. If the Fiscal
Printer allows the VAT table entries to be set or modified CapSetVatTable is true.
The maximum number of different vat rate entries in the VAT table is given by the
NumVatRates property. VAT tables are set through a two step process. First the
application uses the setVatValue method to set each table entry to be sent to the
Fiscal Printer.

Next, the setVatTable method is called to send the entire VAT table to the Fiscal
Printer at one time.

202
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
Receipt Duplication
In some countries, fiscal legislation can allow printing more than one copy of the
same receipt. CapDuplicateReceipt will be true if the Fiscal Printer is capable of
printing duplicate receipts. Then, setting DuplicateReceipt true causes the
buffering of all receipt printing commands. DuplicateReceipt is set false after
receipt closing. In order to print the receipt again the printDuplicateReceipt
method has to be called.

Currency amounts, percentage amounts, VAT rates, and
quantity amounts
• Currency amounts (and also prices) are passed as values with the data type

long. This is a 64 bit signed integer value that implicitly assumes four digits
as the fractional part. For example, an actual value of 12345 represents 1.2345.
So, the range supported is
from
 -922,337,203,685,477.5808
 to
+922,337,203,685,477.5807

The fractional part used in the calculation unit of a Fiscal Printer may differ
from the long data type. The number of digits in the fractional part is stored in
the AmountDecimalPlaces property and determined by the Fiscal Printer.
The application has to take care that calculations in the application use the
same fractional part for amounts.

• If CapHasVatTable is true, VAT rates are passed using the indexes that were
sent to the setVatValue method.

• If CapHasVatTable is false, VAT rates are passed as amounts with the data
type int32. The number of digits in the fractional part is implicitly assumed to
be four.

• Percentage amounts are used in methods which allow also surcharge and/or
discount amounts. If the amounts are specified to be a percentage value the
value is also passed in a parameter of type long.

• The percentage value has (as given by the long data type) four digits in the
fractional part. It is the percentage (0.0001% to 99.9999%) multiplied by
10000.

• Quantity amounts are passed as values with the data type int32. The number
of digits in the fractional part is stored in the QuantityDecimalPlaces
property and determined by the Fiscal Printer.

Currency Change
If CapSetCurrency is true the Fiscal Printer is able to change the currency, the
application may set a new currency (e.g. EURO) using the setCurrency method.

203 Properties (UML attributes)
Properties (UML attributes)

ActualCurrency Property Added in Release 1.6

Syntax ActualCurrency: int32 { read-only, access after open-claim-enable }

Remarks Holds a value identifying which actual currency is used by the Fiscal Printer.

This property is only valid if CapSetCurrency is true.

Values are:

Value Meaning

FPTR_AC_BRC The actual currency is Brazilian cruceiro.

FPTR_AC_BGL The actual currency is Bulgarian lev.

FPTR_AC_EUR The actual currency is EURO.

FPTR_AC_GRD The actual currency is Greek drachma.

FPTR_AC_HUF The actual currency is Hungarian forint.

FPTR_AC_ITL The actual currency is Italian lira.

FPTR_AC_PLZ The actual currency is Polish zloty.

FPTR_AC_ROL The actual currency is Romanian leu.

FPTR_AC_RUR The actual currency is Russian rouble.

FPTR_AC_TRL The actual currency is Turkish lira.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also setCurrency Method, CapSetCurrency Property.

204
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
AdditionalHeader Property Added in Release 1.6

Syntax AdditionalHeader: string { read-write, access after open-claim-enable }

Remarks Specifies a user specific text which will be printed on the receipt after the fixed
header lines when calling the beginFiscalReceipt method.

This property is only valid if CapAdditionalHeader is true.

This property is initialized to an empty string and kept current while the device is
enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not support printing text after the
fixed header lines.

See Also beginFiscalReceipt Method, CapAdditionalHeader Property.

AdditionalTrailer Property Added in Release 1.6

Syntax AdditionalTrailer: string { read-write, access after open-claim-enable }

Remarks Specifies a user specific text which will be printed on the receipt after the fiscal
trailer lines when calling the endFiscalReceipt method.

This property is only valid if CapAdditionalTrailer is true.

This property is initialized to an empty string and kept current while the device is
enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not support printing text after the
fiscal trailer lines.

See Also endFiscalReceipt Method, CapAdditionalTrailer Property.

205 Properties (UML attributes)
AmountDecimalPlaces Property

Syntax AmountDecimalPlaces: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of decimal digits that the fiscal device uses for calculations.

This property is initialized when the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, then some print methods such as printRecItemAdjustment,
printRecItem, printNormal, etc. will be performed asynchronously.
If false, they will be performed synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also “Model” on page 188 for the output model description.

CapAdditionalHeader Property Added in Release 1.6

Syntax CapAdditionalHeader: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer is able to print application specific text defined in
the AdditionalHeader property after printing the fixed header lines.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

206
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
CapAdditionalLines Property

Syntax CapAdditionalLines: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports the printing of application defined lines on
a fiscal receipt between the total line and the end of the fiscal receipt.

If true, then after all totals lines are printed it is possible to print application-
defined strings, such as the ones used for fidelity cards. In this case, after the total
lines are printed, the PrinterState property is set to ReceiptEnding and
printRecMessage can be called.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapAdditionalTrailer Property Added in Release 1.6

Syntax CapAdditionalTrailer: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer is able to print application specific text defined in
the AdditionalTrailer property after printing the fiscal trailer lines.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapAmountAdjustment Property

Syntax CapAmountAdjustment: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer handles fixed amount discounts or fixed amount
surcharges on items.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapAmountNotPaid Property

Syntax CapAmountNotPaid: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer allows the recording of not paid amounts.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

207 Properties (UML attributes)
CapChangeDue Property Added in Release 1.6

Syntax CapChangeDue: boolean { read-only, access after open }

Remarks If true, the text to be printed as the cash return description when using
printRecTotal method can be defined in the ChangeDue property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapCheckTotal Property

Syntax CapCheckTotal: boolean { read-only, access after open }

Remarks If true, then automatic comparison of the Fiscal Printer’s total and the
application’s total can be enabled and disabled. If false, then the automatic
comparison cannot be enabled and is always considered disabled.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapCoverSensor Property

Syntax CapCoverSensor: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer has a “cover open” sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapDoubleWidth Property

Syntax CapDoubleWidth: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer can print double width characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

208
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
CapDuplicateReceipt Property

Syntax CapDuplicateReceipt: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer allows printing more than one copy of the same
fiscal receipt.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapEmptyReceiptIsVoidable Property Added in Release 1.6

Syntax CapEmptyReceiptIsVoidable: boolean { read-only, access after open }

Remarks If true, then it is allowed to void an opened receipt without any items.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapFiscalReceiptStation Property Added in Release 1.6

Syntax CapFiscalReceiptStation: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports printing transactions on the station defined
by the FiscalReceiptStation property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapFiscalReceiptType Property Added in Release 1.6

Syntax CapFiscalReceiptType: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports printing different types of fiscal receipts
defined by the FiscalReceiptType property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

209 Properties (UML attributes)
CapFixedOutput Property

Syntax CapFixedOutput: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports fixed format text printing through the
beginFixedOutput, printFixedOutput and endFixedOutput methods.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapHasVatTable Property

Syntax CapHasVatTable: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer has a tax table.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapIndependentHeader Property

Syntax CapIndependentHeader: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports printing the fiscal receipt header lines
before the first fiscal receipt command is processed.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapItemList Property

Syntax CapItemList: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer can print a report of items of a specified VAT class.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

210
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
CapJrnEmptySensor Property

Syntax CapJrnEmptySensor: boolean { read-only, access after open }

Remarks If true, then the journal has an out-of-paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapJrnNearEndSensor Property

Syntax CapJrnNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the journal has a low paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapJrnPresent Property

Syntax CapJrnPresent: boolean { read-only, access after open }

Remarks If true, then the journal print station is present.

Unlike POS printers, on Fiscal Printers the application is not able to directly access
the journal. The Fiscal Printer itself prints on the journal if present.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapMultiContractor Property Added in Release 1.6

Syntax CapMultiContractor: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports more than one contractor assigned to the
fiscal receipt and items.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

211 Properties (UML attributes)
CapNonFiscalMode Property

Syntax CapNonFiscalMode: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer allows printing in non-fiscal mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapOnlyVoidLastItem Property Added in Release 1.6

Syntax CapOnlyVoidLastItem: boolean { read-only, access after open }

Remarks If true, then only the last printed item can be voided.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapOrderAdjustmentFirst Property

Syntax CapOrderAdjustmentFirst: boolean { read-only, access after open }

Remarks If false, the application has to call printRecItem first and then call
printRecItemAdjustment to give a discount or a surcharge for a single article.

If true, then the application has to call printRecItemAdjustment first and then
call printRecItem.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapPackageAdjustment Property Added in Release 1.6

Syntax CapPackageAdjustment: boolean { read-only, access after open }

Remarks If true, an adjustment may be given to a package of booked items.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

212
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
CapPercentAdjustment Property

Syntax CapPercentAdjustment: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer handles percentage discounts or percentage
surcharges on items.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapPositiveAdjustment Property

Syntax CapPositiveAdjustment: boolean { read-only, access after open }

Remarks If true, then it is possible to apply surcharges via the printRecItemAdjustment
method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapPostPreLine Property Added in Release 1.6

Syntax CapPostPreLine: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports printing additional lines defined by the
PostLine and/or the PreLine properties when calling some printRec... methods.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapPowerLossReport Property

Syntax CapPowerLossReport: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer can print a power loss report using the
printPowerLossReport method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

213 Properties (UML attributes)
CapPredefinedPaymentLines Property

Syntax CapPredefinedPaymentLines: boolean { read-only, access after open }

Remarks If true, the Fiscal Printer can store and print predefined payment descriptions.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapReceiptNotPaid Property

Syntax CapReceiptNotPaid: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports using the printRecNotPaid method to
specify a part of the receipt total that is not paid.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapRecEmptySensor Property

Syntax CapRecEmptySensor: boolean { read-only, access after open }

Remarks If true, then the receipt has an out-of-paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapRecNearEndSensor Property

Syntax CapRecNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the receipt has a low paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

214
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
CapRecPresent Property

Syntax CapRecPresent: boolean { read-only, access after open }

Remarks If true, then the receipt print station is present.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapRemainingFiscalMemory Property

Syntax CapRemainingFiscalMemory: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports using the RemainingFiscalMemory
property to show the amount of Fiscal Memory remaining. If false, the Fiscal
Printer does not support reporting the Fiscal Memory status of the Fiscal Printer.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapReservedWord Property

Syntax CapReservedWord: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer prints a reserved word (for example, “TOTALE”)
before printing the total amount.

If true, the reserved word is stored in the ReservedWord property. This reserved
word may not be printed using any fiscal print method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSetCurrency Property Added in Release 1.6

Syntax CapSetCurrency: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer is able to change the currency to a new one by calling
the setCurrency method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

215 Properties (UML attributes)
CapSetHeader Property

Syntax CapSetHeader: boolean { read-only, access after open }

Remarks If true, then it is possible to use the setHeaderLine method to initialize the
contents of a particular line of the receipt header.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSetPOSID Property

Syntax CapSetPOSID: boolean { read-only, access after open }

Remarks If true, then it is possible to use the setPOSID method to initialize the values of
POSID and CashierID. These values are printed on each fiscal receipt.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSetStoreFiscalID Property

Syntax CapSetStoreFiscalID: boolean { read-only, access after open }

Remarks If true, then it is possible to use the setStoreFiscalID method to set up the Fiscal
ID number which will be printed on each fiscal receipt.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSetTrailer Property

Syntax CapSetTrailer: boolean { read-only, access after open }

Remarks If true, then it is possible to use the setTrailerLine method to initialize the
contents of a particular line of the receipt trailer.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

216
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
CapSetVatTable Property

Syntax CapSetVatTable: boolean { read-only, access after open }

Remarks If true, then it is possible to use the setVatValue and setVatTable methods to
modify the contents of the Fiscal Printer’s VAT table. Some Fiscal Printers may
not allow existing VAT table entries to be modified. Only new entries may be set
on these Fiscal Printers.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSlpEmptySensor Property

Syntax CapSlpEmptySensor: boolean { read-only, access after open }

Remarks If true, then the slip has a “slip in” sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSlpFiscalDocument Property

Syntax CapSlpFiscalDocument: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer allows fiscal printing to the slip station.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSlpFullSlip Property

Syntax CapSlpFullSlip: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports printing full length forms on the slip station.

It is possible to choose between full slip and validation documents by setting the
SlipSelection property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

217 Properties (UML attributes)
CapSlpNearEndSensor Property

Syntax CapSlpNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the slip has a “slip near end” sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSlpPresent Property

Syntax CapSlpPresent: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer has a slip station.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSlpValidation Property

Syntax CapSlpValidation: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports printing validation information on the slip
station.

It is possible to choose between full slip and validation documents by setting the
SlipSelection property. In some countries, when printing non fiscal validations
using the slip station a limited number of lines could be printed.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSubAmountAdjustment Property

Syntax CapSubAmountAdjustment: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer handles fixed amount discounts on the subtotal.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

218
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
CapSubPercentAdjustment Property

Syntax CapSubPercentAdjustment: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer handles percentage discounts on the subtotal.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSubtotal Property

Syntax CapSubtotal: boolean { read-only, access after open }

Remarks If true, then it is possible to use the printRecSubtotal method to print the current
subtotal.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapTotalizerType Property Added in Release 1.6

Syntax CapTotalizerType: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports reading different types of totalizers by
calling the getTotalizer method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapTrainingMode Property

Syntax CapTrainingMode: boolean { read-only, access after open }

Remarks If true, then the Fiscal Printer supports a training mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

219 Properties (UML attributes)
CapValidateJournal Property

Syntax CapValidateJournal: boolean { read-only, access after open }

Remarks If true, then it is possible to use the printNormal method to print a validation
string on the journal station.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapXReport Property

Syntax CapXReport: boolean { read-only, access after open }

Remarks If true, then it is possible to use the printXReport method to print an X report.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

ChangeDue Property Added in Release 1.6

Syntax ChangeDue: string { read-write, access after open }

Remarks This property holds the text to be printed as a description for the cash return when
using the printRecTotal method.

This property is only valid if CapChangeDue is true.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL Setting this property is not valid for this service (see
CapChangeDue property).

E_EXTENDED ErrorCodeExtended = EFPTR_BAD_LENGTH:
The length of the string to be printed is too long.

See Also printRecTotal Method, CapChangeDue Property.

220
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
CheckTotal Property

Syntax CheckTotal: boolean { read-write, access after open }

Remarks If true, automatic comparison between the Fiscal Printer’s total and the
application’s total is enabled. If false, automatic comparison is disabled.
This property is only valid if CapCheckTotal is true.
This property is initialized to true by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL Setting this property is not valid for this Service (see
CapCheckTotal).

ContractorId Property Added in Release 1.6

Syntax ContractorId: int32 { read-write, access after open-claim-enable }

Remarks The identification of the contractor to whom the receipt and/or some items of the
receipt are assigned.

It is used to define different header lines to be printed on the fiscal receipt, in order
to assign any item to a specific contractor and to modify the counters and totalizers
to be read using getData and getTotalizer methods.

Values are:

Value Meaning

FPTR_CID_FIRST First contractor is defined.

FPTR_CID_SECOND Second contractor is defined.

FPTR_CID_SINGLE Single contractor.

This property is initialized to FPTR_CID_SINGLE and kept current while the
device is enabled, which is the functionality supported prior to Release 1.6.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL Setting this property is not valid for this service (see
CapMultiContractor property).

See Also beginFiscalReceipt Method, getData Method, getTotalizer Method,
printRec... Methods, CapMultiContractor Property.

221 Properties (UML attributes)
CountryCode Property Updated in Release 1.6

Syntax CountryCode: int32 { read-only, access after open }

Remarks Holds a value identifying which countries are supported by the Fiscal Printer. It
can contain any of the following values logically ORed together:

Value Meaning

FPTR_CC_BRAZIL The Fiscal Printer supports Brazil’s fiscal rules.

FPTR_CC_GREECE The Fiscal Printer supports Greece’s fiscal rules.

FPTR_CC_HUNGARY The Fiscal Printer supports Hungary’s fiscal rules.

FPTR_CC_ITALY The Fiscal Printer supports Italy’s fiscal rules.

FPTR_CC_POLAND The Fiscal Printer supports Poland’s fiscal rules.

FPTR_CC_TURKEY The Fiscal Printer supports Turkey’s fiscal rules.

FPTR_CC_RUSSIA The Fiscal Printer supports Russia’s fiscal rules.

FPTR_CC_BULGARIA The Fiscal Printer supports Bulgaria’s fiscal rules.

FPTR_CC_ROMANIA The Fiscal Printer supports Romania’s fiscal rules.

This property is initialized when the device is first enabled following the open
method. (In releases prior to 1.5, this description stated that initialization took
place by the open method. In Release 1.5, it was updated for consistency with
other devices.)

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CoverOpen Property

Syntax CoverOpen: boolean { read-only, access after open-claim-enable }

Remarks If true, then the Fiscal Printer’s cover is open.

If CapCoverSensor is false, then the Fiscal Printer does not have a cover open
sensor and this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

222
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
DateType Property Added in Release 1.6

Syntax DateType: int32 { read-write, access after open-claim-enable }

Remarks Specifies the type of date to be requested when calling the getDate method.

Values are:

Value Meaning

FPTR_DT_CONF Date of configuration.

FPTR_DT_EOD Date of last end of day.

FPTR_DT_RESET Date of last reset.

FPTR_DT_RTC Real time clock of the Fiscal Printer.

FPTR_DT_VAT Date of last VAT change.

This property is initialized to FPTR_DT_RTC and kept current while the device is
enabled, which is the functionality supported prior to Release 1.6.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not support the specified type.

See Also getDate Method.

223 Properties (UML attributes)
DayOpened Property Updated in Release 1.6

Syntax DayOpened: boolean { read-only, access after open-claim-enable }

Remarks If true, then the fiscal day has been started on the Fiscal Printer by a first call to the
beginFiscalReceipt or beginFiscalDocument method at a fiscal period (day).

The Fiscal Day of the Fiscal Printer can be either opened or not opened. The
DayOpened property reflects whether or not the Fiscal Printer considers its Fiscal
Day to be opened or not.

Some methods may only be called while the Fiscal Day is not yet opened
(DayOpened is false). Methods that can be called after the Fiscal Day is opened
change from country to country. Usually all the configuration methods are to be
called only before the Fiscal Day is opened.

This property changes to false after calling printZReport.

Depending on fiscal legislation, the following methods may be allowed only if the
Fiscal Printer is in the Monitor State and has not yet begun its Fiscal Day:

 setCurrency
 setDate
 setHeaderLine
 setPOSID
 setStoreFiscalID
 setTrailerLine
 setVatTable
 setVatValue

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

DescriptionLength Property Updated in Release 1.6

Syntax DescriptionLength: int32 { read-only, access after open }

Remarks Holds the maximum number of characters that may be passed as a description
parameter.

The exact maximum number for a description parameter of a specific method can
be obtained by calling getData method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also getData Method.

224
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
DuplicateReceipt Property

Syntax DuplicateReceipt: boolean { read-write, access after open }

Remarks If true, all the printing commands inside a fiscal receipt will be buffered and they
can be printed again via the printDuplicateReceipt method.

This property is only valid if CapDuplicateReceipt is true.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

ErrorLevel Property

Syntax ErrorLevel: int32 { read-only, access after open }

Remarks Holds the severity of the error condition.

This property has one of the following values:

Value Meaning

FPTR_EL_NONE No error condition is present.

FPTR_EL_RECOVERABLE
A recoverable error has occurred.
(Example: Out of paper.)

FPTR_EL_FATAL A non-recoverable error has occurred.
(Example: Internal printer failure.)

FPTR_EL_BLOCKED A severe hardware failure which can be resolved only by
authorized technicians. (Example: Fiscal memory
failure.). This error can not be recovered.

This property is set just before delivering an ErrorEvent. When the error is
cleared, then the property is changed to FPTR_EL_NONE.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

ErrorOutID Property Updated in Release 1.6

Syntax ErrorOutID: int32 { read-only, access after open }

Remarks Holds the identifier of the output in the queue which caused an ErrorEvent, when
using asynchronous printing.

This property is initialized when the device is first enabled following the open
method. (In releases prior to 1.5, this description stated that initialization took
place by the open method. In Release 1.5, it was updated for consistency with
other devices.)

This property is set just before an ErrorEvent is delivered.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

225 Properties (UML attributes)
ErrorState Property

Syntax ErrorState: int32 { read-only, access after open }

Remarks Holds the current state of the Fiscal Printer when an ErrorEvent is delivered for
an asynchronous output.

This property is set just before an ErrorEvent is delivered.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also PrinterState Property.

ErrorStation Property

Syntax ErrorStation: int32 { read-only, access after open }

Remarks Holds the station or stations that were printing when an error was detected.

This property will be set to one of the following values: FPTR_S_JOURNAL,
FPTR_S_RECEIPT, FPTR_S_SLIP, FPTR_S_JOURNAL_RECEIPT,
FPTR_S_JOURNAL_SLIP, FPTR_S_RECEIPT_SLIP.

This property is only valid if the ErrorLevel is not equal to PTR_EL_NONE. It is
set just before delivering an ErrorEvent.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

ErrorString Property

Syntax ErrorString: string { read-only, access after open }

Remarks Holds a vendor-supplied description of the current error.

This property is set just before delivering an ErrorEvent. If no description is
available, the property is set to an empty string. When the error is cleared, then the
property is changed to an empty string.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

226
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
FiscalReceiptStation Property Added in Release 1.6

Syntax FiscalReceiptStation: int32 { read-write, access after open-claim-enable }

Remarks Selects the station where the transaction of the fiscal receipt started with
beginFiscalReceipt method will be printed. Setting this property is only allowed
in the Monitor State.

Values are:

Value Meaning

FPTR_RS_RECEIPT The following transactions will be printed on the receipt
station.

FPTR_RS_SLIP The following transactions will be printed on the slip
station.

This property is only valid if CapFiscalReceiptStation is true.

This property is initialized to FPTR_RS_RECEIPT and kept current while the
device is enabled, which is the functionality supported prior to Release 1.6.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not support the specified station.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Monitor State.

See Also beginFiscalReceipt Method, CapFiscalReceiptStation Property.

227 Properties (UML attributes)
FiscalReceiptType Property Added in Release 1.6

Syntax FiscalReceiptType: int32 { read-write, access after open-claim-enable }

Remarks Selects the type of the fiscal receipt. Setting this property is only allowed in the
Monitor State.

Values are:

Value Meaning

FPTR_RT_CASH_IN Cash-in receipt

FPTR_RT_CASH_OUT Cash-out receipt

FPTR_RT_GENERIC Generic receipt

FPTR_RT_SALES Retail sales receipt

FPTR_RT_SERVICE Service sales receipt

FPTR_RT_SIMPLE_INVOICE Simplified invoice receipt

This property is only valid if CapFiscalReceiptType is true.

This property is initialized to FPTR_RT_SALES and kept current while the device
is enabled, which is the functionality supported prior to Release 1.6.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not support the specified receipt
type.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Monitor State.

See Also beginFiscalReceipt Method, CapFiscalReceiptType Property.

228
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
FlagWhenIdle Property

Syntax FlagWhenIdle: boolean { read-write, access after open }

Remarks If true, a StatusUpdateEvent will be enqueued when the device is in the idle state.

This property is automatically reset to false when the status event is delivered.

The main use of idle status event that is controlled by this property is to give the
application control when all outstanding asynchronous outputs have been
processed. The event will be enqueued if the outputs were completed successfully
or if they were cleared by the clearOutput method or by an ErrorEvent handler.

If the State is already set to S_IDLE when this property is set to true, then a
StatusUpdateEvent is enqueued immediately. The application can therefore
depend upon the event, with no race condition between the starting of its last
asynchronous output and the setting of this flag.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

JrnEmpty Property

Syntax JrnEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, the journal is out of paper. If false, journal paper is present.

If CapJrnEmptySensor is false, then the value of this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

 See Also JrnNearEnd Property.

JrnNearEnd Property

Syntax JrnNearEnd: boolean { read-only, access after open-claim-enable }

Remarks If true, the journal paper is low. If false, journal paper is not low.

If CapJrnNearEndSensor is false, then the value of this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also JrnEmpty Property.

229 Properties (UML attributes)
MessageLength Property

Syntax MessageLength: int32 { read-only, access after open }

Remarks Holds the maximum number of characters that may be passed as a message line in
the method printRecMessage. The value may change in different modes of the
Fiscal Printer. For example in the mode “Fiscal Receipt” the number of characters
may be bigger than in the mode “Fiscal Receipt Total.”

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

MessageType Property Added in Release 1.6

Syntax MessageType: int32 { read-write, access after open-claim-enable }

Remarks Selects the kind of message to be printed when using the printRecMessage
method. Values are:

Value

FPTR_MT_ADVANCE

FPTR_MT_ADVANCE_PAID

FPTR_MT_AMOUNT_TO_BE_PAID

FPTR_MT_AMOUNT_TO_BE_PAID_BACK

FPTR_MT_CARD

FPTR_MT_CARD_NUMBER

FPTR_MT_CARD_TYPE

FPTR_MT_CASH

FPTR_MT_CASHIER

FPTR_MT_CASH_REGISTER_NUMBER

FPTR_MT_CHANGE

FPTR_MT_CHEQUE

FPTR_MT_CLIENT_NUMBER

FPTR_MT_CLIENT_SIGNATURE

FPTR_MT_COUNTER_STATE

FPTR_MT_CREDIT_CARD

FPTR_MT_CURRENCY

FPTR_MT_CURRENCY_VALUE

FPTR_MT_DEPOSIT

FPTR_MT_DEPOSIT_RETURNED

FPTR_MT_DOT_LINE

FPTR_MT_DRIVER_NUMB

FPTR_MT_EMPTY_LINE

FPTR_MT_FREE_TEXT

230
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
FPTR_MT_FREE_TEXT_WITH_DAY_LIMIT

FPTR_MT_GIVEN_DISCOUNT

FPTR_MT_LOCAL_CREDIT

FPTR_MT_MILEAGE_KM

FPTR_MT_NOTE

FPTR_MT_PAID

FPTR_MT_PAY_IN

FPTR_MT_POINT_GRANTED

FPTR_MT_POINTS_BONUS

FPTR_MT_POINTS_RECEIPT

FPTR_MT_POINTS_TOTAL

FPTR_MT_PROFITED

FPTR_MT_RATE

FPTR_MT_REGISTER_NUMB

FPTR_MT_SHIFT_NUMBER

FPTR_MT_STATE_OF_AN_ACCOUNT

FPTR_MT_SUBSCRIPTION

FPTR_MT_TABLE

FPTR_MT_THANK_YOU_FOR_LOYALTY

FPTR_MT_TRANSACTION_NUMB

FPTR_MT_VALID_TO

FPTR_MT_VOUCHER

FPTR_MT_VOUCHER_PAID

FPTR_MT_VOUCHER_VALUE

FPTR_MT_WITH_DISCOUNT

FPTR_MT_WITHOUT_UPLIFT

This property is initialized to FPTR_MT_FREE_TEXT by the open method,
which is the functionality supported prior to Release 1.6.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not support this value.

See Also printRecMessage Method.

231 Properties (UML attributes)
NumHeaderLines Property

Syntax NumHeaderLines: int32 { read-only, access after open }

Remarks Holds the maximum number of header lines that can be printed for each fiscal
receipt. Header lines usually contain information such as store address, store
name, store Fiscal ID. Each header line is set using the setHeaderLine method and
remains set even after the Fiscal Printer is switched off. Header lines are
automatically printed when a fiscal receipt is initiated using the
beginFiscalReceipt method or when the first line item inside a receipt is sold.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

NumTrailerLines Property

Syntax NumTrailerLines: int32 { read-only, access after open }

Remarks Holds the maximum number of trailer lines that can be printed for each fiscal
receipt. Trailer lines are usually promotional messages. Each trailer line is set
using the setTrailerLine method and remains set even after the Fiscal Printer is
switched off. Trailer lines are automatically printed either after the last
printRecTotal or when a fiscal receipt is closed using the endFiscalReceipt
method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

NumVatRates Property

Syntax NumVatRates: int32 { read-only, access after open }

Remarks Holds the maximum number of vat rates that can be entered into the Fiscal
Printer’s Vat table.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

232
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
PostLine Property Added in Release 1.6

Syntax PostLine: string { read-write, access after open-claim-enable }

Remarks An application specific text to be printed on the fiscal receipt after a line item
invoked by some printRec... methods. The property can be written in the Fiscal
Receipt State. The length of the text is reduced to a country specific value

This property is only valid if CapPostPreLine is true.

This property is initialized to an empty string and will be reset to an empty string
after being used.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not support printing post item
lines or the text contains invalid characters.

E_EXTENDED ErrorCodeExtended = EFPTR_BAD_LENGTH:
The length of the string is too long.

See Also printRecSubtotal Method, printRecTotal Method, CapPostPreLine Property.

PredefinedPaymentLines Property

Syntax PredefinedPaymentLines: string { read-only, access after open }

Remarks Holds the list of all possible words to be used as indexes of the predefined payment
lines (for example, “a, b, c, d, z”). Those indexes are used in the printRecTotal
method for the description parameter.

If CapPredefinedPaymentLines is true, only predefined payment lines are
allowed.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

233 Properties (UML attributes)
PreLine Property Added in Release 1.6

Syntax PreLine: string { read-write, access after open-claim-enable }

Remarks An application specific text to be printed on the fiscal receipt before a line item
invoked by some printRec... methods. The property can be written in the Fiscal
Receipt State. The length of the text is reduced to a country specific value

This property is only valid if CapPostPreLine is true.

This property is initialized to an empty string and will be reset to an empty string
after being used.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not support printing pre item
lines or the text contains invalid characters.

E_EXTENDED ErrorCodeExtended = EFPTR_BAD_LENGTH:
The length of the string is too long.

See Also printRecItem Method, printRecItemAdjustment Method,
printRecRefund Method, printRecSubtotalAdjustment Method,
CapPostPreLine Property.

234
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
PrinterState Property Updated in Release 1.6

Syntax PrinterState: int32 { read-only, access after open }

Remarks Holds the Fiscal Printer’s current operational state. This property controls which
methods are currently legal.

Values are:

Value Meaning

FPTR_PS_MONITOR If TrainingModeActive is false:
The Fiscal Printer is currently not in a specific
operational mode. In this state the Fiscal Printer will
accept any of the begin… methods as well as the set…
methods.

If TrainingModeActive is true:
The Fiscal Printer is currently being used for training
purposes. In this state the Fiscal Printer will accept any
of the printRec… methods or the endTraining method.

FPTR_PS_FISCAL_RECEIPT
If TrainingModeActive is false:
The Fiscal Printer is currently processing a fiscal
receipt. In this state the Fiscal Printer will accept any of
the printRec… methods.

If TrainingModeActive is true:
The Fiscal Printer is currently being used for training
purposes and a fiscal receipt is currently opened.

FPTR_PS_FISCAL_RECEIPT_TOTAL
If TrainingModeActive is false:
The Fiscal Printer has already accepted at least one
payment, but the total has not been completely paid. In
this state the Fiscal Printer will accept either the
printRecTotal or printRecNotPaid methods.

If TrainingModeActive is true:
The Fiscal Printer is currently being used for training
purposes and the Fiscal Printer has already accepted at
least one payment, but the total has not been completely
paid.

FPTR_PS_FISCAL_RECEIPT_ENDING
If TrainingModeActive is false:
The Fiscal Printer has completed the receipt up to the
total line. In this state the Fiscal Printer will accept either
the printRecMessage or endFiscalReceipt methods.

If TrainingModeActive is true:
The Fiscal Printer is currently being used for training
purposes and a fiscal receipt is going to be closed.

235 Properties (UML attributes)
FPTR_PS_FISCAL_DOCUMENT
The Fiscal Printer is currently processing a fiscal slip. In
this state the Fiscal Printer will accept either the
printFiscalDocumentLine or endFiscalDocument
methods.

FPTR_PS_FIXED_OUTPUT
The Fiscal Printer is currently processing fixed text
output to one or more stations. In this state the Fiscal
Printer will accept either the printFixedOutput or
endFixedOutput methods.

FPTR_PS_ITEM_LIST The Fiscal Printer is currently processing an item list
report. In this state the Fiscal Printer will accept either
the verifyItem or endItemList methods.

FPTR_PS_NONFISCAL The Fiscal Printer is currently processing non-fiscal
output to one or more stations. In this state the Fiscal
Printer will accept either the printNormal or
endNonFiscal methods.

FPTR_PS_LOCKED The Fiscal Printer has encountered a non-recoverable
hardware problem. An authorized Fiscal Printer
technician must be contacted to exit this state.

FPTR_PS_REPORT The Fiscal Printer is currently processing a fiscal report.
In this state the Fiscal Printer will not accept any
methods until the report has completed.

There are a few methods that are accepted in any state except
FPTR_PS_LOCKED. These are beginInsertion, endInsertion, beginRemoval,
endRemoval, getDate, getData, getTotalizer, getVatEntry, resetPrinter and
clearOutput.

This property is initialized when the device is first enabled following the open
method. (In releases prior to 1.5, this description stated that initialization took
place by the open method. In Release 1.5, it was updated for consistency with
other devices.)

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

QuantityDecimalPlaces Property Updated in Release 1.6

Syntax QuantityDecimalPlaces: int32 { read-only, access after open }

Remarks Holds the number of decimal digits in the fractional part that should be assumed
to be in any quantity parameter.

This property is initialized when the device is first enabled following the open
method. (In releases prior to 1.5, this description stated that initialization took
place by the open method. In Release 1.5, it was updated for consistency with
other devices.)

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

236
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
QuantityLength Property Updated in Release 1.6

Syntax QuantityLength: int32 { read-only, access after open }

Remarks Holds the maximum number of digits that may be passed as a quantity parameter,
including both the whole and fractional parts.

This property is initialized when the device is first enabled following the open
method. (In releases prior to 1.5, this description stated that initialization took
place by the open method. In Release 1.5, it was updated for consistency with
other devices.)

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

RecEmpty Property

Syntax RecEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, the receipt is out of paper. If false, receipt paper is present.

If CapRecEmptySensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RecNearEnd Property.

RecNearEnd Property

Syntax RecNearEnd: boolean { read-only, access after open-claim-enable }

Remarks If true, the receipt paper is low. If false, receipt paper is not low.

If CapRecNearEndSensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RecEmpty Property.

237 Properties (UML attributes)
RemainingFiscalMemory Property

Syntax RemainingFiscalMemory: int32 { read-only, access after open-claim-enable }

Remarks Holds the remaining counter of Fiscal Memory.

This property is initialized and kept current while the device is enabled and may
be updated by printZReport method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CapRemainingFiscalMemory Property.

ReservedWord Property

Syntax ReservedWord: string { read-only, access after open }

Remarks Holds the string that is automatically printed with the total when the
printRecTotal method is called. This word may not occur in any string that is
passed into any fiscal output methods.

This property is only valid if CapReservedWord is true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

SlpEmpty Property

Syntax SlpEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, a slip form is not present. If false, a slip form is present.

If CapSlpEmptySensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Note:

The “slip empty” sensor should be used primarily to determine whether a form has
been inserted before printing. It can also be monitored to determine whether a
form is still in place. This sensor is usually placed one or more print lines above
the slip print head.

However, the “slip near end” sensor (when present) should be used to determine
when nearing the end of the slip. This sensor is usually placed one or more print
lines below the slip print head.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also SlpNearEnd Property.

238
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
SlpNearEnd Property

Syntax SlpNearEnd: boolean { read-only, access after open-claim-enable }

Remarks If true, the slip form is near its end. If false, the slip form is not near its end. The
“near end” sensor is also sometimes called the “trailing edge” sensor, referring to
the bottom edge of the slip.

If CapSlpNearEndSensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Note:

However, the “slip near end” sensor (when present) should be used to determine
when nearing the end of the slip. This sensor is usually placed one or more print
lines below the slip print head.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also SlpEmpty Property.

SlipSelection Property

Syntax SlipSelection: int32 { read-write, access after open-claim-enable }

Remarks Selects the kind of document to be printed on the slip station.

This property has one of the following values:

Value Meaning

FPTR_SS_FULL_LENGTH Print full length documents.

FPTR_SS_VALIDATION Print validation documents.

This property is initialized to FPTR_SS_FULL_LENGTH by the claim method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid slip type was specified.

239 Properties (UML attributes)
TotalizerType Property Added in Release 1.6

Syntax TotalizerType: int32 { read-write, access after open-claim-enable }

Remarks Specifies the type of totalizer to be requested when calling the getTotalizer
method.

Values are:

Value Meaning

FPTR_TT_DOCUMENT Document totalizer

FPTR_TT_DAY Day totalizer

FPTR_TT_RECEIPT Receipt totalizer

FPTR_TT_GRAND Grand totalizer

This property is only valid if CapTotalizerType is true.

This property is initialized to FPTR_TT_DAY and kept current while the device
is enabled, which is the functionality supported prior to Release 1.6.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not support defining totalizer
types or an invalid type was specified.

See Also getTotalizer Method, CapTotalizerType Property.

240
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
TrainingModeActive Property

Syntax TrainingModeActive: boolean { read-only, access after open-claim-enable }

Remarks Holds the current Fiscal Printer’s operational state concerning the training mode.
Training mode allows all fiscal commands, but each receipt is marked as non-
fiscal and no internal Fiscal Printer registers are updated with any data while in
training mode. Some countries’ fiscal rules require that all blank characters on a
training mode receipt be printed as some other character. Italy, for example,
requires that all training mode receipts print a “?” instead of a blank.

This property has one of the following values:

Value Meaning

true The Fiscal Printer is currently in training mode. That
means no data are written into the EPROM of the Fiscal
Printer.

false The Fiscal Printer is currently in normal mode. All
printed receipts will also update the fiscal memory.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

241 Methods (UML operations)
Methods (UML operations)

beginFiscalDocument Method Updated in Release 1.6

Syntax beginFiscalDocument (documentAmount: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

documentAmount Amount of document to be stored by the Fiscal Printer.

Remarks Initiates fiscal printing to the slip station.

This method is only supported if CapSlpFiscalDocument is true.

If this is the first call to the beginFiscalDocument method, the Fiscal Day will be
started and the DayOpened property will be set to true.

The slip paper must be inserted into the slip station using begin/endInsertion
before calling this method.

Each fiscal line will be printed using the printFiscalDocumentLine method.

If this method is successful, the PrinterState property will be changed to
FPTR_PS_FISCAL_DOCUMENT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The slip station does not exist (see the CapSlpPresent
property) or the printer does not support fiscal output to the
slip station (see the CapSlpFiscalDocument property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The printer’s current state does not allow this state transition.
ErrorCodeExtended = EFPTR_SLP_EMPTY:
There is no paper in the slip station.
ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
The documentAmount parameter is invalid.
ErrorCodeExtended =
EFPTR_MISSING_SET_CURRENCY:
The new receipt cannot be opened, the Fiscal Printer is
expecting the current currency to be changed by calling
setCurrency method.

See Also CapSlpFiscalDocument Property, CapSlpPresent Property,
AmountDecimalPlaces Property, DayOpened Property, PrinterState Property,
beginInsertion Method, endFiscalDocument Method, endInsertion Method,
printFiscalDocumentLine Method, printZReport Method.

242
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
beginFiscalReceipt Method Updated in Release 1.6

Syntax beginFiscalReceipt (printHeader: boolean):
void { raises exception, use after open-claim-enable }

Parameter Description

printHeader Indicates if the header lines are to be printed at this time.

Remarks Initiates fiscal printing to the receipt station.

If CapFiscalReceiptStation is true the FiscalReceiptStation property defines the
station where the receipt will be printed. If CapFiscalReceiptStation is false the
receipt will be printed on the receipt station. If CapFiscalReceiptType is true the
receipt type must be defined in FiscalReceiptType and a header line according to
the specified receipt type will be printed.

If this is the first call to the beginFiscalReceipt method, the Fiscal Day will be
started and the DayOpened property will be set to true.

If printHeader and CapIndependentHeader are both true all defined header lines
will be printed before control is returned. Otherwise, header lines will be printed
when the first item is sold in the case they are not printed at the end of the
preceding receipt. If CapAdditionalHeader is true, application specific header
lines defined by the AdditionalHeader property will be printed after the fixed
header lines.

If CapMultiContractor is true, the current receipt is assigned to the contractor
specified by the ContractorId property.

If this method is successful, the PrinterState property will be changed to
FPTR_PS_FISCAL_RECEIPT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid receipt type was specified.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this state
transition.

ErrorCodeExtended =
EFPTR_MISSING_SET_CURRENCY:
The new receipt cannot be opened, the Fiscal Printer is
expecting the current currency to be changed by calling
setCurrency method.

See Also CapAdditionalHeader Property, CapFiscalReceiptStation Property,
CapFiscalReceiptType Property, CapIndependentHeader Property,
CapMultiContractor Property, AdditionalHeader Property, ContractorId
Property, DayOpened Property, FiscalReceiptStation Property,
FiscalReceiptType Property, PrinterState Property, endFiscalReceipt Method,
printRec… Methods.

243 Methods (UML operations)
beginFixedOutput Method

Syntax beginFixedOutput (station: int32, documentType: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

station The Fiscal Printer station to be used. May be either
FPTR_S_RECEIPT or FPTR_S_SLIP.

documentType Identifier of a document stored in the Fiscal Printer.

Remarks Initiates non-fiscal fixed text printing on a Fiscal Printer station.
This method is only supported if CapFixedOutput is true.

If the station parameter is FPTR_S_SLIP, the slip paper must be inserted into the
slip station using begin/endInsertion before calling this method.

Each fixed output will be printed using the printFixedOutput method. If this
method is successful, the PrinterState property will be changed to
FPTR_PS_FIXED_OUTPUT. The endFixedOutput method ends fixed output
modality and resets PrinterState.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:
• Station does not exist (see the CapSlpPresent property).
• Fiscal Printer does not support fixed output (see the

CapFixedOutput property).
• station parameter is invalid.
• documentType is invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this state
transition.

ErrorCodeExtended = EFPTR_SLP_EMPTY:
There is no paper in the slip station.

See Also CapFixedOutput Property, CapSlpPresent Property, PrinterState Property,
beginInsertion Method, endFixedOutput Method, endInsertion Method,
printFixedOutput Method.

244
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
beginInsertion Method

Syntax beginInsertion (timeout: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

timeout The timeout parameter gives the number of milliseconds
before failing the method.

If zero, the method tries to begin insertion mode, then returns the appropriate status
immediately. If FOREVER (-1), the method tries to begin insertion mode, then
waits as long as needed until either the form is inserted or an error occurs.

Remarks Initiates slip processing.

When called, the slip station is made ready to receive a form by opening the form’s
handling “jaws” or activating a form insertion mode. This method is paired with
the endInsertion method for controlling form insertion.

If the Fiscal Printer device cannot be placed into insertion mode, a UposException
is thrown. Otherwise, the device continues to monitor form insertion until either:

• The form is successfully inserted.

• The form is not inserted before timeout milliseconds have elapsed, or an error
is reported by the Fiscal Printer device. In this case, a UposException is
thrown with an ErrorCode of E_TIMEOUT or another value. The Fiscal
Printer device remains in form insertion mode. This allows an application to
perform some user interaction and reissue the beginInsertion method without
altering the form handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The slip station does not exist (see the CapSlpPresent
property) or an invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the form being
properly inserted.

See Also CapSlpPresent Property, endInsertion Method, beginRemoval Method,
endRemoval Method.

245 Methods (UML operations)
beginItemList Method

Syntax beginItemList (vatID: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

vatID Vat identifier for reporting.

Remarks Initiates a validation report of items belonging to a particular VAT class.

This method is only supported if CapItemList is true.

If this method is successful, PrinterState will be changed to
FPTR_PS_ITEM_LIST.
After this method, only verifyItem and endItemList methods may be called.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not support an item list report
(see the CapItemList property) or the Fiscal Printer
does not support VAT tables (see the CapHasVatTable
property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this
state transition.

ErrorCodeExtended = EFPTR_BAD_VAT:
The vatID parameter is invalid.

See Also CapHasVatTable Property, CapItemList Property, PrinterState Property,
endItemList Method, verifyItem Method.

246
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
beginNonFiscal Method

Syntax beginNonFiscal ():
void { raises exception, use after open-claim-enable }

Remarks Initiates non-fiscal operations on the Fiscal Printer.

This method is only supported if CapNonFiscalMode is true. Output in this mode
is accomplished using the printNormal method. This method can be successfully
called only if the current value of the PrinterState property is
FPTR_PS_MONITOR. If this method is successful, the PrinterState property
will be changed to FPTR_PS_NONFISCAL. In order to stop non fiscal modality
endNonFiscal method should be called.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not support non-fiscal output
(see the CapNonFiscalMode property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this
state transition.

See Also CapNonFiscalMode Property, PrinterState Property, endNonFiscal Method,
printNormal Method.

247 Methods (UML operations)
beginRemoval Method

Syntax beginRemoval (timeout: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

timeout The timeout parameter gives the number of milliseconds
before failing the method.

If zero, the method tries to begin removal mode, then returns the appropriate status
immediately. If FOREVER (-1), the method tries to begin removal mode, then
waits as long as needed until either the form is removed or an error occurs.

Remarks Initiates form removal processing.

When called, the Fiscal Printer is made ready to remove a form by opening the
form handling “jaws” or activating a form ejection mode. This method is paired
with the endRemoval method for controlling form removal.

If the Fiscal Printer device cannot be placed into removal or ejection mode, a
UposException is thrown. Otherwise, the device continues to monitor form
removal until either:

• The form is successfully removed.

• The form is not removed before timeout milliseconds have elapsed, or an error
is reported by the Fiscal Printer device. In this case, a UposException is
thrown with an ErrorCode of E_TIMEOUT or another value. The Fiscal
Printer device remains in form removal mode. This allows an application to
perform some user interaction and reissue the beginRemoval method without
altering the form handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not have a slip station (see the
CapSlpPresent property) or an invalid timeout
parameter was specified.

E_TIMEOUT The specified time has elapsed without the form being
properly removed.

See Also CapSlpPresent Property, beginInsertion Method, endInsertion Method,
endRemoval Method.

248
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
beginTraining Method

Syntax beginTraining ():
void { raises exception, use after open-claim-enable }

Remarks Initiates training operations.

This method is only supported if CapTrainingMode is true. Output in this mode
is accomplished using the printRec… methods in order to print a receipt or other
methods to print reports. This method can be successfully called only if the current
value of the PrinterState property is FPTR_PS_MONITOR. If this method is
successful, the TrainingModeActive property will be changed to true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not support training mode (see
the CapTrainingMode property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this
state transition.

See Also CapTrainingMode Property, PrinterState Property, TrainingModeActive
Property, endTraining Method, printRec… Methods.

249 Methods (UML operations)
clearError Method

Syntax clearError ():
void { raises exception, use after open-claim-enable }

Remarks Clears all Fiscal Printer error conditions.
This method is always performed synchronously.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_FAILURE Error recovery failed.

endFiscalDocument Method

Syntax endFiscalDocument ():
void { raises exception, use after open-claim-enable }

Remarks Terminates fiscal printing to the slip station.

This method is only supported if CapSlpFiscalDocument is true.
If this method is successful, the PrinterState property will be changed to
FPTR_PS_MONITOR.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not support fiscal output to the
slip station (see the CapSlpFiscalDocument property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal
Document state.

See Also CapSlpFiscalDocument Property, PrinterState property,
beginFiscalDocument Method, printFiscalDocumentLine Method.

250
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
endFiscalReceipt Method Updated in Release 1.6

Syntax endFiscalReceipt (printHeader: boolean):
void { raises exception, use after open-claim-enable }

Parameter Description

printHeader Indicates if the header lines of the following receipt are
to be printed at this time.

Remarks Terminates fiscal printing to the receipt station.

If printHeader is false, this method will close the current fiscal receipt, print the
trailer lines, if they were not already printed after the total lines, and cut it.
If printHeader is true additionally the header of the next receipt will be printed
before cutting the receipt, otherwise the header will be printed when beginning the
next receipt.
All functions carried out by this method will be completed before this call returns.

If CapAdditionalTrailer is true application specific trailer lines defined by the
AdditionalTrailer property will be printed after the fiscal trailer lines.

If this method is successful, the PrinterState property will be changed to
FPTR_PS_MONITOR.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt
Ending state.

See Also beginFiscalReceipt Method, printRec… Methods, CapAdditionalTrailer
Property, AdditionalTrailer Property.

251 Methods (UML operations)
endFixedOutput Method

Syntax endFixedOutput ():
void { raises exception, use after open-claim-enable }

Remarks Terminates non-fiscal fixed text printing on a Fiscal Printer station.

This method is only supported if CapFixedOutput is true. If this method is
successful, the PrinterState property will be changed to FPTR_PS_MONITOR.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not support fixed output (see the
CapFixedOutput property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fixed Output
state.

See Also beginFixedOutput Method, printFixedOutput Method.

endInsertion Method

Syntax endInsertion ():
void { raises exception, use after open-claim-enable }

Remarks Ends form insertion processing.

When called, the Fiscal Printer is taken out of form insertion mode. If the slip
device has forms “jaws,” they are closed by this method. If no form is present, a
UposException is thrown with its ErrorCodeExtended property set to
EFPTR_SLP_EMPTY.

This method is paired with the beginInsertion method for controlling form
insertion. The application may choose to call this method immediately after a
successful beginInsertion if it wants to use the Fiscal Printer sensors to determine
when a form is positioned within the slip printer. Alternatively, the application
may prompt the user and wait for a key press before calling this method.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer is not in slip insertion mode.

E_EXTENDED ErrorCodeExtended = EFPTR_COVER_OPEN:
The device was taken out of insertion mode while the
Fiscal Printer cover was open.
ErrorCodeExtended = EFPTR_SLP_EMPTY:
The device was taken out of insertion mode without a
form being inserted.

See Also beginInsertion Method, beginRemoval Method, endRemoval Method.

252
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
endItemList Method

Syntax endItemList ():
void { raises exception, use after open-claim-enable }

Remarks Terminates a validation report of items belonging to a particular VAT class.

This method is only supported if CapItemList is true and CapHasVatTable is
true.

This method is paired with the beginItemList method.

This method can be successfully called only if current value of PrinterState
property is equal to FPTR_PS_ITEM_LIST.

If this method is successful, the PrinterState property will be changed to
FPTR_PS_MONITOR.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not support fixed output (see the
CapItemList property) or the Fiscal Printer does not
support VAT tables (see the CapHasVatTable
property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this
state transition.

See Also beginItemList Method, verifyItem Method.

endNonFiscal Method

Syntax endNonFiscal ():
void { raises exception, use after open-claim-enable }

Remarks Terminates non-fiscal operations on one Fiscal Printer station.

This method is only supported if CapNonFiscalMode is true. If this method is
successful, the PrinterState property will be changed to FPTR_PS_MONITOR.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not support non-fiscal output
(see the CapNonFiscalMode property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Non-Fiscal
state.

See Also beginNonFiscal Method, printNormal Method.

253 Methods (UML operations)
endRemoval Method

Syntax endRemoval ():
void { raises exception, use after open-claim-enable }

Remarks Ends form removal processing.

When called, the Fiscal Printer is taken out of form removal or ejection mode. If a
form is present, a UposException is thrown with the ErrorCodeExtended property
set to EFPTR_SLP_FORM.

This method is paired with the beginRemoval method for controlling form
removal. The application may choose to call this method immediately after a
successful beginRemoval if it wants to use the Fiscal Printer sensors to determine
when the form has been removed. Alternatively, the application may prompt the
user and wait for a key press before calling this method.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer is not in slip removal mode.

E_EXTENDED ErrorCodeExtended = EFPTR_SLP_FORM:
The device was taken out of removal mode while a form
was still present.

See Also beginInsertion Method, endInsertion Method, beginRemoval Method.

endTraining Method

Syntax endTraining ():
void { raises exception, use after open-claim-enable }

Remarks Terminates training operations on either the receipt or the slip station.

This method is only supported if CapTrainingMode is true. If this method is
successful, the TrainingModeActive property will be changed to false.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not support training mode (see
the CapTrainingMode property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Training state.

See Also CapTrainingMode property, beginTraining Method, printRec… Methods.

254
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
getData Method Updated in Release 1.6

Syntax getData (dataItem: int32, inout optArgs: int32, inout data: string):
void { raises exception, use after open-claim-enable }

Parameter Description

dataItem The specific data item to retrieve.

optArgs For some dataItem this additional argument is needed.
Consult the Service vendor’s documentation for further
use of this argument.

data Character string to hold the data retrieved.

The dataItem parameter has one of the following values:

Value Meaning

Identification data

FPTR_GD_FIRMWARE Get the Fiscal Printer’s firmware release
number.

FPTR_GD_PRINTER_ID Get the Fiscal Printer’s fiscal ID.

Totals

FPTR_GD_CURRENT_TOTAL Get the current receipt total.

FPTR_GD_DAILY_TOTAL Get the daily total.

FPTR_GD_GRAND_TOTAL Get the Fiscal Printer’s grand total.

FPTR_GD_MID_VOID Get the total number of voided receipts.

FPTR_GD_NOT_PAID Get the current total of not paid receipts.

FPTR_GD_RECEIPT_NUMBERGet the number of fiscal receipts printed.

FPTR_GD_REFUND Get the current total of refunds.

FPTR_GD_REFUND_VOID Get the current total of voided refunds.

Fiscal memory counts

FPTR_GD_NUMB_CONFIG_BLOCK
Get the grand number of configuration blocks.

FPTR_GD_NUMB_CURRENCY_BLOCK
Get the grand number of currency blocks.

FPTR_GD_NUMB_HDR_BLOCK
Get the grand number of header blocks.

FPTR_GD_NUMB_RESET_BLOCK
Get the grand number of reset blocks.

FPTR_GD_NUMB_VAT_BLOCK
Get the grand number of VAT blocks.

255 Methods (UML operations)
Counter

FPTR_GD_FISCAL_DOC Get the number of daily fiscal documents.

FPTR_GD_FISCAL_DOC_VOIDGet the number of daily voided fiscal
documents.

FPTR_GD_FISCAL_REC Get the number of daily fiscal sales receipts.

FPTR_GD_FISCAL_REC_VOIDGet the number of daily voided fiscal sales
receipts.

FPTR_GD_NONFISCAL_DOC Get the number of daily non fiscal documents.

FPTR_GD_NONFISCAL_DOC_VOID

Get the number of daily voided non fiscal
documents.

FPTR_GD_NONFISCAL_REC Get the number of daily non fiscal receipts.

FPTR_GD_RESTART Get the Fiscal Printer’s restart count

FPTR_GD_SIMP_INVOICE Get the number of daily simplified invoices.

FPTR_GD_Z_REPORT Get the Z report number.

Fixed fiscal printer text

FPTR_GD_TENDER Get the payment description used in the
printRecTotal method, defined by the given
identifier in the optArgs argument.Valid only,
if the CapPredefinedPaymentLines property
is true.

Linecounter

FPTR_GD_LINECOUNT Get the number of printed lines, defined by the
given identifier in the optArgs argument. If the
CapMultiContractor property is true, line
counters depend on the contractor defined by
the ContractorId property.

Description length

FPTR_GD_DESCRIPTION_LENGTH
Get the maximum number of characters that
may be passed as a description parameter for a
specific method, defined by the given identifier
in the optArgs argument.

256
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
If dataItem is FPTR_GD_TENDER the optArgs parameter has to be set to one of
the following values:

Value Meaning

FPTR_PDL_CASH Cash.

FPTR_PDL_CHEQUE Cheque.

FPTR_PDL_CHITTY Chitty.

FPTR_PDL_COUPON Coupon.

FPTR_PDL_CURRENCY Currency.

FPTR_PDL_DRIVEN_OFF

FPTR_PDL_EFT_IMPRINTER Printer EFT.

FPTR_PDL_EFT_TERMINAL Terminal EFT.

FPTR_PDL_TERMINAL_IMPRINTER

FPTR_PDL_FREE_GIFT Gift.

FPTR_PDL_GIRO Giro.

FPTR_PDL_HOME Home.

FPTR_PDL_IMPRINTER_WITH_ISSUER

FPTR_PDL_LOCAL_ACCOUNT Local account.

FPTR_PDL_LOCAL_ACCOUNT_CARDLocal card account.

FPTR_PDL_PAY_CARD Pay card.

FPTR_PDL_PAY_CARD_MANUAL Manual pay card.

FPTR_PDL_PREPAY Prepay.

FPTR_PDL_PUMP_TEST Pump test.

FPTR_PDL_SHORT_CREDIT Credit.

FPTR_PDL_STAFF Staff.

FPTR_PDL_VOUCHER Voucher.

257 Methods (UML operations)
If dataItem is FPTR_GD_LINECOUNT the optArgs parameter has to be set to one
of the following values:

Value Meaning

FPTR_LC_ITEM Number of item lines.

FPTR_LC_ITEM_VOID Number of voided item lines.

FPTR_LC_DISCOUNT Number of discount lines.

FPTR_LC_DISCOUNT_VOID Number of voided discount lines.

FPTR_LC_SURCHARGE Number of surcharge lines.

FPTR_LC_SURCHARGE_VOID Number of voided surcharge lines.

FPTR_LC_REFUND Number of refund lines.

FPTR_LC_REFUND_VOID Number of voided refund lines.

FPTR_LC_SUBTOTAL_DISCOUNT Number of subtotal discount lines.

FPTR_LC_SUBTOTAL_DISCOUNT_VOID
Number of voided subtotal discount
lines.

FPTR_LC_SUBTOTAL_SURCHARGE Number of subtotal surcharge lines.

FPTR_LC_SUBTOTAL_SURCHARGE_VOID
Number of voided subtotal surcharge
lines.

FPTR_LC_COMMENT Number of comment lines.

FPTR_LC_SUBTOTAL Number of subtotal lines.

FPTR_LC_TOTAL Number of total lines.

258
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
If dataItem is FPTR_GD_DESCRIPTION_LENGTH the optArgs parameter has
to be set to one of the following values:

Value Meaning

FPTR_DL_ITEM printRecItem method.

FPTR_DL_ITEM_ADJUSTMENT printRecItemAdjustment method.

FPTR_DL_ITEM_FUEL printRecItemFuel method.

FPTR_DL_ITEM_FUEL_VOID printRecItemFuelVoid method.

FPTR_DL_NOT_PAID printRecNotPaid method.

FPTR_DL_PACKAGE_ADJUSTMENT printRecPackageAdjustment method.

FPTR_DL_REFUND printRecRefund method.

FPTR_DL_REFUND_VOID printRecRefundVoid method.

FPTR_DL_SUBTOTAL_ADJUSTMENT printRecSubtotalAdjustment method.

FPTR_DL_TOTAL printRecTotal method.

FPTR_DL_VOID printRecVoid method.

FPTR_DL_VOID_ITEM printRecVoidItem method.

Remarks Retrieves data and counters from the printer’s fiscal module.

If CapMultiContractor is true, line counters depend on the contractor defined by
the ContractorId property.

The data is returned in a string because some of the fields, such as the grand total,
might overflow a 4-byte integer.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress. (Only
applies if AsyncMode is false.)

E_ILLEGAL The dataItem, optArgs or ContractorId specified is
invalid.

See Also printRecTotal Method, CapPredefinedPaymentLines Property,
ContractorId Property, PredefinedPaymentLines Property.

259 Methods (UML operations)
getDate Method Updated in Release 1.6

Syntax getDate (inout date: string):
void { raises exception, use after open-claim-enable }

Parameter Description

date Date and time returned as a string.

Remarks Gets the Fiscal Printer’s date and time specified by the DateType property.

The date and time are returned as a string in the format “ddmmyyyyhhmm”:

dd day of the month (1 - 31)
mm month (1 - 12)
yyyy year (1997-)
hh hour (0-23)
mm minutes (0-59)

The fiscal controller may not support hours and minutes depending on the date
type. In such cases the corresponding fields in the returned string are filled with
“0”.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL Retrieval of the date and time is not valid at this time.

See Also DateType Property.

260
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
getTotalizer Method Updated in Release 1.6

Syntax getTotalizer (vatID: int32, optArgs: int32, inout data: string):
void { raises exception, use after open-claim-enable }

Parameter Description

vatID VAT identifier of the required totalizer.

optArgs Specifies the required totalizer.

 data Totalizer returned as a string.

The optArgs parameter has one of the following values:

Value Meaning

FPTR_GT_GROSS Gross totalizer specified by the TotalizerType
and ContractorId properties.

FPTR_GT_NET Net totalizer specified by the TotalizerType
and ContractorId properties.

FPTR_GT_DISCOUNT Discount totalizer specified by the
TotalizerType and ContractorId properties.

FPTR_GT_DISCOUNT_VOID Voided discount totalizer specified by the
TotalizerType and ContractorId properties.

FPTR_GT_ITEM Item totalizer specified by the TotalizerType
and ContractorId properties.

FPTR_GT_ITEM_VOID Voided item totalizer specified by the
TotalizerType and ContractorId properties.

FPTR_GT_NOT_PAID Not paid totalizer specified by the
TotalizerType and ContractorId properties.

FPTR_GT_REFUND Refund totalizer specified by the
TotalizerType and ContractorId properties.

FPTR_GT_REFUND_VOID Voided refund totalizer specified by the
TotalizerType and ContractorId properties.

FPTR_GT_SUBTOTAL_DISCOUNT
Subtotal discount totalizer specified by the
TotalizerType and ContractorId properties.

FPTR_GT_SUBTOTAL_DISCOUNT_VOID
Voided discount totalizer specified by the
TotalizerType and ContractorId properties.

FPTR_GT_SUBTOTAL_SURCHARGES
Subtotal surcharges totalizer specified by the
TotalizerType and ContractorId properties.

261 Methods (UML operations)
FPTR_GT_SUBTOTAL_SURCHARGES_VOID
Voided surcharges totalizer specified by the
TotalizerType and ContractorId properties.

FPTR_GT_SURCHARGE Surcharge totalizer specified by the
TotalizerType and ContractorId properties.

FPTR_GT_SURCHARGE_VOIDVoided surcharge totalizer specified by the
TotalizerType and ContractorId properties.

FPTR_GT_VAT VAT totalizer specified by the TotalizerType
and ContractorId properties.

FPTR_GT_VAT_CATEGORY VAT totalizer per VAT category specified by
the TotalizerType and ContractorId
properties associated to the given vatID.

Remarks Gets the totalizer specified by the optArgs argument Some of the totalizers such as
item or VAT totalizers may be associated with the given vatID.

If CapTotalizerType is true the type of totalizer (grand, day, receipt specific)
depends on the TotalizerType property.

If CapMultiContractor is true the type depends on the ContractorId property.

If CapSetVatTable is false, then only one totalizer is present.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:
• The vatID parameter is invalid, or

• The ContractorId property is invalid, or

• The specified totalizer is not available.

See Also CapTotalizerType Property, TotalizerType Property,
CapMultiContractor Property, ContractorId Property.

262
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
getVatEntry Method

Syntax getVatEntry (vatID: int32, optArgs: int32, inout vatRate: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

vatID VAT identifier of the required rate.

optArgs For some countries, this additional argument may be
needed. Consult the Fiscal Printer Service vendor’s
documentation for details.

vatRate The rate associated with the VAT identifier.

Remarks Gets the rate associated with a given VAT identifier.

This method is only supported if CapSetVatTable is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The vatID parameter is invalid, or CapSetVatTable is
false.

See Also CapSetVatTable Property.

263 Methods (UML operations)
printDuplicateReceipt Method

Syntax printDuplicateReceipt ():
void { raises exception, use after open-claim-enable }

Remarks Prints a duplicate of a buffered transaction.

This method is only supported if CapDuplicateReceipt is true. This method will
succeed if both the CapDuplicateReceipt and DuplicateReceipt properties are
true.

This method resets the DuplicateReceipt property to false.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress. (Only
applies if AsyncMode is false.)

E_ILLEGAL The Fiscal Printer does not support duplicate receipts
(see the CapDuplicateReceipt property) or there is no
buffered transaction to print (see DuplicateReceipt
property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Monitor state.

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.

See Also CapDuplicateReceipt Property, DuplicateReceipt Property.

264
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
printFiscalDocumentLine Method

Syntax printFiscalDocumentLine (documentLine: string):
void { raises exception, use after open-claim-enable }

Parameter Description

documentLine String to be printed on the fiscal slip.

Remarks Prints a line of fiscal text to the slip station.

This method is only supported if CapSlpFiscalDocument is true.
This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress. (Only
applies if AsyncMode is false.)

E_ILLEGAL The Fiscal Printer does not support fiscal documents
(see the CapSlpFiscalDocument property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal
Document state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

See Also beginFiscalDocument Method, endFiscalDocument Method.

265 Methods (UML operations)
printFixedOutput Method

Syntax printFixedOutput (documentType: int32, lineNumber: int32, data: string):
void { raises exception, use after open-claim-enable }

Parameter Description

documentType Identifier of a document stored in the Fiscal Printer

lineNumber Number of the line in the document to print.

data String parameter for placement in printed line.

Remarks Prints a line of a fixed document to the print station specified in the
beginFixedOutput method. Each call prints a single line from a document by
merging the stored text with the parameter data. Within a document lines must be
printed sequentially. First and last lines are required; others may be optional.
This method is only supported if CapFixedOutput is true. The Fiscal Printer state
is set to FPTR_PS_FIXED_OUTPUT. This method is performed synchronously if
AsyncMode is false, and asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress. (Only
applies if AsyncMode is false.)

E_ILLEGAL The Fiscal Printer does not support fixed output (see the
CapFixedOutput property) or the lineNumber is
invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not in the Fixed Output state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

See Also beginFixedOutput Method, endFixedOutput Method

266
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
printNormal Method

Syntax printNormal (station: int32, data: string):
void { raises exception, use after open-claim-enable }

Parameter Description

station The Fiscal Printer station to be used. May be
FPTR_S_RECEIPT, FPTR_S_JOURNAL, or
FPTR_S_SLIP.

data The characters to be printed. May consist mostly of
printable characters, escape sequences, carriage returns
(13 decimal), and newline / line feeds (10 decimal) but
in many cases these are not supported.

Remarks Performs non-fiscal printing. Prints data on the Fiscal Printer station.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Special character values within Data are:

Value Meaning

Newline / Line Feed (\n)
Print any data in the line buffer, and feed to the next print
line. (A Carriage Return is not required in order to cause
the line to be printed.)

Carriage Return (\r) If a Carriage Return immediately precedes a Line Feed,
or if the line buffer is empty, then it is ignored.

Otherwise, the line buffer is printed and the Fiscal
Printer does not feed to the next print line. On some
Fiscal Printers, print without feed may be directly
supported. On others, a print may always feed to the next
line, in which case the Device will print the line buffer
and perform a reverse line feed if supported. If the Fiscal
Printer does not support either of these features, then
Carriage Return acts like a Line Feed.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The specified station does not exist. (See the
CapJrnPresent, CapRecPresent and CapSlpPresent
properties.)

E_BUSY Cannot perform while output is in progress. (Only
applies if AsyncMode is false.)

267 Methods (UML operations)
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Non-Fiscal
state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

See Also beginNonFiscal Method, endNonFiscal Method, AsyncMode Property.

268
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
printPeriodicTotalsReport Method

Syntax printPeriodicTotalsReport (date1: string, date2: string):
void { raises exception, use after open-claim-enable }

Parameter Description

date1 Starting date of report to print.

date2 Ending date of report to print.

Remarks Prints a report of totals for a range of dates on the receipt.
This method is always performed synchronously.

The dates are strings in the format “ddmmyyyyhhmm”, where:

dd day of the month (1 - 31)

mm month (1 - 12)

yyyy year (1997-)

hh hour (0-23)

mm minutes (0-59)

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this
state transition.

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.

ErrorCodeExtended = EFPTR_BAD_DATE:
One of the date parameters is invalid.

269 Methods (UML operations)
printPowerLossReport Method

Syntax printPowerLossReport ():
void { raises exception, use after open-claim-enable }

Remarks Prints on the receipt a report of a power failure that resulted in a loss of data stored
in the CMOS of the Fiscal Printer.

This method is only supported if CapPowerLossReport is true.

This method is always performed synchronously.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not support power loss reports
(see the CapPowerLossReport property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this
state transition.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.

See Also CapPowerLossReport Property.

270
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
printRecCash Method Added in Release 1.6

Syntax printRecCash (amount: currency):
void { raises exception, use after open-claim-enable }

Parameter Description

amount Amount to be incremented or decremented.

Remarks Prints a cash-in or cash-out receipt amount on the station defined by the
FiscalReceiptStation property.

This method is only allowed if CapFiscalReceiptType is true and the
FiscalReceiptType property is set to FPTR_RT_CASH_IN or
FPTR_RT_CASH_OUT and the fiscal Fiscal Printer is in the Fiscal Receipt state.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress.
(Only applies if AsyncMode is false.)

E_ILLEGAL The Fiscal Printer does not support this method.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt
state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, FiscalReceiptStation Property,
FiscalReceiptType Property.

271 Methods (UML operations)
printRecItem Method Updated in Release 1.6

Syntax printRecItem (description: string, price: currency, quantity: int32, vatInfo:
int32, unitPrice: currency, unitName: string):
void { raises exception, use after open-claim-enable }

Parameter Description

description Text describing the item sold.

price Price of the line item.

quantity Number of items. If zero, a single item is assumed.

vatInfo VAT rate identifier or amount. If not used a zero is to be
transferred.

unitPrice Price of each item. If not used a zero is to be transferred.

unitName Name of the unit i.e. “kg” or “ltr” or “pcs”. If not used
an empty string (““) is to be transferred

Remarks Prints a receipt item for a sold item on the station specified by the
FiscalReceiptStation property. If the quantity parameter is zero, then a single
item quantity will be assumed.

Minimum parameters are description and price or description, price, quantity, and
unitPrice. Most countries require quantity and vatInfo and some countries also
require unitPrice and unitName.

VatInfo parameter contains a VAT table identifier if CapHasVatTable is true.
Otherwise, it contains a VAT amount.

If CapPostPreLine is true additional application specific lines defined by the
PostLine and PreLine properties will be printed. After printing these lines
PostLine and PreLine will be reset to an empty string.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress.
(Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt
state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

272
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_BAD_ITEM_QUANTITY:
The quantity is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_PRICE:
The unit price is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a
reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_RECEIPT_TOTAL_OVERFLOW:
The receipt total has overflowed.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
AmountDecimalPlaces Property, FiscalReceiptStation Property,
PostLine Property, PreLine Property.

273 Methods (UML operations)
printRecItemAdjustment Method Updated in Release 1.6

Syntax printRecItemAdjustment (adjustmentType: int32, description: string,
amount: currency, vatInfo: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

adjustmentType Type of adjustment. See below for values.

description Text describing the adjustment.

amount Amount of the adjustment.

vatInfo VAT rate identifier or amount.

The adjustmentType parameter has one of the following values (Note: If currency
value, four decimal places are used):

Value Meaning

FPTR_AT_AMOUNT_DISCOUNT
Fixed amount discount. The amount parameter contains
a currency value.

FPTR_AT_AMOUNT_SURCHARGE
Fixed amount surcharge. The amount parameter
contains a currency value.

FPTR_AT_PERCENTAGE_DISCOUNT
Percentage discount. The amount parameter contains a
percentage value.

FPTR_AT_PERCENTAGE_SURCHARGE
Percentage surcharge. The amount parameter contains a
percentage value.

Remarks Applies and prints a discount or a surcharge to the last receipt item sold on the
station specified by the FiscalReceiptStation property. This discount may be
either a fixed currency amount or a percentage amount relating to the last item.

If CapOrderAdjustmentFirst is true, the method must be called before the
corresponding printRecItem method. If CapOrderAdjustmentFirst is false, the
method must be called after the printRecItem.

This discount/surcharge may be either a fixed currency amount or a percentage
amount relating to the last item. If the discount amount is greater than the receipt
subtotal, an error occurs since the subtotal can never be negative. In many
countries discount operations cause the printing of a fixed line of text expressing
the kind of operation that has been performed.

The VatInfo parameter contains a VAT table identifier if CapHasVatTable is
true. Otherwise, it contains a VAT amount.

Fixed amount discounts/surcharges are only supported if the property
CapAmountAdjustment is true. Percentage discounts are only supported if
CapPercentAdjustment is true.

If CapPostPreLine is true an additional application specific line defined by the
PreLine property will be printed. After printing this line PreLine will be reset to
an empty string.

274
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress.
(Only applies if AsyncMode is false.)

E_ILLEGAL One of the following errors occurred:
• The Fiscal Printer does not support fixed amount

adjustments (see the CapAmountAdjustment
property).

• The Fiscal Printer does not support percentage
discounts (see the CapPercentAdjustment
property).

• The adjustmentType parameter is invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt
state.
ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)
ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)
ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)
ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)
ErrorCodeExtended = FPTR_BAD_ITEM_AMOUNT:
The discount amount is invalid.
(Only applies if AsyncMode is false.)
ErrorCodeExtended =
EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a
reserved word. (Only applies if AsyncMode is false.)
ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
AmountDecimalPlaces Property, FiscalReceiptStation Property, PreLine
Property.

275 Methods (UML operations)
printRecItemFuel Method Added in Release 1.6

Syntax printRecItemFuel (description: string, price: currency, quantity: int32,
vatInfo: int32, unitPrice: currency, unitName: string, specialTax:
currency, specialTaxName: string):
void { raises exception, use after open-claim-enable }

Parameter Description

description Text describing the fuel product.

price Price of the fuel item.

quantity Number of items. If zero, a single item is assumed.

vatInfo VAT rate identifier or amount. If not used a zero is to be
transferred.

unitPrice Price of the fuel item per volume.

unitName Name of the volume unit, i.e., “ltr”. If not used an empty
string (““) is to be transferred

specialTax Special tax amount, e.g., road tax. If not used a zero is to
be transferred.

specialTaxName Name of the special tax.

Remarks Prints a receipt fuel item on the station specified by the FiscalReceiptStation
property. vatInfo parameter contains a VAT table identifier if CapHasVatTable
is true. Otherwise, it contains a VAT amount.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress.
(Only applies if AsyncMode is false.)

E_ILLEGAL This method is not supported.

276
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt
state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_BAD_ITEM_QUANTITY:
The quantity is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_PRICE:
The unit price is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a
reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_RECEIPT_TOTAL_OVERFLOW:
The receipt total has overflowed.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, FiscalReceiptStation Property.

277 Methods (UML operations)
printRecItemFuelVoid Method Added in Release 1.6

Syntax printRecItemFuelVoid (description: string, price: currency, vatInfo: int32,
specialTax: currency):
void { raises exception, use after open-claim-enable }

Parameter Description

description Text describing the fuel product.

price Price of the fuel item. If not used a zero is to be
transferred.

vatInfo VAT rate identifier or amount. If not used a zero is to be
transferred.

specialTax Special tax amount, e.g., road tax. If not used a zero is to
be transferred.

Remarks Called to void a fuel item on the station specified by the FiscalReceiptStation
property.

If CapOnlyVoidLastItem is true, only the last fuel item transferred to the Fiscal
Printer can be voided.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress.
(Only applies if AsyncMode is false.)

E_ILLEGAL This method is not supported.

278
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt
state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_PRICE:
The price is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a
reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method,
printRecItemFuel Method, CapOnlyVoidLastItem Property,
FiscalReceiptStation Property.

279 Methods (UML operations)
printRecMessage Method Updated in Release 1.6

Syntax printRecMessage (message: string):
void { raises exception, use after open-claim-enable }

Parameter Description

message Text message to print.

Remarks Prints a message on the fiscal receipt on the station specified by the
FiscalReceiptStation property. The length of an individual message is limited to
the number of characters given in the MessageLength property. The kind of
message to be printed is defined by the MessageType property.

This method is only supported if CapAdditionalLines is true. This method is only
supported when the Fiscal Printer is in the Fiscal Receipt Ending state.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress.
(Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not in the Fiscal Receipt Ending
state.
ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)
ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)
ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)
ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)
ErrorCodeExtended =
EFPTR_BAD_ITEM_DESCRIPTION:
The message is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
CapAdditionalLines Property, FiscalReceiptStation Property,
MessageLength Property, MessageType Property.

280
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
printRecNotPaid Method Updated in Release 1.6

Syntax printRecNotPaid (description: string, amount: currency):
void { raises exception, use after open-claim-enable }

Parameter Description

description Text describing the not paid amount.

amount Amount not paid.

Remarks Indicates a part of the receipt’s total to not be paid.

Some fixed text, along with the description, will be printed on the station defined
by the FiscalReceiptStation property to indicate that part of the receipt total has
not been paid. This method is only supported if CapAmountNotPaid is true. If
this method is successful, the PrinterState property will remain in
FPTR_PS_FISCAL_RECEIPT_TOTAL state or change to the value
FPTR_PS_FISCAL_RECEIPT_ENDING depending upon whether the entire
receipt total is now accounted for or not. This method is performed synchronously
if AsyncMode is false, and asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress.
(Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in either the Fiscal
Receipt or Fiscal Receipt Total state.
ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)
ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)
ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)
ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)
ErrorCodeExtended =
EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)
ErrorCodeExtended =
EFPTR_BAD_ITEM_AMOUNT:
The amount is invalid.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
AmountDecimalPlaces Property, FiscalReceiptStation Property.

281 Methods (UML operations)
printRecPackageAdjustment Method Added in Release 1.6

Syntax printRecPackageAdjustment (adjustmentType: int32,
description: string, vatAdjustment: string):
void { raises exception, use after open-claim-enable }

Parameter Description

adjustmentType Type of adjustment. See below for values.

description Text describing the adjustment.

vatAdjustment String containing a list of adjustment(s) for different
Vat(s).

The adjustmentType parameter has one of the following values:

Value Meaning

FPTR_AT_DISCOUNT Discount.

FPTR_AT_SURCHARGE Surcharge.

The vatAdjustment parameter consists of ASCII numeric semicolon delimited
pairs of values which denote each the VAT identifier of the package item to be
adjusted and adjustment amount, separated by a comma.

The number of pairs is delimited by the NumVatRates property.

Remarks Called to give an adjustment for a package of some items booked before. This
adjustment (discount/surcharge) may be either a fixed currency amount or a
percentage amount relating to items combined to an adjustment package.

Each item of the package must be transferred before.

Fixed amount adjustments are only supported if CapPackageAdjustment is true.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress.
(Only applies if AsyncMode is false.)

E_ILLEGAL The Fiscal Printer does not support package adjustments
(see the CapPackageAdjustment property), or the
adjustmentType parameter is invalid.

282
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt
state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

See Also printRecPackageAdjustVoid Method, CapPackageAdjustment Property.

283 Methods (UML operations)
printRecPackageAdjustVoid Method Added in Release 1.6

Syntax printRecPackageAdjustVoid (adjustmentType: int32,
vatAdjustment: string):
void { raises exception, use after open-claim-enable }

Parameter Description

adjustmentType Type of adjustment. See below for values.

vatAdjustment String containing a list of adjustment(s) to be voided for
different VAT(s).

The adjustmentType parameter has one of the following values:

Value Meaning

FPTR_AT_DISCOUNT Discount.

FPTR_AT_SURCHARGE Surcharge.

The vatAdjustment parameter consists of ASCII numeric semicolon delimited
pairs of values which denote each the VAT identifier of the package item to be
adjusted and adjustment amount, separated by a comma.

The number of pairs is delimited by the NumVatRates property.

Remarks Called to void the adjustment for a package of some items. This adjustment
(discount/surcharge) may be either a fixed currency amount or a percentage
amount relating to the current receipt subtotal.

Fixed amount void adjustments are only supported if CapPackageAdjustment is
true.

If CapPostPreLine is true an additional application specific line defined by the
PreLine property will be printed. After printing this line PreLine will be reset to
an empty string.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress.
(Only applies if AsyncMode is false.)

E_ILLEGAL The Fiscal Printer does not support package adjustments
(see the CapPackageAdjustment property), or the
adjustmentType parameter is invalid.

284
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt
state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

See Also printRecPackageAdjustment Method, CapPackageAdjustment Property,
PreLine Property.

285 Methods (UML operations)
printRecRefund Method Updated in Release 1.6

Syntax printRecRefund (description: string, amount: currency, vatInfo: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

description Text describing the refund.

amount Amount of the refund.

vatInfo VAT rate identifier or amount.

Remarks Processes a refund. The amount is positive, but it is printed as a negative number
and the totals registers are decremented.

Some fixed text, along with the description, will be printed on the station defined
by the FiscalReceiptStation property to indicate that a refund has occurred.

The vatInfo parameter contains a VAT table identifier if CapHasVatTable is true.
Otherwise it, contains a VAT amount.

If CapPostPreLine is true an additional application specific line defined by the
PreLine property will be printed. After printing this line PreLine will be reset to
an empty string.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress.
(Only applies if AsyncMode is false.)

286
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt
state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_BAD_ITEM_AMOUNT:
The amount is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT information is invalid.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
AmountDecimalPlaces Property, FiscalReceiptStation Property,
PreLine Property.

287 Methods (UML operations)
printRecRefundVoid Method Added in Release 1.6

Syntax printRecRefundVoid (description: string, amount: currency,
vatInfo: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

description Text describing the refund.

amount Amount of the voided refund.

vatInfo VAT rate identifier or amount.

Remarks Called to process a void of a refund.

The amount is positive and the totals registers are incremented.

Some fixed text, along with the description, will be printed on the station defined
by the FiscalReceiptStation property to indicate that a void of a refund has
occurred.

The vatInfo parameter contains a VAT table identifier if CapHasVatTable is true.
Otherwise it, contains a VAT amount.

If CapOnlyVoidLastItem is true, only the last refund item transferred to the
Fiscal Printer can be voided.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress.
(Only applies if AsyncMode is false.)

288
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt
state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_BAD_ITEM_AMOUNT:
The amount is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT information is invalid.
(Only applies if AsyncMode is false.)

See Also printRecRefund Method, FiscalReceiptStation Property.

289 Methods (UML operations)
printRecSubtotal Method Updated in Release 1.6

Syntax printRecSubtotal (amount: currency):
void { raises exception, use after open-claim-enable }

Parameter Description

amount Amount of the subtotal.

Remarks Checks and prints the current receipt subtotal on the station defined by the
FiscalReceiptStation property.

If CapCheckTotal is true, the amount is compared to the subtotal calculated by
the Fiscal Printer. If the subtotals match, the subtotal is printed on the station
defined by the FiscalReceiptStation property. If the results do not match, the
receipt is automatically canceled. If CapCheckTotal is false, then the subtotal is
printed on the station defined by the FiscalReceiptStation property and the
parameter is never compared to the subtotal computed by the Fiscal Printer.

If CapPostPreLine is true an additional application specific line defined by the
PostLine property will be printed. After printing this line PostLine will be reset
to an empty string.

If this method compares the application’s subtotal with the Fiscal Printer’s subtotal
and they do not match, the PrinterState property will be changed to
FPTR_PS_FISCAL_RECEIPT_ENDING.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress.
(Only applies if AsyncMode is false.)

290
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt
state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_BAD_ITEM_AMOUNT:
The subtotal from the application does not match the
subtotal computed by the Fiscal Printer.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_NEGATIVE_TOTAL:
The total computed by the Fiscal Printer is less than
zero.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
AmountDecimalPlaces Property, FiscalReceiptStation Property,
PostLine Property.

291 Methods (UML operations)
printRecSubtotalAdjustment Method Updated in Release 1.6

Syntax printRecSubtotalAdjustment (adjustmentType: int32,
description: string, amount: currency):
void { raises exception, use after open-claim-enable }

Parameter Description

adjustmentType Type of adjustment. See below for values.

description Text describing the discount or surcharge.

amount Amount of the adjustment (discount or surcharge).

The adjustmentType parameter has one of the following values (Note: If currency
value, four decimal places are used):

Value Meaning

FPTR_AT_AMOUNT_DISCOUNT
Fixed amount discount. The amount parameter contains
a currency value.

FPTR_AT_AMOUNT_SURCHARGE
Fixed amount surcharge. The amount parameter
contains a currency value.

FPTR_AT_PERCENTAGE_DISCOUNT
Percentage discount. The amount parameter contains a
percentage value.

FPTR_AT_PERCENTAGE_SURCHARGE
Percentage surcharge. The amount parameter contains a
percentage value.

Remarks Applies and prints a discount/surcharge to the current receipt subtotal on the
station defined by the FiscalReceiptStation property. This discount/surcharge
may be either a fixed currency amount or a percentage amount relating to the
current receipt subtotal.

If the discount/surcharge amount is greater than the receipt subtotal, an error
occurs since the subtotal can never be negative.

In many countries discount/surcharge operations cause the printing of a fixed line
of text expressing the kind of operation that has been performed.

Fixed amount discounts are only supported if CapSubAmountAdjustment is
true. Percentage discounts are only supported if CapSubPercentAdjustment is
true.

If CapPostPreLine is true an additional application specific line defined by the
PreLine property will be printed. After printing this line PreLine will be reset to
an empty string.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

292
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress.
(Only applies if AsyncMode is false.)

E_ILLEGAL One of the following errors occurred:
• Fixed amount discounts are not supported

 (see the CapSubAmountAdjustment property).

• Percentage discounts are not supported
(see the CapSubPercentAdjustment property).

• The adjustmentType parameter is invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt
state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_BAD_ITEM_AMOUNT:
The discount amount is invalid.
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_BAD_ITEM_DESCRIPTION:
The discount description is too long or contains a
reserved word.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
AmountDecimalPlaces Property, FiscalReceiptStation Property,
PreLine Property.

293 Methods (UML operations)
printRecSubtotalAdjustVoid Method Added in Release 1.6

Syntax printRecSubtotalAdjustVoid (adjustmentType: int32,
amount: currency):
void { raises exception, use after open-claim-enable }

Parameter Description

adjustmentType Type of adjustment. See below for values.

amount Amount of the adjustment (discount or surcharge).

The adjustmentType parameter has one of the following values (Note: If currency
value, four decimal places are used):

Value Meaning

FPTR_AT_AMOUNT_DISCOUNT
Fixed amount discount. The amount parameter contains
a currency value.

FPTR_AT_AMOUNT_SURCHARGE
Fixed amount surcharge. The amount parameter
contains a currency value.

FPTR_AT_PERCENTAGE_DISCOUNT
Percentage discount. The amount parameter contains a
percentage value.

FPTR_AT_PERCENTAGE_SURCHARGE
Percentage surcharge. The amount parameter contains a
percentage value.

Remarks Called to void a preceding subtotal adjustment on the station defined by the
FiscalReceiptStation property. This discount/surcharge may be either a fixed
currency amount or a percentage amount relating to the current receipt subtotal.

Fixed amount void discounts are only supported if CapSubAmountAdjustment
is true. Percentage void discounts are only supported if the property
CapSubPercentAdjustment is true.

If CapPostPreLine is true an additional application specific line defined by the
PreLine property will be printed. After printing this line PreLine will be reset to
an empty string.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

294
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress.
(Only applies if AsyncMode is false.)

E_ILLEGAL One of the following errors occurred:
• Fixed amount discounts are not supported

 (see the CapSubAmountAdjustment property).

• Percentage discounts are not supported
(see the CapSubPercentAdjustment property).

• The adjustmentType parameter is invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt
state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_BAD_ITEM_AMOUNT:
The discount amount is invalid.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
AmountDecimalPlaces Property, FiscalReceiptStation Property,
PreLine Property.

295 Methods (UML operations)
printRecTaxID Method Added in Release 1.6

Syntax printRecTaxID (taxId: string):
void { raises exception, use after open-claim-enable }

Parameter Description

taxId Customer identification with identification characters
and tax number.

Remarks Called to print the customers tax identification on the station defined by the
FiscalReceiptStation property.

This method is only supported when the Fiscal Printer is in the Fiscal Receipt
Ending state.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress.
(Only applies if AsyncMode is false.)

E_ILLEGAL The Fiscal Printer does not support printing tax
identifications.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt
Ending state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

See Also FiscalReceiptStation Property.

296
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
printRecTotal Method Updated in Release 1.6

Syntax printRecTotal (total: int32, payment: int32, description: string):
void { raises exception, use after open-claim-enable }

Parameter Description

total Application computed receipt total.

payment Amount of payment tendered.

description Text description of the payment or the index of a
predefined payment description.

Remarks Checks and prints the current receipt total on the station defined by the
FiscalReceiptStation property and to tender a payment.

If CapCheckTotal is true, the total is compared to the total calculated by the
Fiscal Printer. If the totals match, the total is printed on both the receipt and journal
along with some fixed text. If the results do not match, the receipt is automatically
canceled. If CapCheckTotal is false, then the total is printed on the receipt and
journal and the parameter is never compared to the total computed by the Fiscal
Printer.

If CapPredefinedPaymentLines is true, then the description parameter contains
the index of one of the Fiscal Printer’s predefined payment descriptions. The index
is typically a single character of the alphabet. The set of allowed values for this
index is to be described in the description of the service and stored in the
PredefinedPaymentLines property.

If payment = total, a line containing the description and payment is printed. The
PrinterState property will be set to FPTR_PS_FISCAL_RECEIPT_ENDING.

If payment > total, a line containing the description and payment is printed
followed by a second line containing the change due. If CapChangeDue property
is true, a description for the change due defined by the ChangeDue property is
printed as the second line. The PrinterState property will be set to
FPTR_PS_FISCAL_RECEIPT_ENDING.

If payment < total, a line containing the description and payment is printed. Since
the entire receipt total has not yet been tendered, the PrinterState property will be
set to FPTR_PS_FISCAL_RECEIPT_TOTAL.

If payment = 0, no line containing the description and payment is printed. The
PrinterState property will be set to FPTR_PS_FISCAL_RECEIPT_TOTAL.

If CapAdditionalLines is false, then receipt trailer lines, fiscal logotype and
receipt cut are executed after the last total line, whenever receipt’s total became
equal to the payment from the application. Otherwise these lines are printed calling
the endFiscalReceipt method.

If CapPostPreLine is true an additional application specific line defined by the
PostLine property will be printed. After printing this line PostLine will be reset
to an empty string.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

297 Methods (UML operations)
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress.
(Only applies if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt
state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_BAD_ITEM_AMOUNT:
• The application computed total does not match the

Fiscal Printer computed total, or
• the total parameter is invalid, or
• the payment parameter is invalid
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_NEGATIVE_TOTAL:
The computed total is less than zero.
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_WORD_NOT_ALLOWED:
The description contains the reserved word.

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
PredefinedPaymentLines Property, AmountDecimalPlaces Property,
ChangeDue Property, FiscalReceiptStation Property, PostLine Property.

298
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
printRecVoid Method Updated in Release 1.6

Syntax printRecVoid (description: string):
void { raises exception, use after open-claim-enable }

Parameter Description

description Text describing the void.

Remarks Cancels the current receipt.

The receipt is annulled but it is not physically canceled from the Fiscal Printer’s
fiscal memory since fiscal receipts are printed with an increasing serial number
and totals are accumulated in registers. When a receipt is canceled, its subtotal is
subtracted from the totals registers, but it is added to the canceled receipt register.

Some fixed text, along with the description, will be printed on the station defined
by the FiscalReceiptStation property to indicate that the receipt has been
canceled.

Normally only a receipt with at least one transaction can be voided. If
CapEmptyReceiptIsVoidable is true also an empty receipt (only the
beginFiscalReceipt method was called) can be voided.

If this method is successful, the PrinterState property will be changed to
FPTR_PS_FISCAL_RECEIPT_ENDING.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress.
(Only applies if AsyncMode is false.)

299 Methods (UML operations)
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt
state.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)

ErrorCodeExtended =
EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods
CapEmptyReceiptIsVoidable Property, FiscalReceiptStation Property.

300
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
printRecVoidItem Method Updated in Release 1.6

Syntax printRecVoidItem (description: string, amount: currency,
quantity: int32, adjustmentType: int32,
adjustment: currency, vatInfo: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

description Text description of the item void.

amount Amount of item to be voided.

quantity Quantity of item to be voided.

adjustmentType Type of adjustment. See below for values.

adjustment Amount of the adjustment (discount or surcharge).

vatInfo VAT rate identifier or amount.

The adjustmentType parameter has one of the following values (Note: If currency
value, four decimal places are used):

Value Meaning

FPTR_AT_AMOUNT_DISCOUNT
Fixed amount discount. The adjustment parameter
contains a currency value.

FPTR_AT_AMOUNT_SURCHARGE
Fixed amount surcharge. The adjustment parameter
contains a currency value.

FPTR_AT_PERCENTAGE_DISCOUNT
Percentage discount. The adjustment parameter contains
a percentage value.

FPTR_AT_PERCENTAGE_SURCHARGE
Percentage surcharge. The adjustment parameter
contains a percentage value.

Remarks Cancels an item that has been added to the receipt and prints a void description on
the station defined by the FiscalReceiptStation property.

amount is a positive number, it will be printed as a negative and will be
decremented from the totals registers.

The vatInfo parameter contains a VAT table identifier if CapHasVatTable is true.
Otherwise, it contains a VAT amount. Fixed amount discounts/surcharges are only
supported if CapAmountAdjustment is true. Percentage discounts are only
supported if CapPercentAdjustment is true.

If CapOnlyVoidLastItem is true, only the last item transferred to the Fiscal
Printer can be voided.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

301 Methods (UML operations)
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress.
(Only applies if AsyncMode is false.)

E_ILLEGAL One of the following errors occurred:
• Fixed amount adjustments are not supported

(see the CapAmountAdjustment property), or
• Percentage discounts are not supported

(see the CapPercentAdjustment property), or
• The adjustmentType parameter is invalid.

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Fiscal Receipt state.
ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.
(Only applies if AsyncMode is false.)
ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.
(Only applies if AsyncMode is false.)
ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.
(Only applies if AsyncMode is false.)
ErrorCodeExtended = EFPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Only applies if AsyncMode is false.)
ErrorCodeExtended = EFPTR_BAD_ITEM_AMOUNT:
The amount is invalid.
(Only applies if AsyncMode is false.)
ErrorCodeExtended = EFPTR_BAD_ITEM_QUANTITY:
The quantity is invalid.
(Only applies if AsyncMode is false.)
ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT information is invalid.
(Only applies if AsyncMode is false.)
ErrorCodeExtended =
EFPTR_BAD_ITEM_DESCRIPTION:
The description is too long or contains a reserved word.
(Only applies if AsyncMode is false.
ErrorCodeExtended = EFPTR_NEGATIVE_TOTAL:
The computed total is less than zero.
(Only applies if AsyncMode is false.)

See Also beginFiscalReceipt Method, endFiscalReceipt Method, printRec… Methods,
CapOnlyVoidLastItem Property, AmountDecimalPlaces Property,
FiscalReceiptStation Property.

302
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
printReport Method

Syntax printReport (reportType: int32, startNum: string, endNum: string):
void { raises exception, use after open-claim-enable }

Parameter Description

reportType The kind of report to print.

startNum ASCII string identifying the starting record in Fiscal
Printer memory from which to begin printing

endNum ASCII string identifying the final record in Fiscal Printer
memory at which printing is to end. See reportType
table below to find out the exact meaning of this
parameter.

The reportType parameter has one of the following values:

Value Meaning

FPTR_RT_ORDINAL Prints a report between two Z reports. If both startNum
and endNum are valid and endNum > startNum, then a
report of the period between startNum and endNum will
be printed. If startNum is valid and endNum is zero, then
a report of relating only to startNum will be printed.

FPTR_RT_DATE Prints a report between two dates. The dates are strings
in the format “ddmmyyyyhhmm”, where:

dd day of the month (01 - 31)

mm month (01 - 12)

yyyy year (1997- ...)

hh hour (00-23)

mm minutes (00-59)

Remarks Prints a report of the fiscal EPROM contents on the receipt that occurred between
two end points.

This method is always performed synchronously.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress.

E_ILLEGAL One of the following errors occurred:

• The reportType parameter is invalid, or
• One or both of startNum and endNum are invalid, or
• startNum > endNum.

303 Methods (UML operations)
E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this state
transition.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.

printXReport Method

Syntax printXReport ():
void { raises exception, use after open-claim-enable }

Remarks Prints a report of all the daily fiscal activities on the receipt. No data will be written
to the fiscal EPROM as a result of this method invocation.

This method is only supported if CapXReport is true. This method is always
performed synchronously.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not support X reports (see the
CapXReport property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this
state transition.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.

See Also CapXReport Property.

304
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
printZReport Method Updated in Release 1.6

Syntax printZReport ():
void { raises exception, use after open-claim-enable }

Remarks Prints a report of all the daily fiscal activities on the receipt. Data will be written
to the fiscal EPROM as a result of this method invocation.

Since running printZReport is implicitly a fiscal end of day function, the
DayOpened property will be set to false.

This method is always performed synchronously.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer’s current state does not allow this
state transition.

ErrorCodeExtended = EFPTR_COVER_OPEN:
The Fiscal Printer cover is open.

ErrorCodeExtended = EFPTR_JRN_EMPTY:
The journal station is out of paper.

ErrorCodeExtended = EFPTR_REC_EMPTY:
The receipt station is out of paper.

See Also beginFiscalDocument Method, beginFiscalReceipt Method,
DayOpened Property.

305 Methods (UML operations)
resetPrinter Method

Syntax resetPrinter ():
void { raises exception, use after open-claim-enable }

Remarks Forces the Fiscal Printer to return to Monitor state. This forces any interrupted
operations to be canceled and closed. This method must be invoked when the
Fiscal Printer is not in a Monitor state after a successful call to the claim method
and successful setting of the DeviceEnabled property to true. This typically
happens if a power failures occurs during a fiscal operation.

Calling this method does not close the Fiscal Printer, i.e. does not force a Z report
to be printed.

The Device will handle this command as follows:

• If the Fiscal Printer was in either Fiscal Receipt, Fiscal Receipt Total or Fiscal
Receipt Ending state, the receipt will be ended without updating any registers.

• If the Fiscal Printer was in a non-fiscal state, the Fiscal Printer will exit that
state.

• If the Fiscal Printer was in the training state, the Fiscal Printer will exit the
training state.

This method is always performed synchronously.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

306
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
setCurrency Method Added in Release 1.6

Syntax setCurrency (newCurrency: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

newCurrency The new currency.

The newCurrency parameter has one of the following values:

Value Meaning

FPTR_SC_EURO Change to the EURO currency.

Remarks Called to change to a new currency, e.g., EURO.

This method is only supported if CapSetCurrency is true and can only be called
while DayOpened is false.

The actual currency is kept in the ActualCurrency property.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:
• The Fiscal Printer does not support this method (see

the CapSetCurrency property), or
• The Fiscal Printer has already begun the fiscal day

(see the DayOpened property), or
• the specified newCurrency value is not valid.

See Also ActualCurrency Property, CapSetCurrency Property, DayOpened Property.

307 Methods (UML operations)
setDate Method

Syntax setDate (date: string):
void { raises exception, use after open-claim-enable }

Parameter Description

date Date and time as a string.

Remarks Sets the Fiscal Printer’s date and time.

The date and time is passed as a string in the format “ddmmyyyyhhmm”, where:

dd day of the month (1 - 31)

mm month (1 - 12)

yyyy year (1997-)

hh hour (0-23)

mm minutes (0-59)

This method can only be called while DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer has already begun the fiscal day (see
the DayOpened property).

E_EXTENDED ErrorCodeExtended = EFPTR_BAD_DATE:
One of the entries of the date parameters is invalid.

See Also DayOpened Property.

308
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
setHeaderLine Method Updated in Release 1.6

Syntax setHeaderLine (lineNumber: int32, text: string, doubleWidth: boolean):
void { raises exception, use after open-claim-enable }

Parameter Description

lineNumber Line number of the header line to set.

text Text to which to set the header line.

doubleWidth Print this line in double wide characters.

Remarks Sets one of the fiscal receipt header lines. The text set by this method will be stored
by the Fiscal Printer and retained across power losses.

If CapMultiContractor property is true, header lines can be defined for different
contractors specified by the ContractorId property.

The lineNumber parameter must be between 1 and the value of the
NumHeaderLines property. If text is an empty string (““), then the header line is
unset and will not be printed. The doubleWidth characters will be printed if the
Fiscal Printer supports them. See the CapDoubleWidth property to determine if
they are supported. This method is only supported if CapSetHeader is true. This
method can only be called while DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:
• The Fiscal Printer does not support setting header

lines (see the CapSetHeader property), or

• The Fiscal Printer has already begun the fiscal day
(see the DayOpened property), or

• the lineNumber parameter was invalid.

E_EXTENDED ErrorCodeExtended =
EFPTR_BAD_ITEM_DESCRIPTION:
The text parameter is too long or contains a reserved
word.

See Also CapDoubleWidth Property, CapMultiContractor Property, CapSetHeader
Property, ContractorId Property, DayOpened Property, NumHeaderLines
Property.

309 Methods (UML operations)
setPOSID Method

Syntax setPOSID (POSID: string, cashierID: string):
void { raises exception, use after open-claim-enable }

Parameter Description

POSID Identifier for the POS system.

cashierID Identifier of the current cashier.

Remarks Sets the POS and cashier identifiers. These values will be printed when each fiscal
receipt is closed.

This method is only supported if CapSetPOSID is true. This method can only be
called while DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:
• The Fiscal Printer does not support setting the POS

identifier (see the CapSetPOSID property), or

• The printer has already begun the fiscal day (see the
DayOpened property), or

• Either the POSID or cashierID parameter is invalid.

See Also CapSetPOSID Property, DayOpened Property.

310
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
setStoreFiscalID Method

Syntax setStoreFiscalID (ID: string):
void { raises exception, use after open-claim-enable }

Parameter Description

ID Fiscal identifier.

Remarks Sets the store fiscal ID. This value is retained by the Fiscal Printer even after power
failures. This ID is automatically printed by the Fiscal Printer after the fiscal
receipt header lines.

This method is only supported if CapSetStoreFiscalID is true. This method can
only be called while DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support setting the store
fiscal identifier (see the CapSetStoreFiscalID
property), or

• The Fiscal Printer has already begun the fiscal day
(see the DayOpened property), or

• The ID parameter was invalid.

See Also CapSetStoreFiscalID Property, DayOpened Property.

311 Methods (UML operations)
setTrailerLine Method

Syntax setTrailerLine (lineNumber: int32, text: string, doubleWidth: boolean):
void { raises exception, use after open-claim-enable }

Parameter Description

lineNumber Line number of the trailer line to set.

text Text to which to set the trailer line.

doubleWidth Print this line in double wide characters.

Remarks Sets one of the fiscal receipt trailer lines. The text set by this method will be stored
by the Fiscal Printer and retained across power losses.

The lineNumber parameter must be between 1 and the value of the
NumTrailerLines property. If text is an empty string (““), then the trailer line is
unset and will not be printed. The doubleWidth characters will be printed if the
Fiscal Printer supports them. See the CapDoubleWidth property to determine if
they are supported. This method is only supported if CapSetTrailer is true. This
method can only be called while DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support setting the receipt
trailer lines (see the CapSetTrailer property), or

• The Fiscal Printer has already begun the fiscal day
(see the DayOpened property), or

• the lineNumber parameter was invalid.

E_EXTENDED ErrorCodeExtended =
EFPTR_BAD_ITEM_DESCRIPTION:
The text parameter is too long or contains a reserved
word.

See Also CapDoubleWidth Property, CapSetTrailer Property, DayOpened Property,
NumTrailerLines Property.

312
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
setVatTable Method

Syntax setVatTable ():
void { raises exception, use after open-claim-enable }

Remarks Sends the VAT table built inside the Service to the Fiscal Printer. The VAT table
is built one entry at a time using the setVatValue method.

This method is only supported if CapHasVatTable is true. This method can only
be called while DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support VAT tables (see
the CapHasVatTable property), or

• The Fiscal Printer has already begun the fiscal day
(see the DayOpened property).

See Also CapHasVatTable property, DayOpened property, setVatValue Method.

313 Methods (UML operations)
setVatValue Method

Syntax setVatValue (vatID: int32, vatValue: string):
void { raises exception, use after open-claim-enable }

Parameter Description

vatID Index of the VAT table entry to set.

vatValue Tax value as a percentage.

Remarks Sets the value of a specific VAT class in the VAT table. The VAT table is built
one entry at a time in the Service using this method. The entire table is then sent
to the Fiscal Printer at one time using the setVatTable method.

This method is only supported if CapHasVatTable is true. This method can only
be called while DayOpened is false.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:

• The Fiscal Printer does not support VAT tables (see
the CapHasVatTable property), or

• The Fiscal Printer has already begun the fiscal day
(see the DayOpened property), or

• The Fiscal Printer does not support changing an
existing VAT value.

See Also setVatTable Method.

314
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
verifyItem Method

Syntax verifyItem (itemName: string, vatID: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

itemName Item to be verified.

vatID VAT identifier of the item.

Remarks Compares itemName and its vatID with the values stored in the Fiscal Printer.

This method is only supported if CapHasVatTable is true. This method can only
be called while the Fiscal Printer is in the Item List state.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Fiscal Printer does not support VAT tables (see the
CapHasVatTable property).

E_EXTENDED ErrorCodeExtended = EFPTR_WRONG_STATE:
The Fiscal Printer is not currently in the Item List state.

ErrorCodeExtended =
EFPTR_BAD_ITEM_DESCRIPTION:
The item name is too long or contains a reserved word.
(Only applies if AsyncMode is false.)

ErrorCodeExtended = EFPTR_BAD_VAT:
The VAT parameter is invalid.
(Only applies if AsyncMode is false.)

See Also CapHasVatTable property, setVatTable Method.

315 Events (UML interfaces)
Events (UML interfaces)

DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific Fiscal Printer Service to provide events to the
application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Fiscal Printer devices which may not have
any knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.

ErrorEvent Updated in Release 1.6

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a Fiscal Printer error has been detected and that a
suitable response by the application is necessary to process the error condition.

Attributes This event contains the following properties:

Attributes Type Description

ErrorCode int32 Result code causing the error event. See a list of Error
Codes on page 16.

ErrorCodeExtended
int32 Extended Error code causing the error event. If

ErrorCode is E_EXTENDED, then see values below.

316
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error, and is set to EL_OUTPUT
indicating that the error occurred while processing
asynchronous output.

ErrorResponse int32 Error response, whose default value may be overridden
by the application (i.e., this property is settable). See
values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the
following values:

Value Meaning

EFPTR_COVER_OPEN The Fiscal Printer cover is open.

EFPTR_JRN_EMPTY The journal station is out of paper.

EFPTR_REC_EMPTY The receipt station is out of paper.

EFPTR_SLP_EMPTY A form is not inserted in the slip station.

EFPTR_WRONG_STATE The requested method could not be executed in
the Fiscal Printer’s current state.

EFPTR_TECHNICAL_ASSISTANCE
The Fiscal Printer has encountered a severe
error condition. Calling for Fiscal Printer
technical assistance is required.

EFPTR_CLOCK_ERROR The Fiscal Printer’s internal clock has failed.

EFPTR_FISCAL_MEMORY_FULL
The Fiscal Printer’s fiscal memory has been
exhausted.

EFPTR_FISCAL_MEMORY_DISCONNECTED
The Fiscal Printer’s fiscal memory has been
disconnected.

EFPTR_FISCAL_TOTALS_ERROR
The Grand Total in working memory does not
match the one in the EPROM.

EFPTR_BAD_ITEM_QUANTITY

The Quantity parameter is invalid.

EFPTR_BAD_ITEM_AMOUNT The Amount parameter is invalid.

EFPTR_BAD_ITEM_DESCRIPTION
The Description parameters is either to long,
contains illegal characters or contains the
reserved word.

EFPTR_RECEIPT_TOTAL_OVERFLOW
The receipt total has overflowed.

EFPTR_BAD_VAT The Vat parameter is invalid.

EFPTR_BAD_PRICE The Price parameter is invalid.

EFPTR_NEGATIVE_TOTAL The Fiscal Printer’s computed total or subtotal
is less than zero.

317 Events (UML interfaces)
EFPTR_MISSING_DEVICES Some of the other devices which according to
the local fiscal legislation are to be connected
has been disconnected. In some countries in
order to use a fiscal Fiscal Printer a full set of
peripheral devices are to be connected to the
POS (such as cash drawer and customer
display). In case one of these devices is not
present sales are not allowed.

EFPTR_BAD_LENGTH The length of the string to be printed as post or
pre line is too long.

EFPTR_MISSING_SET_CURRENCY
The Fiscal Printer is expecting the activation of
a new currency.

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER_CLEAR Clear the asynchronous output or buffered output data.
The error state is exited.

ER_RETRY Retry the asynchronous output. The error state is exited.
The default.

Remarks Enqueued when an error is detected and the Service’s State transitions into the
error state. This event is not delivered until DataEventEnabled is true, so that
proper application sequencing occurs.

See Also “Device Output Models” on page 21, “Device States” on page 26.

OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the
OutputID attribute has completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description

OutputID int32 The ID number of the asynchronous output request that
is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service
has confirmation that is was processed by the device successfully.

See Also “Device Output Models” on page 21.

318
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that a Fiscal Printer has had an operation status change.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates the status change, and has one of the
following values:

Value Meaning

FPTR_SUE_COVER_OPEN Fiscal Printer cover is open.

FPTR_SUE_COVER_OK Fiscal Printer cover is closed.

FPTR_SUE_JRN_EMPTY No journal paper.

FPTR_SUE_JRN_NEAREMPTYJournal paper is low.

FPTR_SUE_JRN_PAPEROK Journal paper is ready.

FPTR_SUE_REC_EMPTY No receipt paper.

FPTR_SUE_REC_NEAREMPTYReceipt paper is low.

FPTR_SUE_REC_PAPEROK Receipt paper is ready.

FPTR_SUE_SLP_EMPTY No slip form.

FPTR_SUE_SLP_NEAREMPTYAlmost at the bottom of the slip form.

FPTR_SUE_SLP_PAPEROK Slip form is inserted.

FPTR_SUE_IDLE All asynchronous output has finished, either
successfully or because output has been
cleared. The Fiscal Printer State is now
S_IDLE. The FlagWhenIdle property must be
true for this event to be delivered, and the
property is automatically reset to false just
before the event is delivered.

Note that Release 1.3 added Power State
Reporting with additional Power reporting
StatusUpdateEvent values. See
“StatusUpdateEvent” on page 56.

Remarks Enqueued when a significant status event has occurred.

See Also “Events” on page 15.

C H A P T E R 8

Hard Totals

This Chapter defines the Hard Totals device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 Not Supported

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.2 Not Supported

DataEventEnabled: boolean { read-write } 1.0 Not Supported

DeviceEnabled: boolean { read-write } 1.0 open

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 Not Supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open

320
UnifiedPOS Retail Peripheral Architecture Chapter 8

Hard Totals
Properties (Continued)

Specific Type Mutability Version May Use After

CapErrorDetection: boolean { read-only } 1.0 open

CapSingleFile: boolean { read-only } 1.0 open

CapTransactions: boolean { read-only } 1.0 open

FreeData: int32 { read-only } 1.0 open & enable

NumberOfFiles: int32 { read-only } 1.0 open & enable

TotalsSize: int32 { read-only } 1.0 open & enable

TransactionInProgress: boolean { read-only } 1.0 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, enable }a

1.0

clearInput ():
void { }

Not
supported

clearOutput ():
void { }

Not
supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

Specific

beginTrans ():
void { raises exception, use after open, enable }

1.0

claimFile (hTotalsFile: int32, timeout: int32):
void { raises exception, use after open, enable } b

1.0

commitTrans ():
void { raises exception, use after open, enable }

1.0

create (fileName: string, inout hTotalsFile: int32, size: int32,
errorDetection: boolean):
void { raises exception, use after open, enable } a

1.0

delete (fileName: string):
void { raises exception, use after open, enable } b

1.0

321 Summary
find (fileName: string, inout hTotalsFile: int32, inout size: int32):
void { raises exception, use after open, enable } a

1.0

findByIndex (index: int32, inout fileName: string):
void { raises exception, use after open, enable } a

1.0

read (hTotalsFile: int32, inout data: binary, offset: int32, count: int32):
void { raises exception, use after open, enable } b

1.0

recalculateValidationData (hTotalsFile: int32):
void { raises exception, use after open, enable } b

1.0

releaseFile (hTotalsFile: int32):
void { raises exception, use after open, enable }

1.0

rename (hTotalsFile: int32, fileName: string):
void { raises exception, use after open, enable } b

1.0

rollback ():
void { raises exception, use after open, enable }

1.0

setAll (hTotalsFile: int32, value: byte):
void { raises exception, use after open, enable } b

1.0

validateData (hTotalsFile: int32):
void { raises exception, use after open, enable } b

1.0

write (hTotalsFile: int32, data: binary, offset: int32, count: int32):
void { raises exception, use after open, enable } b

1.0

a. Also requires that no other application has claimed the hard totals device.
b. Also requires that no other application has claimed the hard totals device or

the file on which this method acts.

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not Supported

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not Supported

upos::events::OutputCompleteEvent Not Supported

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }

322
UnifiedPOS Retail Peripheral Architecture Chapter 8

Hard Totals
General Information

The Hard Totals programmatic name is “HardTotals”.

Capabilities

The Hard Totals device has the following minimal set of capabilities:

• Supports at least one totals file with the name “” (the empty string) in an area
of totals memory. Each totals file is read and written as if it were a sequence
of byte data.

• Creates each totals file with a fixed size and may be deleted, initialized, and
claimed for exclusive use.

The Hard Totals device may have the following additional capabilities:

• Supporting additional named totals files. They share some characteristics of a
file system with only a root directory level. In addition to the minimal
capabilities listed above, each totals file may also be renamed.

• Supporting transactions, with begin and commit operations, plus rollback.

• Supporting advanced error detection. This detection may be implemented
through hardware or software.

323 General Information
Hard Totals Class Diagram

The following diagram shows the relationships between the Hard Totals classes.

posException
(from upos)

<exception>>

HardTotalsConst
(from upos)

<<utility>>

UposConst
(from upos)

<<utility>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

HardTotalsControl

<<capability>> CapErrorDetection : boolean
<<capability>> CapSingleFile : boolean
<<capability>> CapTransactions : boolean
<<prop>> FreeData : int32
<<prop>> NumberOfFiles : int32
<<prop>> TotalsSize : int32
<<prop>> TransactionInProgress : boolean

beginTrans() : void
claimFile(hTotalsSize : int32, timeout : int32) : void
commitTrans() : void
create(fileName : string, inout hTotalsFile : int32, size : int32, errorDetection : boolean) : void
delete(fileName : string) : void
find(fileName : string, inout hTotalsFile : int32, inout size : int32) : void
findByIndex(index : int32, inout fileName : string) : void
read(hTotalsSize : int32, inout data : binary, offset : int32, count : int32) : void
recalculateValidationData(hTotalsSize : int32) : void
releaseFile(hTotalsFile : int32) : void
rename(hTotalsFile : int32, fileName : string) : void
rollback() : void
setAll(hTotalsFile : int32, value : byte) : void
validateData(hTotalsFile : int32) : void
write(hTotalsFile : int32, data : binary, offset : int32, count : int32) : void

(from upos)

<<Interface>>

<<sends>>
<<uses>>

fires

fires

BaseControl
(from upos)

<<Interface>>

<<uses>>

<<sends>>

324
UnifiedPOS Retail Peripheral Architecture Chapter 8

Hard Totals
Model

Totals memory is frequently a limited but secure resource - perhaps of only several
thousand bytes of storage. The following is the general model of the Hard Totals:

• A Hard Totals device is logically treated as a sequence of byte data, which the
application subdivides into “totals files.” This is done by the create method,
which assigns a name, size, and error detection level to the totals file. Totals
files have a fixed-length that is set at create time.

At a minimum, a single totals file with the name “” (the empty string) can be
created and manipulated. Optionally, additional totals files with arbitrary
names may be created.

Totals files model many of the characteristics of a traditional file system. The
intent, however, is not to provide a robust file system. Rather, totals files allow
partitioning and ease of access into what is frequently a limited but secure
resource. In order to reduce unnecessary overhead usage of this resource,
directory hierarchies are not supported, file attributes are minimized, and files
may not be dynamically resized.

• The following operations may be performed on a totals file:

• read: Read a series of data bytes.

• write: Write a series of data bytes.

• setAll: Set all the data in a totals file to a value.

• find: Locate an existing totals file by name, and return a file handle and
size.

• findByIndex: Enumerate all of the files in the Hard Totals area.

• delete: Delete a totals file by name.

• rename: Rename an existing totals file.

• claimFile: Gain exclusive access to a specific file for use by the claiming
application. A timeout value may be specified in case another application
maintains access for a period a time.
The common claim method may also be used to claim the entire Hard
Totals device.

• releaseFile: Release exclusive access to the file.

• The FreeData property holds the current number of unassigned data bytes.

• The TotalsSize property holds the totals memory size.

• The NumberOfFiles property holds the number of totals files that exist in the
hard totals device.

325 General Information
• Transaction operations are optionally supported. A transaction is defined as a
series of data writes to be applied as an atomic operation to one or more Hard
Totals files.

During a transaction, data writes will typically be maintained in memory until
a commit or rollback. Also FreeData will typically be reduced during a
transaction to ensure that the commit has temporary totals space to perform the
commit as an atomic operation.

• beginTrans: Marks the beginning of a transaction.

• commitTrans: Ends the current transaction, and saves the updated data.
Software and/or hardware methods are used to ensure that either the entire
transaction is saved, or that none of the updates are applied.

This will typically require writing the transaction to temporary totals
space, setting state information within the device indicating that a commit
is in progress, writing the data to the totals files, and freeing the temporary
totals space. If the commit is interrupted, perhaps due to a system power
loss or reset, then when the Hard Totals Service is reloaded and
initialized, it can complete the commit by copying data from the
temporary space into the totals files. This ensures the integrity of related
totals data.

• rollback: Ends the current transaction, and discards the updates. This
may be useful in case of user intervention to cancel an update. Also, if
advanced error detection shows that some totals data cannot be read
properly in preparation for an update, then the transaction may need to be
aborted.

• TransactionInProgress: Holds the current state of transactions.

The application should claim the files used during a transaction so that no
other Hard Totals Control claims a file before commitTrans, causing the
commit to fail, with the exception’s ErrorCode reflecting an already claimed
status.

• Advanced error detection is optionally supported by the following:

• A read or a write may report a validation error. Data is usually divided
into validation blocks, over which sumchecks or CRCs are maintained.
The size of validation data blocks is determined by the Service.

A validation error informs the application that one or more of the
validation blocks containing the data to be read or written may be invalid
due to a hardware error. (An error on a write can occur when only a
portion of a validation block must be changed. The validation block must
be read and the block validated before the portion is changed.)

When a validation error is reported, it is recommended that the application
read all of the data in the totals file. The application will want to determine
which portions of data are invalid, and take action based on the results of
the reads.

• recalculateValidationData may be called to cause recalculation of all
validation data within a totals file. This may be called after recovery has

326
UnifiedPOS Retail Peripheral Architecture Chapter 8

Hard Totals
been performed as in the previous paragraph.

• validateData may be called to verify that all data within a totals file
passes validation.

• Data writes automatically cause recalculation of validation data for the
validation block or blocks in which the written data resides.

• Since advanced error detection usually imposes a performance penalty,
the application may choose to select this feature when each totals file is
created.

Device Sharing

The hard totals device is sharable. Its device sharing rules are:

• After opening the device, most properties are readable.

• After opening and enabling the device, the application may access all
properties and methods.

• If more than one application has opened and enabled the device, each of these
applications may access its properties and methods.

• One application may claim the hard totals device. This restricts all other
applications from reading, changing, or claiming any files on the device.

• One application may claim a hard totals file. This restricts all other
applications from reading, changing, or claiming the file, and from claiming
the hard totals device.

327 Properties (UML attributes)
Properties (UML attributes)

CapErrorDetection Property

Syntax CapErrorDetection: boolean { read-only, access after open }

Remarks If true, then advanced error detection is supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSingleFile Property

Syntax CapSingleFile: boolean { read-only, access after open }

Remarks If true, then only a single file, identified by the empty string (“”), is supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapTransactions Property

Syntax CapTransactions: boolean { read-only, access after open }

Remarks If true, then transactions are supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

FreeData Property

Syntax FreeData: int32 { read-only, access after open-enable }

Remarks Holds the number of bytes of unallocated data in the Hard Totals device.

It is initialized to an appropriate value when the device is enabled and is updated
as files are created and deleted. If creating a file requires some overhead to
support the file information, then this overhead is not included in what is reported
by this property. This guarantees that a new file of size FreeData may be created.

Data writes within a transaction may temporarily reduce what’s reported by this
property, since some Hard Totals space may need to be allocated to prepare for the
transaction commit. Therefore, the application should ensure that sufficient
FreeData is maintained to allow its maximally sized transactions to be performed.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also create Method, write Method.

328
UnifiedPOS Retail Peripheral Architecture Chapter 8

Hard Totals
NumberOfFiles Property

Syntax NumberOfFiles: int32 { read-only, access after open-enable }

Remarks Holds the number of totals file currently in the Hard Totals device.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also FreeData Property.

TotalsSize Property

Syntax TotalsSize: int32 { read-only, access after open-enable }

Remarks Holds the size of the Hard Totals area. This size is equal to the largest totals file
that can be created if no other files exist.

This property is initialized when the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also FreeData Property.

TransactionInProgress Property

Syntax TransactionInProgress: boolean { read-only, access after open }

Remarks If true, then the application is within a transaction.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also beginTrans Method.

329 Methods (UML operations)
Methods (UML operations)

beginTrans Method

Syntax beginTrans ():
 void { raises exception, use after open-enable }

Remarks Marks the beginning of a series of Hard Totals writes that must either be applied
as a group or not at all.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL Transactions are not supported by this device.

See Also commitTrans Method, rollback Method.

claim Method (Common)

Syntax claim (timeout: int32):
 void { raises-exception, use after open }

The timeout parameter gives the maximum number of milliseconds to wait for
exclusive access to be satisfied. If zero, the method attempts to claim the device,
then returns the appropriate status immediately. If UPOS_FOREVER (-1), the
method waits as long as needed until exclusive access is satisfied.

Remarks Requests exclusive access to the device.

If any other application has claimed exclusive access to any of the hard totals files
by using claimFile, then this claim cannot be satisfied until those files are released
by releaseFile.

When successful, the claimed property is changed to true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid timeout parameter was specified.

E_TIMEOUT Another application has exclusive access to the device
or one or more of its files and did not relinquish control
before timeout milliseconds expired.

See Also “Device Sharing Model” on page 14, release Method, claimFile Method,
releaseFile Method.

330
UnifiedPOS Retail Peripheral Architecture Chapter 8

Hard Totals
claimFile Method

Syntax claimFile (hTotalsFile: int32, timeout: int32):
 void { raises exception, use after open-enable }

Parameter Description

hTotalsFile Handle to the totals file that is to be claimed.

timeout The time in milliseconds to wait for the file to become
available. If zero, the method attempts to claim the file,
then returns the appropriate status immediately.
If UPOS_FOREVER (-1), the method waits as long as
needed until exclusive access is satisfied.

Remarks Attempts to gain exclusive access to a specific file for use by the claiming
application. Once granted, the application maintains exclusive access until it
explicitly releases access or until the device is closed.

If any other applications have claimed exclusive access to this file by using this
method, or if an application has claimed exclusive access to the entire totals area
by using claim, then this request cannot be satisfied until those claims have been
released.

All claims are released when the application calls the close method.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The handle is invalid, or an invalid timeout parameter
was specified.

E_TIMEOUT The timeout value expired before another application
released exclusive access of either the requested totals
file or the entire totals area.

See Also claim Method, releaseFile Method.

commitTrans Method

Syntax commitTrans ():
 void { raises exception, use after open-enable }

Remarks Ends the current transaction. All writes between the previous beginTrans method
and this method are saved to the Hard Totals areas.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

JPOS_E_ILLEGAL Transactions are not supported by this device, or no
transaction is in progress.

See Also beginTrans Method, rollback Method.

331 Methods (UML operations)
create Method

Syntax create (fileName: string, inout hTotalsFile: int32, size: int32,
errorDetection: boolean):
void { raises exception, use after open-enable }

Parameter Description

fileName The name to be assigned to the file. Must be no longer than 10
characters. All displayable ASCII characters (0x20 through
0x7F) are valid.

hTotalsFile Handle of the newly created totals file. Set by the method.

size The byte array size for the data. Once created, the array size
and therefore the file size used to store the array cannot be
changed – totals files are fixed-length files.

errorDetection The level of error detection desired for this file: If true, then the
Service will enable advanced error detection if supported. If
false, then higher performance access is required, so advanced
error detection need not be enabled for this file.

Remarks Creates a totals file with the specified name, size, and error detection level. The
data area is initialized to binary zeros.

If CapSingleFile is true, then only one file may be created, and its name must be
the empty string (“”). Otherwise, the number of totals files that may be created is
limited only by the free space available in the Hard Totals area.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_CLAIMED Cannot create because the entire totals file area is
claimed by another application.

E_ILLEGAL The fileName is too long or contains invalid characters.

E_EXISTS fileName already exists.

E_EXTENDED ErrorCodeExtended = ETOT_NOROOM:
There is insufficient room in the totals area to create the
file.

See Also find Method, delete Method, rename Method.

332
UnifiedPOS Retail Peripheral Architecture Chapter 8

Hard Totals
delete Method

Syntax delete (fileName: string):
 void { raises exception, use after open-enable }

The fileName parameter specifies the totals file to be deleted.

Remarks Deletes the named file.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_CLAIMED Cannot delete because either the totals file or the entire
totals area is claimed by another application.

E_ILLEGAL The fileName is too long or contains invalid characters.

E_NOEXIST fileName was not found.

See Also create Method, find Method, rename Method.

find Method

Syntax find (fileName: string, inout hTotalsFile: int32, inout size: int32):
 void { raises exception, use after open-enable }

Parameter Description

fileName The totals file name to be located.

hTotalsFile Handle of the totals file. Set by the method.

size The length of the file in bytes. Set by the method.

Remarks Locates an existing totals file.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_CLAIMED Cannot find because the entire totals file area is claimed
by another application.

E_ILLEGAL The fileName contains invalid characters.

E_NOEXIST fileName was not found.

See Also create Method, delete Method, rename Method.

333 Methods (UML operations)
findByIndex Method

Syntax findByIndex (index: int32, inout fileName: string):
 void { raises exception, use after open-enable }

Parameter Description

index The index of the totals file name to be found.

fileName The file name associated with index. Set by the method.

Remarks Determines the totals file name currently associated with the given index.

This method provides a means for enumerating all of the totals files currently
defined. An index of zero will return the file name at the first file position, with
subsequent indices returning additional file names. The largest valid index value
is one less than NumberOfFiles.

The creation and deletion of files may change the relationship between indices and
the file names; the data areas used to manage file names and attributes may be
compacted or rearranged as a result. Therefore, the application may need to claim
the device to ensure that all file names are retrieved successfully.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_CLAIMED Cannot find because the entire totals file area is claimed
by another application.

E_ILLEGAL The index is greater than the largest file index that is
currently defined.

See Also create Method, find Method.

334
UnifiedPOS Retail Peripheral Architecture Chapter 8

Hard Totals
read Method

Syntax read (hTotalsFile: int32, inout data: binary, offset: int32, count: int32):
 void { raises exception, use after open-enable }

Parameter Description

hTotalsFile Totals file handle returned from a create or find
method.

data The data buffer in which the totals data will be placed.
Array length must be at least count.

offset Starting offset for the data to be read.

count Number of bytes of data to read.

Remarks Reads data from a totals file.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_CLAIMED Cannot read because either the totals file or the entire
totals area is claimed by another application.

E_ILLEGAL The handle is invalid, part of the data range is outside the
bounds of the totals file, or data array length is less than
count.

E_EXTENDED ErrorCodeExtended = ETOT_VALIDATION:
A validation error has occurred while reading data.

See Also write Method

335 Methods (UML operations)
recalculateValidationData Method

Syntax recalculateValidationData (hTotalsFile: int32):
 void { raises exception, use after open-enable }

The hTotalsFile parameter contains the handle of a totals file.

Remarks Recalculates validation data for the specified totals file.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_CLAIMED Cannot recalculate because either the totals file or the
entire totals area is claimed by another application.

E_ILLEGAL The handle is invalid, or advanced error detection is
either not supported by the Device Service or by this file.

release Method (Common)

Syntax release ():
 void { raises-exception, use after open-claim }

Remarks Releases exclusive access to the device.

An application may own claims on both the Hard Totals device through claim as
well as individual files through claimFile. Calling release only releases the claim
on the Hard Totals device.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The application does not have exclusive access to the
device.

See Also “Device Sharing Model” on page 14, claim Method, claimFile Method.

336
UnifiedPOS Retail Peripheral Architecture Chapter 8

Hard Totals
releaseFile Method

Syntax releaseFile (hTotalsFile: int32):
 void { raises exception, use after open-enable }

The hTotalsFile parameter contains the handle of the totals file to be released.

Remarks Releases exclusive access to a specific file.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The handle is invalid, or the specified file is not claimed
by this application.

See Also claim Method, claimFile Method.

rename Method

Syntax rename (hTotalsFile: int32, fileName: string):
 void { raises exception, use after open-enable }

Parameter Description

hTotalsFile The handle of the totals file to be renamed.

fileName The new name to be assigned to the file. Must be no
longer than 10 characters. All displayable ASCII
characters (0x20 through 0x7F) are valid.

Remarks Renames a totals file.

If CapSingleFile is true, then this method will fail.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_CLAIMED Cannot rename because either the totals file or the entire
totals area is claimed by another application.

E_ILLEGAL The handle is invalid, the fileName contains invalid
characters, or the CapSingleFile property is true.

E_EXISTS fileName already exists.

See Also CapSingleFile Property.

337 Methods (UML operations)
rollback Method

Syntax rollback ():
 void { raises exception, use after open-enable }

Remarks Ends the current transaction. All writes between the previous beginTrans and this
method are discarded; they are not saved to the Hard Totals areas.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL Transactions are not supported by this device, or no
transaction is in progress.

See Also beginTrans Method, commitTrans Method.

setAll Method

Syntax setAll (hTotalsFile: int32, value: byte):
 void { raises exception, use after open-enable }

Parameter Description

hTotalsFile Handle of a totals file.

value Value to set all locations to in totals file.

Remarks Sets all the data in a totals file to the specified value.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_CLAIMED Cannot set because either the totals file or the entire
totals area is claimed by another application.

338
UnifiedPOS Retail Peripheral Architecture Chapter 8

Hard Totals
validateData Method

Syntax validateData (hTotalsFile: int32):
 void { raises exception, use after open-enable }

The hTotalsFile parameter contains the handle of a totals file.

Remarks Verifies that all data in the specified totals file passes validation checks.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_CLAIMED Cannot validate because either the totals file or the entire
totals area is claimed by another application.

E_ILLEGAL The handle is invalid, or advanced error detection is
either not supported by the Device Service or by this file.

write Method

Syntax write (hTotalsFile: int32, data: binary, offset: int32, count: int32):
 void { raises exception, use after open-enable }

Parameter Description

hTotalsFile Totals file handle returned from a create or find
method.

data Data buffer containing the totals data to be written.
offset Starting offset for the data to be written.
count Number of bytes of data to write.

Remarks Writes data to a totals file.
If a transaction is in progress, then the write will be buffered until a commitTrans
or rollback method is called.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.
Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_CLAIMED Cannot write because either the totals file or the entire
totals area is claimed by another application.

E_ILLEGAL The handle is invalid, or part of all of the data range is
outside the bounds of the totals file.

E_EXTENDED ErrorCodeExtended = ETOT_NOROOM:
Cannot write because a transaction is in progress, and
there is not enough free space to prepare for the
transaction commit.
ErrorCodeExtended = ETOT_VALIDATION:
A validation error has occurred while reading data.

See Also read Method, beginTrans Method, commitTrans Method, rollback Method,
FreeData Property.

339 Events (UML interfaces)
Events (UML interfaces)
DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific Hard Totals Service to provide events to the
application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Hard Totals devices which may not have any
knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a Hard Totals
device.

Attributes This event contains the following attribute:

Attribute Type Description

Status int32Reports a change in the power state of a Hard
Totals device.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on page 56.

Remarks Enqueued when the Hard Totals device detects a power state change.

See Also “Events” on page 15.

340
UnifiedPOS Retail Peripheral Architecture Chapter 8

Hard Totals

C H A P T E R 9

Keylock

This Chapter defines the Keylock device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 Not Supported

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.2 Not Supported

DataEventEnabled: boolean { read-write } 1.0 Not Supported

DeviceEnabled: boolean { read-write } 1.0 open

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 Not Supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open

Specific Type Mutability Version May Use After

KeyPosition: int32 { read-only } 1.0 open & enable

PositionCount: int32 { read-only } 1.0 open

342
UnifiedPOS Retail Peripheral Architecture Chapter 9

Keylock
Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, enable }

1.0

clearInput ():
void { }

Not
supported

clearOutput ():
void { }

Not
supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

Specific

Name

waitForKeylockChange (keyPosition: int32, timeout: int32):
void { raises exception, use after open, enable }

1.0

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not Supported

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not Supported

upos::events::OutputCompleteEvent Not Supported

upos::events::StatusUpdateEvent 1.0

 Status: int32 { read-only }

343 General Information
General Information

The Keylock programmatic name is “Keylock”.

Capabilities

The keylock has the following minimal set of capabilities:

• Supports at least three keylock positions.

• Supports reporting of keylock position changes, either by hardware or
software detection.

Keylock Class Diagram

The following diagram shows the relationships between the Keylock classes.

UposException
(from upos)

<<exception>>

KeylockConst
(from upos)

<<utility>>

UposConst
(from upos)

<<utility>>

DataEvent

<<prop>> Status : int32

(from events)

<<event>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>
KeylockControl

<<prop>> KeyPosition : int32
<<prop>> PositionCount : int32

waitForKeylockChange(keyPosition : int32, timeout : int32) : void

(from upos)

<<Interface>>

<<sends>>

<<uses>>

f ires

fires

BaseControl
(from upos)

<<Interface>>

<<uses>>

<<sends>>

344
UnifiedPOS Retail Peripheral Architecture Chapter 9

Keylock
Model

The keylock defines three keylock positions as constants. It is assumed that the
keylock supports locked, normal, and supervisor positions. The constants for these
keylock positions and their values are as follows:

• LOCK_KP_LOCK 1

• LOCK_KP_NORM 2

• LOCK_KP_SUPR 3

The KeyPosition property holds the value of the keylock position where the
values range from one (1) to the total number of keylock positions contained in the
PositionCount property.

Device Sharing

The keylock is a sharable device. Its device sharing rules are:

• After opening and enabling the device, the application may access all
properties and methods and will receive status update events.

• If more than one application has opened and enabled the device, each of these
applications may access its properties and methods. Status update events are
fired to all of these applications.

• The keylock may not be claimed for exclusive access. Therefore, if an
application calls claim or release, these methods will always raise a
UposException.

• See the “Summary” table for precise usage prerequisites.

345 Properties (UML attributes)
Properties (UML attributes)

KeyPosition Property

Syntax KeyPosition: int32 { read-only, access after open-enable }

Remarks Holds a value that indicates the keylock position.

This value is set whenever the keylock position is changed. In addition to the
application receiving the StatusUpdateEvent, this value is changed to reflect the
new keylock position.

This property has one of the following values:

Value Meaning

LOCK_KP_LOCK Keylock is in the “locked” position. Value is one (1).

LOCK_KP_NORM Keylock is in the “normal” position. Value is two (2).

LOCK_KP_SUPR Keylock is in the “supervisor” position. Value is three
(3).

Other Values Keylock is in one of the auxiliary positions. This value
may range from four (4) up to the total number of
keylock positions indicated by the PositionCount
property.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also PositionCount Property, StatusUpdateEvent.

PositionCount Property

Syntax PositionCount: int32 { read-only, access after open }

Remarks Holds the total number of keylock positions that are present on the keylock device.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

346
UnifiedPOS Retail Peripheral Architecture Chapter 9

Keylock
Methods (UML operations)

waitForKeylockChange Method

Syntax waitForKeylockChange (keyPosition: int32, timeout: int32):
 void { raises exception, use after open-enable }

Parameter Description

keyPosition Requested keylock position. See values below.

timeout Maximum number of milliseconds to wait for the
keylock before returning control back to the application.
If zero, the method then returns immediately. If
UPOS_FOREVER (-1), the method waits as long as
needed until the requested key position is satisfied or an
error occurs.

The keyPosition parameter has one of the following values:

Value Meaning

LOCK_KP_ANY Wait for any keylock position change. Value is zero (0).

LOCK_KP_LOCK Wait for keylock position to be set to the “locked”
position. Value is one (1).

LOCK_KP_NORM Wait for keylock position to be set to the “normal”
position. Value is two (2).

LOCK_KP_SUPR Wait for keylock position to be set to the “supervisor”
position. Value is three (3).

Other Values Wait for keylock position to be set to one of the auxiliary
positions. This value may range from four (4) up to the
total number of keylock positions indicated by the
PositionCount property.

Remarks Waits for a specified keylock position to be set.

If the keylock position specified by the keyPosition parameter is the same as the
current keylock position, then the method returns immediately.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid parameter value was specified.

E_TIMEOUT The timeout period expired before the requested keylock
positioning occurred.

See Also PositionCount Property.

347 Events (UML interfaces)
Events (UML interfaces)

DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific Keylock Service to provide events to the application
that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Keylock devices which may not have any
knowledge of the Device Service’s need for this event.

See Also “Events” on page 15, directIO Method.

348
UnifiedPOS Retail Peripheral Architecture Chapter 9

Keylock
StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the keylock position changes.

Attributes This event contains the following attribute:

Attribute Type Description

Status int32 The key position in the Keylock.

The Status attribute has one of the following values:

Value Description

LOCK_KP_LOCK Keylock is in the “locked” position. Value is one (1).

LOCK_KP_NORM Keylock is in the “normal” position. Value is two (2).

LOCK_KP_SUPR Keylock is in the “supervisor” position. Value is three
(3).

Other Values Keylock is in one of the auxiliary positions. This value
may range from four (4) to the total number of keylock
positions indicated by the PositionCount property.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on page 56.

Remarks This event is enqueued when a keylock switch position undergoes a change or if
Power State Reporting is enabled and a change in the power state is detected.

See Also PositionCount Property, “Events” on page 15.

C H A P T E R 1 0

Line Display

This Chapter defines the Line Display device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 Not Supported

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.2 Not Supported

DataEventEnabled: boolean { read-write } 1.0 Not Supported

DeviceEnabled: boolean { read-write } 1.0 open & claim

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 Not Supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open

350
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display
Properties (Continued)

Specific Type Mutability Version May Use After

CapBlink: int32 { read-only } 1.0 open

CapBlinkRate: boolean { read-only } 1.6 open

CapBrightness: boolean { read-only } 1.0 open

CapCharacterSet: int32 { read-only } 1.0 open

CapCursorType: int32 { read-only } 1.6 open

CapCustomGlyph: boolean { read-only } 1.6 open

CapDescriptors: boolean { read-only } 1.0 open

CapHMarquee: boolean { read-only } 1.0 open

CapICharWait: boolean { read-only } 1.0 open

CapReadBack: int32 { read-only } 1.6 open

CapReverse: int32 { read-only } 1.6 open

CapVMarquee: boolean { read-only } 1.0 open

BlinkRate: int32 { read-write } 1.6 open

CharacterSet: int32 { read-write } 1.0 open, claim, & enable

CharacterSetList: string { read-only } 1.0 open

Columns: int32 { read-only } 1.0 open

CurrentWindow: int32 { read-write } 1.0 open

CursorColumn: int32 { read-write } 1.0 open

CursorRow: int32 { read-write } 1.0 open

CursorType: int32 { read-write } 1.6 open

CursorUpdate: boolean { read-write } 1.0 open

CustomGlyphList: string { read-only } 1.6 open

DeviceBrightness: int32 { read-write } 1.0 open, claim, & enable

DeviceColumns: int32 { read-only } 1.0 open

DeviceDescriptors: int32 { read-only } 1.0 open

DeviceRows: int32 { read-only } 1.0 open

DeviceWindows: int32 { read-only } 1.0 open

GlyphHeight: int32 { read-only } 1.6 open

GlyphWidth: int32 { read-only } 1.6 open

InterCharacterWait: int32 { read-write } 1.0 open

MarqueeFormat: int32 { read-write } 1.0 open

MarqueeRepeatWait: int32 { read-write } 1.0 open

MarqueeType: int32 { read-write } 1.0 open

MarqueeUnitWait: int32 { read-write } 1.0 open

Rows: int32 { read-only } 1.0 open

351 Summary
Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { raises-exception, use after open, claim }

Not
supported

clearOutput ():
void { raises-exception, use after open, claim }

Not
supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

Specific

Name

clearText ():
void { raises exception, use after open, claim, enable }

1.0

displayText (data: string, attribute: int32):
void { raises exception, use after open, claim, enable }

1.0

displayTextAt (row: int32, column: int32, data: string, attribute: int32):
void { raises exception, use after open, claim, enable }

1.0

scrollText (direction: int32, units: int32):
void { raises exception, use after open, claim, enable }

1.0

clearDescriptors ():
void { raises exception, use after open, claim, enable }

1.0

setDescriptor (descriptor: int32, attribute: int32):
void { raises exception, use after open, claim, enable }

1.0

createWindow (viewportRow: int32, viewportColumn: int32,
viewportHeight: int32, viewportWidth: int32,
windowHeight: int32, windowWidth: int32):
void { raises exception, use after open, claim, enable }

1.0

destroyWindow ():
void { raises exception, use after open, claim, enable }

1.0

refreshWindow (window: int32):
void { raises exception, use after open, claim, enable }

1.0

defineGlyph (glyphCode: int32, glyph: binary):
void { raises exception, use after open, claim, enable }

1.6

readCharacterAtCursor (inout cursorData: int32):
void { raises exception, use after open, claim, enable }

1.6

352
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display
Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not Supported

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not Supported

upos::events::OutputCompleteEvent Not Supported

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }

353 General Information
General Information

The Line Display programmatic name is “LineDisplay”.

Capabilities

The Line Display has the following capability:

• Supports text character display. The default mode (or perhaps only mode) of
the display is character display output.

The line display may also have the following additional capabilities:

• Supports windowing with marquee-like scrolling of the window. The display
may support vertical or horizontal marquees, or both.

• Supports a waiting period between displaying characters, for a teletype effect.

• Supports character-level or device-level blinking at adjustable blink rates.

• Supports character-level or device-level reverse video.

• Supports one or more descriptors. Descriptors are small indicators with a fixed
label, and are typically used to indicate transaction states such as item, total,
and change.

• Supports device brightness control, with one or more levels of device
dimming. All devices support brightness levels of “normal” and “blank” (at
least through software support), but some devices also support one or more
levels of dimming.

• Supports various cursor attributes including underline, block, and reverse
video.

• Supports “glyphs” which represent pixel level user definition of character
cells.

The following capability is not addressed in this version of the specification:

• Support for graphical displays, where the line display is addressable by
individual pixels or dots. However note that glyphs, which represent user
defined pixels within a character cell, are supported.

354
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display
Line Display Class Diagram

The following diagram shows the relationships between the Line Display classes.

UposException
(from upos)

<<exception>>
UposConst
(from upos)

<<uti lity>>

LineDisplayConst
(from upos)

<<utility>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

ineDisplayCont rol

<<capability>> CapBlink : int32
<<capability>> CapBrightness : boolean
<<capability>> CapCharacterSet : int32
<<capability>> CapDescriptors : boolean
<<capability>> CapHMarquee : boolean
<<capability>> CapICharWait : boolean
<<capability>> CapVMarquee : boolean
<<prop>> CharacterSet : int32
<<prop>> CharacterSetList : string
<<prop>> Columns : int32
<<prop>> CurrentWindow : int32
<<prop>> CursorColumn : int32
<<prop>> CursorRow : int32
<<prop>> CursorUpdate : boolean
<<prop>> DeviceBrightness : int32
<<prop>> DeviceColumns : int32
<<prop>> DeviceRows : int32
<<prop>> DeviceWindows : int32
<<prop>> InterCharacterWait : int32
<<prop>> MarqueeFormat : int32
<<prop>> MarqueeRepeatWait : int32
<<prop>> MarqueeType : int32
<<prop>> MarqueeUnitWait : int32
<<prop>> Rows : int32

clearText() : void
displayText(data : string, attribute : int32) : void
displayTextAt(row : int32, column : int32, data : string, attribute : int32) : void
scrollText(direction : int32, units : int32) : void
clearDescriptors() : void
setDescriptor(descriptor : int32, attribute : int32) : void
createWindow(vRow : int32, vCol : int32, vHeight : int32, vWidth : int32, wHeight : int32, wWidth : int32) : void
destroyWindow() : void
refreshWindow(window : int32) : void

(from upos)

<<Interface>>

<<sends>> <<uses>>ires

fires

BaseControl
(from upos)

<<Interface>>

<uses>>

<<sends>>

355 General Information
Model

The general model of a line display consists of:

• One or more rows containing one or more columns of characters. The rows
and columns are numbered beginning with (0, 0) at the upper-left corner of the
window. The characters in the default character set will include at least one of
the following, with a capability defining the character set:

• The digits ‘0’ through ‘9’ plus space, minus (‘-’), and period (‘.’).

• The above set plus uppercase ‘A’ through ‘Z.’

• All ASCII characters from 0x20 through 0x7F, which includes space,
digits, uppercase, lowercase, and some special characters.

• Window 0, which is always defined as follows:

• Its “viewport” — the portion of the display that is updated by the window
— covers the entire display.

• The size of the window matches the entire display.

Therefore, window 0, which is also called the “device window,” maps directly
onto the display.

• Option to create additional windows. A created window has the following
characteristics:

• Its viewport covers part or all of the display.

• The window may either match the size of the viewport, or it may be larger
than the viewport in either the horizontal or vertical direction. In the
second case, marquee scrolling of the window can be set.

• The window maintains its own values for rows and columns, current
cursor row and column, cursor update flag, cursor type, scroll type and
format, and timers.

• All viewports behave transparently. If two viewports overlap, then the last
character displayed at a position by either of the windows will be visible.

Display Modes
• Immediate Mode

In effect when MarqueeType is DISP_MT_NONE and InterCharacterWait
is zero.
If the window is bigger than the viewport, then only those characters which
map into the viewport will be seen.

• Teletype Mode
In effect when MarqueeType is DISP_MT_NONE and InterCharacterWait
is not zero.
Calls to displayText and displayTextAt are enqueued and processed in the
order they are received. InterCharacterWait specifies the time to wait
between outputting each character. InterCharacterWait only applies to those
characters within the viewport.

• Marquee Mode
In effect when MarqueeType is not DISP_MT_NONE.
The window must be bigger than the viewport.

356
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display
A marquee is typically initialized after entering Marquee Init Mode by setting
MarqueeType to DISP_MT_INIT, then calling clearText, displayText and
displayTextAt. Then, when MarqueeType is changed to an “on” value,
Marquee On Mode is entered, and the marquee begins to be displayed in the
viewport beginning at the start of the window (or end if the type is right or
down).

When the mode is changed from Marquee On Mode to Marquee Off Mode,
the marquee stops in place. A subsequent transition from back to Marquee On
Mode continues from the current position.

When the mode is changed from Marquee On Mode to Marquee Init Mode,
the marquee stops. Changes may be made to the window, then the window
may be returned to Marquee On Mode to restart the marquee with the new
data.

It is illegal to use displayText, displayTextAt, clearText, refreshWindow,
and scrollText unless in Marquee Init Mode or Marquee Off Mode.

Device Sharing

The line display is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some
properties or calling methods that update the device.

• See the “Summary” table for precise usage prerequisites.

357 Properties (UML attributes)
Properties (UML attributes)

BlinkRate Property Added in Release 1.6

Syntax BlinkRate: int32 { read-write, access after open }

Remarks Contains the blink cycle time in milliseconds. A blink cycle is the period of time
when text completes an on-off-on cycle during blinking. After this property is set,
the service will set the blink rate to the closest supported rate and change this
property to reflect the actual rate. Performing this approximation is necessary
because blink cycles are hardware dependent and probably not controllable at
precise millisecond granularity.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL CapBlinkRate is false.

See Also CapBlinkRate Property.

CapBlink Property

Syntax CapBlink: int32 { read-only, access after open }

Remarks Holds the character blink capability of the device. It has one of the following
values:

Value Meaning

DISP_CB_NOBLINK Blinking is not supported. Value is 0.

DISP_CB_BLINKALL Blinking is supported. The entire contents of the display
are either blinking or in a steady state.

DISP_CB_BLINKEACHBlinking is supported. Each character may be
individually set to blink or to be in a steady state.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

358
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display
CapBlinkRate Property Added in Release 1.6

Syntax CapBlinkRate: boolean { read-only, access after open }

Remarks If true, then the device’s blink rate can be controlled and the BlinkRate property
is used to indicate the rate at which the display blinks.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapBrightness Property

Syntax CapBrightness: boolean { read-only, access after open }

Remarks If true, then the brightness control is supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapCharacterSet Property Updated in Release 1.5

Syntax CapCharacterSet: int32 { read-only, access after open }

Remarks Holds the default character set capability. It has one of the following values:

Value Meaning

DISP_CCS_NUMERIC The default character set supports numeric data, plus
space, minus, and period.

DISP_CCS_ALPHA The default character set supports uppercase alphabetic
plus numeric, space, minus, and period.

DISP_CCS_ASCII The default character set supports all ASCII characters
0x20 through 0x7F.

DISP_CCS_KANA The default character set supports partial code page 932,
including ASCII characters 0x20 through 0x7F and the
Japanese Kana characters 0xA1 through 0xDF, but
excluding the Japanese Kanji characters.

DISP_CCS_KANJI The default character set supports code page 932,
including the Shift-JIS Kanji characters, Levels 1 and 2.

DISP_CCS_UNICODE The default character set supports UNICODE.

The default character set may contain a superset of these ranges. The initial
CharacterSet property may be examined for additional information.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CharacterSet Property.

359 Properties (UML attributes)
CapCursorType Property Added in Release 1.6

Syntax CapCursorType: int32 { read-only, access after open }

Remarks Holds a bitwise indication of the cursor types supported by the device and
selectable via the CursorType property. The following are the values:

Value Meaning

DISP_CCT_NONE Cursor is not displayable.

DISP_CCT_FIXED Cursor is always displayed.

DISP_CCT_BLOCK Cursor is displayable as a block.

DISP_CCT_HALFBLOCK Cursor is displayable as a halfblock.

DISP_CCT_UNDERLINE Cursor is displayable as an underline.

DISP_CCT_REVERSE Cursor is displayable in reverse video.

DISP_CCT_OTHER Cursor is displayable but form is unknown.

If DISP_CCT_NONE is set, then none of the other bits will be set. This is because
the cursor is not displayable.

If DISP_CCT_FIXED is set, then one and only one of the other bits will be set.
This other bit will indicate the cursor type that is always displayed.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapCustomGlyph Property Added in Release 1.6

Syntax CapCustomGlyph: boolean { read-only, access after open }

Remarks Holds the glyph definition capability of the device. If true, then the device allows
custom glyphs to be defined.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapDescriptors Property

Syntax CapDescriptors: boolean { read-only, access after open }

Remarks If true, then the display supports descriptors.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

360
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display
CapHMarquee Property

Syntax CapHMarquee: boolean { read-only, access after open }

Remarks If true, the display supports horizontal marquee windows.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapICharWait Property

Syntax CapICharWait: boolean { read-only, access after open }

Remarks If true, the display supports intercharacter wait.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapReadBack Property Added in Release 1.6

Syntax CapReadBack: int32 { read-only, access after open }

Remarks Holds the capability of the video device to read back the data displayed upon it. It
may be one of the following:

Value Meaning

DISP_CRB_NONE Read back is not supported.

DISP_CRB_SINGLE Read back of a single character at a time is supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapReverse Property Added in Release 1.6

Syntax CapReverse: int32 { read-only, access after open }

Remarks Holds the reverse video capability of the device. It may be one of the following:

Value Meaning

DISP_CR_NONE Reverse video is not supported. Value is 0.

DISP_CR_REVERSEALL Reverse video is supported. The entire contents of
the display are either in reverse video or normal.

DISP_CR_REVERSEEACH Reverse video is supported. Each character may be
individually set to reverse video or normal.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

361 Properties (UML attributes)
CapVMarquee Property

Syntax CapVMarquee: boolean { read-only, access after open }

Remarks If true, the display supports vertical marquee windows.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CharacterSet Property Updated in Release 1.5

Syntax CharacterSet: int32 { read-write, access after open-claim-enable }

Remarks Holds the character set for displaying characters. It has one of the following
values:

Value Meaning

Range 101 - 199 Device-specific character sets that do not match a code
page or the ASCII or ANSI character sets.

Range 400 - 990 Code page; matches one of the standard values.

DISP_CS_UNICODE The character set supports UNICODE. The value of this
constant is 997.

DISP_CS_ASCII The ASCII character set, supporting the ASCII
characters 0x20 through 0x7F. The value of this
constant is 998.

DISP_CS_ANSI The ANSI character set. The value of this constant is
999.

This property is initialized to an appropriate value when the device is first enabled
following the open method. This value is guaranteed to support at least the set of
characters specified by CapCharacterSet.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CharacterSetList Property, CapCharacterSet Property.

CharacterSetList Property

Syntax CharacterSetList: string { read-only, access after open }

Remarks Holds the character set numbers supported. It consists of ASCII numeric set
numbers separated by commas.

For example, if the string is “101,850,999”, then the device supports a device-
specific character set, code page 850, and the ANSI character set.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CharacterSet Property.

362
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display
Columns Property

Syntax Columns: int32 { read-only, access after open }

Remarks Holds the number of columns for this window.

For window 0, this property is the same as DeviceColumns.
For other windows, it may be less or greater than DeviceColumns.

This property is initialized to DeviceColumns by the open method, and is updated
when CurrentWindow is set and when createWindow or destroyWindow are
called.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also Rows Property.

CurrentWindow Property Updated in Release 1.6

Syntax CurrentWindow: int32 { read-write, access after open }

Remarks Holds the current window to which text is displayed.

Several properties are associated with each window: Rows, Columns,
CursorRow, CursorColumn, CursorUpdate, CursorType, MarqueeFormat,
MarqueeType, MarqueeUnitWait, MarqueeRepeatWait, and
InterCharacterWait.

When set, this property changes the current window and sets the associated
properties to their values for this window.

Setting a window does not refresh its viewport. If this window and another
window’s viewports overlap, and the other window has changed the viewport, then
refreshWindow may be called to restore this window’s viewport contents.

This property is initialized to zero – the device window – by the open method, and
is updated when createWindow or destroyWindow are called.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The new current window value is invalid.

363 Properties (UML attributes)
CursorColumn Property

Syntax CursorColumn: int32 { read-write, access after open }

Remarks Holds the column in the current window to which the next displayed character will
be output.

Legal values range from zero through Columns. (See displayText for a note on
the interpretation of CursorColumn = Columns.)

This property is initialized to zero by the open and createWindow methods, and
is updated when CurrentWindow is set or clearText, displayTextAt, or
destroyWindow is called. It is also updated when displayText is called if
CursorUpdate is true.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid cursor column value was specified.

See Also CursorRow Property, displayText Method.

CursorRow Property

Syntax CursorRow: int32 { read-write, access after open }

Remarks Holds the row in the current window to which the next displayed character will be
output.

Legal values range from zero through one less than Rows.

This property is initialized to zero by the open and createWindow methods, and
is updated when CurrentWindow is set or clearText, displayTextAt, or
destroyWindow is called. It is also updated when displayText is called if
CursorUpdate is true.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid cursor row value was specified.

See Also CursorColumn Property, displayText Method.

364
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display
CursorType Property Added in Release 1.6

Syntax CursorType: int32 { read-write, access after open }

Remarks Holds the cursor type for the current window. The following are the possible
values:

Value Meaning

DISP_CT_NONE Cursor is not displayed.
DISP_CT_BLOCK Cursor is displayed as a block.
DISP_CT_HALFBLOCK Cursor is displayed as a halfblock.
DISP_CT_UNDERLINE Cursor is displayed as an underline.
DISP_CT_REVERSE Cursor is displayed in reverse video.
DISP_CT_OTHER Cursor is displayed but form is unknown.

This property cannot be written if CapCursorType has either DISP_CCT_NONE
or DISP_CCT_FIXED set. Otherwise it can be set to one of the cursor types
specified by CapCursorType.

This property is maintained for each window. Setting this property affects only the
current window since only the current window has a displayable cursor.

This property is initialized to DISP_CT_NONE (or the appropriate cursor type if
CapCursorType has DISP_CCT_FIXED set) by the open and createWindow
methods, and is updated when CurrentWindow is set or destroyWindow is
called.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL CapCursorType is either DISP_CCT_NONE or
DISP_CCT_FIXED is set, or an invalid cursor type
value was specified.

See Also CapCursorType Property.

CursorUpdate Property

Syntax CursorUpdate: boolean { read-write, access after open }

Remarks When true, CursorRow and CursorColumn will be updated to point to the
character beyond the last character output when characters are displayed using the
displayText or displayTextAt method.

When false, the cursor properties will not be updated when characters are
displayed.

This property is maintained for each window. It initialized to true by the open and
createWindow methods, and is updated when CurrentWindow is set or
destroyWindow is called.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CursorRow Property, CursorColumn Property.

365 Properties (UML attributes)
CustomGlyphList Property Added in Release 1.6

Syntax CustomGlyphList: string { read-only, access after open }

Remarks Contains character codes that are available for definition as glyphs. Character
codes are represented as two-digit (ASCII) or four-digit (Unicode) hexadecimal
values. These values are comma separated and each value may actually represent
a range of values specified by using the ‘-’ character.

For example, if the string is “2D,4D”, then the device supports glyph definitions
for the characters “-” and “M” respectively. If the string is “002D-004D”, then the
device supports glyph definitions for the Unicode characters between 002D and
004D, inclusive. Also, if the string is “2D-2F, 3D-3F”, then the device supports
glyph definitions for the ranges of hex characters 2D through 2F and 3D through
3F.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CapCustomGlyph Property, GlyphHeight Property, GlyphWidth Property,
defineGlyph Method.

DeviceBrightness Property

Syntax DeviceBrightness: int32 { read-write, access after open-claim-enable }

Remarks Holds the device brightness value, expressed as a percentage between 0 and 100.

Any device can support 0% (blank) and 100% (full intensity). Blanking can, at a
minimum, be supported by sending spaces to the device. If CapBrightness is true,
then the device also supports one or more levels of dimming.

If a device does not support the specified brightness value, then the Service will
choose an appropriate substitute.

This property is initialized to 100 when the device is first enabled following the
open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was used: Not in the range 0 - 100.

See Also CapBrightness Property.

DeviceColumns Property

Syntax DeviceColumns: int32 { read-only, access after open }

Remarks Holds the number of columns on this device.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also DeviceRows Property

366
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display
DeviceDescriptors Property

Syntax DeviceDescriptors: int32 { read-only, access after open }

Remarks Holds the number of descriptors on this device. If CapDescriptors is true, then
this property is non-zero.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also setDescriptor Method, clearDescriptors Method.

DeviceRows Property

Syntax DeviceRows: int32 { read-only, access after open }

Remarks Holds the number of rows on this device.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also DeviceColumns Property.

DeviceWindows Property

Syntax DeviceWindows: int32 { read-only, access after open }

Remarks Holds the maximum window number supported by this device. A value of zero
indicates that only the device window is supported and that no windows may be
created.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrentWindow Property.

GlyphHeight Property Added in Release 1.6

Syntax GlyphHeight: int32 { read-only, access after open }

Remarks Indicates the glyph height based on the number of pixels for a character cell.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CapCustomGlyph Property, CustomGlyphList Property, defineGlyph Method.

367 Properties (UML attributes)
GlyphWidth Property Added in Release 1.6

Syntax GlyphWidth: int32 { read-only, access after open }

Remarks Indicates the glyph width based on the number of pixels for a character cell.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CapCustomGlyph Property, CustomGlyphList Property, defineGlyph Method.

InterCharacterWait Property

Syntax InterCharacterWait: int32 { read-write, access after open }

Remarks Holds the wait time between displaying each character with the displayText and
displayTextAt methods. This provides a “teletype” appearance when displaying
text.

This property is only used if the window is not in Marquee Mode — that is,
MarqueeType must be DISP_MT_NONE.

When non-zero and the window is not in Marquee Mode, the window is in
Teletype Mode: displayText and displayTextAt requests are enqueued and
processed in the order they are received. This property specifies the time to wait
between outputting each character into the viewport. The wait time is the specified
number of milliseconds. (Note that the system timer resolution may reduce the
precision of the wait time.) If CursorUpdate is true, CursorRow and
CursorColumn are updated to their final values before displayText or
displayTextAt returns, even though all of its data may not yet be displayed.

When this property is zero and the window is not in Marquee Mode, Immediate
Mode is in effect, so that characters are processed as quickly as possible. If some
display requests are enqueued at the time this property is set to zero, the requests
are completed as quickly as possible.

If CapICharWait is false, then intercharacter waiting is not supported, and the
value of this property is not used.

This property is initialized to zero by the open and createWindow methods, and
is updated when CurrentWindow is set or destroyWindow is called.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An illegal value was specified.

See Also displayText Method.

368
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display
MarqueeFormat Property

Syntax MarqueeFormat: int32 { read-write, access after open }

Remarks Holds the marquee format for the current window.

Value Meaning

DISP_MF_WALK Begin the marquee by walking data from the opposite
side. For example, if the marquee type is “left,” then the
viewport is filled by bringing characters into the right
side and scrolling them to the left.

DISP_MF_PLACE Begin the marquee by placing data. For example, if the
marquee type is “left,” then the viewport is filled by
placing characters starting at the left side, and beginning
scrolling only after the viewport is full.

This property is initialized to DISP_MF_WALK by the open and createWindow
methods, and is updated when CurrentWindow is set or destroyWindow is
called.

This property is read when a transition is made to Marquee On Mode. It is not used
when not in Marquee Mode.

When this property is DISP_MF_WALK, and a transition is made from Marquee
Init Mode to Marquee On Mode, the following occurs:

1. Map the window to the viewport as follows:

Marquee TypeWindow Viewport
LeftFirst Column = Last Column
UpFirst Row = Last Row
RightLast Column = First Column
DownLast Row = First Row

Fill the viewport with blanks. Continue to Step 2 without waiting.

2. Display the mapped portion of the window into the viewport, then wait Mar-
queeUnitWait milliseconds. Move the window mapping onto the viewport by
one row or column in the marquee direction. Repeat until the viewport is full.

3. Refresh the viewport, then wait MarqueeUnitWait milliseconds. Move the
window mapping by one row or column. Repeat until the last row or column
is scrolled into the viewport (in which case, omit the unit wait).

4. Wait MarqueeRepeatWait milliseconds. Then go to step back to Step 1.

369 Properties (UML attributes)
When this property is DISP_MF_PLACE, and a transition is made from Marquee
Init Mode to Marquee On Mode, the following occurs:

1. Map the window to the viewport as follows:

Marquee TypeWindow Viewport
LeftFirst Column = First Column
UpFirst Row = First Row
RightLast Column = Last Column
DownLast Row = Last Row

Fill the viewport with blanks. Continue to Step 2 without waiting.

2. Display a row or column into viewport, then wait MarqueeUnitWait milli-
seconds. Repeat until the viewport is full.

3. Move the window mapping onto the viewport by one row or column in the
marquee direction, and refresh the viewport, then wait MarqueeUnitWait
milliseconds. Repeat until the last row or column is scrolled into the viewport
(in which case, omit the unit wait).

4. Wait MarqueeRepeatWait milliseconds. Then go to step back to Step 1.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was used, or attempted to change
window 0.

See Also MarqueeType Property, MarqueeUnitWait Property, MarqueeRepeatWait
Property.

Example 1 Marquee Walk format.
 - Assume a 2x20 display.
 - An application has a line display instance named myLD.
 - The application has performed:

myLD.createWindow(0, 3, 2, 3, 2, 5); // 2x3 viewport of 2x5 window
myLD.displayText(“0123456789”, DISP_DT_NORMAL);

The window contains:

and the display contains (assuming the other windows are all blank):

0 1 2 3 4

0 0 1 2 3 4

1 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 1 2

1 5 6 7

370
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display
If the application performs the sequence:

myLD.setMarqueeType(DISP_MT_INIT);
myLD.setMarqueeFormat(DISP_MF_WALK);
myLD.displayTextAt(0, 4, “AB”, DISP_DT_NORMAL);

the viewport is not changed (since we are in Marquee Init Mode), and the window
becomes:

If the application performs:

myLD.setMarqueeType(DISP_MT_LEFT);

the window is not changed, and the viewport becomes:

After MarqueeUnitWait milliseconds, the viewport is changed to:

After MarqueeUnitWait milliseconds, the viewport is changed to:

After MarqueeUnitWait milliseconds, the viewport is changed to:

After MarqueeUnitWait milliseconds, the viewport is changed to:

The marquee has scrolled to the end of the window.
After MarqueeRepeatWait milliseconds, the marquee display restarts with the
viewport changing to:

0 1 2 3 4

0 0 1 2 3 A

1 B 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0

1 B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 1

1 B 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 1 2

1 B 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3

1 6 7 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 2 3 A

1 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0

1 B

371 Properties (UML attributes)
Example 2 Marquee Place format.
 - Assume a 2x20 display.
 - An application has a line display instance named myLD.
 - The application has performed:

myLD.createWindow(0, 3, 2, 3, 2, 5); // 2x3 viewport of 2x5 window
myLD.displayText(“0123456789”, DISP_DT_NORMAL);

The window contains:

and display contains (assuming the other windows are all blank):

If the application performs the sequence:
myLD.setMarqueeType(DISP_MT_INIT);
myLD.setMarqueeFormat(DISP_MF_PLACE);
myLD.displayTextAt(0, 4, “AB”, DISP_DT_NORMAL);

the viewport is not changed (since we are in Marquee Init Mode), and the window
becomes:

If the application performs:

myLD.setMarqueeType(DISP_MT_LEFT);

the window is not changed, and the viewport becomes:

After MarqueeUnitWait milliseconds, the viewport is changed to:

0 1 2 3 4

0 0 1 2 3 4

1 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 1 2

1 5 6 7

0 1 2 3 4

0 0 1 2 3 A

1 B 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0

1 B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 1

1 B 6

372
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display
After MarqueeUnitWait milliseconds, the viewport is changed to:

From this point to the end of the window, the marquee action is the same as with
marquee walking…
After MarqueeUnitWait milliseconds, the viewport is changed to:

After MarqueeUnitWait milliseconds, the viewport is changed to:

The marquee has scrolled to the end of the window.
After MarqueeRepeatWait milliseconds, the marquee display restarts with the
viewport changing to:

MarqueeRepeatWait Property

Syntax MarqueeRepeatWait: int32 { read-write, access after open }

Remarks Holds the wait time between scrolling the final character or row of the window into
its viewport and restarting the marquee with the first or last character or row.

The wait time is the specified number of milliseconds. (Note that the timer
resolution may reduce the precision of the wait time.)

This property is initialized to zero by the open and createWindow methods, and
is updated when CurrentWindow is set or destroyWindow is called.

This property is not used if not in Marquee Mode.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An illegal value was specified.

See Also MarqueeType Property, MarqueeFormat Property, MarqueeUnitWait
Property.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 1 2

1 B 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3

1 6 7 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 2 3 A

1 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0

1 B

373 Properties (UML attributes)
MarqueeType Property

Syntax MarqueeType: int32 { read-write, access after open }

Remarks Holds the marquee type for the current window. When not DISP_MT_NONE, the
window is in Marquee Mode. This property has one of the following values:

Value Meaning

DISP_MT_NONE Marquees are disabled for this window.

DISP_MT_INIT Marquee Init Mode. Changes to the window are not
reflected in the viewport until this property is changed to
another value.

DISP_MT_UP Scroll the window up. Illegal unless Rows is greater
than the viewportHeight parameter used for the
window’s createWindow call, and CapVMarquee is
true.

DISP_MT_DOWN Scroll the window down. Illegal unless Rows is greater
than the viewportHeight parameter used for the
window’s createWindow call, and CapVMarquee is
true.

DISP_MT_LEFT Scroll the window left. Illegal unless Columns is greater
than the viewportWidth parameter used for the
window’s createWindow call, and CapHMarquee is
true.

DISP_MT_RIGHT Scroll the window right. Illegal unless Columns is
greater than the viewportWidth parameter used for the
window’s createWindow call, and CapHMarquee is
true.

A marquee is typically initialized after entering Marquee Init Mode by setting this
property to DISP_MT_INIT, then calling clearText and displayText(At)
methods. Then, when this property is changed to an “on” value, Marquee On
Mode is entered, and the marquee begins to be displayed in the viewport beginning
at the start of the window (or end if the type is right or down).

When the mode is changed from Marquee On Mode to Marquee Off Mode, the
marquee stops in place. A subsequent transition back to Marquee On Mode
continues from the current position.

When the mode is changed from Marquee On Mode to Marquee Init Mode, the
marquee stops. Changes may be made to the window, then the window may be
returned to Marquee On Mode to restart the marquee with the new data.

This property is always DISP_MT_NONE for window 0 – the device window.

This property is initialized to DISP_MT_NONE by the open and createWindow
methods, and is updated when CurrentWindow is set or destroyWindow is
called.

374
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid value was used, or attempted to change
window 0.

See Also MarqueeFormat Property, MarqueeUnitWait Property, MarqueeRepeatWait
Property.

MarqueeUnitWait Property

Syntax MarqueeUnitWait: int32 { read-write, access after open }

Remarks Holds the wait time between marquee scrolling of each column or row in the
window.

The wait time is the specified number of milliseconds. (Note that the timer
resolution may reduce the precision of the wait time.)

This property is not used if MarqueeType is DISP_MT_NONE.

This property is initialized to zero by the open and createWindow methods, and
is updated when CurrentWindow is set or destroyWindow is called.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An illegal value was specified.

See Also MarqueeType Property, MarqueeFormat Property, MarqueeRepeatWait
Property.

Rows Property

Syntax Rows: int32 { read-only, access after open }

Remarks Holds the number of rows for this window.

For window 0, this property is the same as DeviceRows.
For other windows, it may be less or greater than DeviceRows.

This property is initialized to DeviceRows by the open method, and is updated
when CurrentWindow is set or createWindow or destroyWindow are called.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also Columns Property.

375 Methods (UML operations)
Methods (UML operations)

clearDescriptors Method

Syntax clearDescriptors ():
 void { raises exception, use after open-claim-enable }

Remarks Turns off all descriptors.

This function is illegal if CapDescriptors is false.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The device does not support descriptors.

See Also setDescriptor Method, DeviceDescriptors Property, CapDescriptors Property.

clearText Method

Syntax clearText ():
 void { raises exception, use after open-claim-enable }

Remarks Clears the current window to blanks, sets CursorRow and CursorColumn to
zero, and resynchronizes the beginning of the window with the start of the
viewport.

If in Immediate Mode or Teletype Mode, the viewport is also cleared immediately.

If in Marquee Init Mode, the viewport is not changed.

If in Marquee On Mode, this method is illegal.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL In Marquee On Mode.

See Also displayText Method.

376
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display
createWindow Method Updated in Release 1.6

Syntax createWindow (viewportRow: int32, viewportColumn: int32,
viewportHeight: int32, viewportWidth: int32, windowHeight: int32,
windowWidth: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

viewportRow The viewport’s start device row.
viewportColumn The viewport’s start device column.
viewportHeight The number of device rows in the viewport.
viewportWidth The number of device columns in the viewport.
windowHeight The number of rows in the window.
windowWidth The number of columns in the window.

Remarks Creates a viewport over the portion of the display given by the first four
parameters. The window size is given by the last two parameters. Valid window
row values range from zero to one less than windowHeight and column values
range from zero to one less than windowWidth.

The window size must be at least as large as the viewport size.

The window size may be larger than the viewport size in one direction. Using the
window marquee properties MarqueeType, MarqueeFormat,
MarqueeUnitWait, and MarqueeRepeatWait, such a window may be
continuously scrolled in a marquee fashion.

When successful, createWindow sets the CurrentWindow property to the
window number assigned to this window. The following properties are maintained
for each window, and are initialized as given:

Property Value

Rows Set to windowHeight.
Columns Set to windowWidth.
CursorRow Set to 0.
CursorColumn Set to 0.
CursorType Set to DISP_CT_NONE (or the appropriate cursor type

if CapCursorType has DISP_CCT_FIXED set).
CursorUpdate Set to true.
MarqueeType Set to DISP_MT_NONE.
MarqueeFormat Set to DISP_MF_WALK.
MarqueeUnitWait Set to 0.
MarqueeRepeatWait Set to 0.
InterCharacterWait Set to 0.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:
Value Meaning

E_ILLEGAL One or more parameters are out of their valid ranges, or
all available windows are already in use.

See Also CapCursorType Property, CurrentWindow Property, destroyWindow Method.

377 Methods (UML operations)
defineGlyph Method Added in Release 1.6

Syntax defineGlyph (glyphCode: int32, glyph: binary):
 void { raises exception, use after open-claim-enable }

Parameter Description

glyphCode The character code to be defined.

glyph Data bytes that define the glyph.

Remarks Defines a glyph character.

The glyph is defined as bits representing each pixel packed into bytes using whole
bytes to represent each row.

The minimum number of bytes are sent for each row, based on GlyphWidth and
using 8 bits per byte. Bytes are sent left-to-right across each row; if more than one
byte is required per row, the leftmost byte is sent first. The lowest-order bit within
a byte represents the rightmost pixel. Bits that do not represent pixels are the
highest order bits and their value is ignored. Rows are sent from the top down.

A 10 pixel wide glyph would have the two leftmost pixels represented in bits 1 and
0 of the first byte, respectively. The remaining 8 pixels would be represented in the
second byte.

Enough rows must be sent to define the entire character. Whether changing the
definition of a glyph causes currently displayed characters to change, or the change
appears only when next drawn, is hardware-defined.

Example: A 5 column 7 row character cell –

Bit Position
76543210 Byte Hex Value
 .*... 0 08
 ..*.. 1 04
 ... 2 12
 .*..* 3 09
 ..*.. 4 04
 ...*. 5 02
 * 6 01

378
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display
Example: A 12 column by 16 row character cell –

This function is illegal if CapCustomGlyph is false.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL CapCustomGlyph is false, or glyphCode is an
unsupported character code for glyph definition.

See Also CapCustomGlyph Property, CustomGlyphList Property, GlyphHeight
Property, GlyphWidth Property.

Bit Position
111111
5432109876543210

Bytes Hex Values

 0,1 00 00
 *...... 2,3 00 40
 ***..... 4,5 00 E0
 ...**.**.... 6,7 01 B0
 ..**...**... 8,9 03 18
 ..**...**... 10,11 03 18
 ..*******... 12,13 03 F8
 ..*******... 14,15 03 F8
 ..**...**... 16,17 03 18
 ..**...**... 18,19 03 18
 ..**...**... 20,21 03 18
 22,23 00 00
 24,25 00 00
 26,27 00 00
 28,29 00 00
 30,31 00 00

379 Methods (UML operations)
destroyWindow Method

Syntax destroyWindow ():
 void { raises exception, use after open-claim-enable }

Remarks Destroys the current window. The characters displayed in its viewport are not
changed.

CurrentWindow is set to window 0. The device window and the associated
window properties are updated.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The current window is 0. This window may not be
destroyed.

See Also createWindow Method, CurrentWindow Property.

displayText Method Updated in Release 1.6

Syntax displayText (data: string, attribute: int32):
 void { raises exception, use after open-claim-enable }

Parameter Description

data The string of characters to display.

attribute The display attribute for the text. Must be either
DISP_DT_NORMAL, DISP_DT_BLINK,
DISP_DT_REVERSE, or DISP_DT_BLINK_REVERSE.

Remarks The characters in data are processed beginning at the location specified by
CursorRow and CursorColumn, and continue in succeeding columns.

Character processing continues to the next row when the end of a window row is
reached. If the end of the window is reached with additional characters to be
processed, then the window is scrolled upward by one row and the bottom row is
set to blanks. If CursorUpdate is true, then CursorRow and CursorColumn are
updated to point to the character following the last character of data.

Note
Scrolling will not occur when the last character of data is placed at the end of a row. In this
case, when CursorUpdate is true, then CursorRow is set to the row containing the last
character, and CursorColumn is set to Columns (that is, to one more than the final
character of the row).

This stipulation ensures that the display does not scroll when a character is written into its
last position. Instead, the Service will wait until another character is written before scrolling
the window.

380
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display
The operation of displayText (and displayTextAt) varies for each mode:

• Immediate Mode (MarqueeType = DISP_MT_NONE and
InterCharacterWait = 0): Updates the window and viewport immediately.

• Teletype Mode (MarqueeType = DISP_MT_NONE and
InterCharacterWait not = 0): data is enqueued. Enqueued data requests are
processed in order (typically by another thread within the Service), updating
the window and viewport using a wait of InterCharacterWait milliseconds
after each character is sent to the viewport.

• Marquee Init Mode (MarqueeType = DISP_MT_INIT): Updates the
window, but doesn’t change the viewport.

• Marquee On Mode (MarqueeType not = DISP_MT_INIT): Illegal.

If CapBlink is DISP_CB_NOBLINK, then attribute value DISP_DT_BLINK is
ignored, and attribute DISP_DT_BLINK_REVERSE is treated as
DISP_DT_REVERSE. If CapBlink is DISP_CB_BLINKALL, then the entire
display will blink when one or more characters have been set to blink. If CapBlink
is DISP_CB_BLINKEACH, then only those characters displayed with the blink
attribute will blink.

If CapReverse is DISP_CR_NONE, then attribute value DISP_DT_REVERSE is
ignored, and attribute DISP_DT_BLINK_REVERSE is treated as
DISP_DT_BLINK. If CapReverse is DISP_CR_REVERSEALL, then the entire
display will be displayed in reverse video when one or more characters have been
set to reverse. If CapReverse is DISP_CR_REVERSEEACH, then only those
characters displayed with the reverse attribute will be displayed in reverse video.

Special character values within data are:

Value Meaning

Carriage Return (13 Decimal) Change the next character’s output position to
the beginning of the current row.

Newline/Line Feed (10 Decimal) Change the next character’s output position to
the beginning of the next row. Scroll the
window if the current row is the last row of the
window.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL attribute is illegal, or the display is in Marquee On
Mode.

See Also CapBlink Property, CapReverse Property, CursorColumn Property,
CursorRow Property, InterCharacterWait Property, displayTextAt Method,
clearText Method.

381 Methods (UML operations)
displayTextAt Method Updated in Release 1.6

Syntax displayTextAt (row: int32, column: int32, data: string, attribute: int32):
 void { raises exception, use after open-claim-enable }

Parameter Description

row The start row for the text.

column The start column for the text.

data The string of characters to display.

attribute The display attribute for the text. Must be either
DISP_DT_NORMAL, DISP_DT_BLINK,
DISP_DT_REVERSE, or DISP_DT_BLINK_REVERSE.

Remarks The characters in data are processed beginning at the window location specified
by the row and column parameters, and continuing in succeeding columns.

The operational characteristics of the displayTextAt method are the same as the
displayText method.

This method has the same effect as setting the CursorRow to row, setting
CursorColumn to column, and calling the displayText method.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL row or column are out or range, attribute is illegal, or in
Marquee On Mode.

See Also CapBlink Property, CapReverse Property, CursorColumn Property,
CursorRow Property, InterCharacterWait Property, displayText Method,
clearText Method.

readCharacterAtCursor Method Added in Release 1.6

Syntax readCharacterAtCursor (inout cursorData: int32):
 void { raises exception, use after open-claim-enable }

Parameter Description

cursorData The character read from the display.

Remarks Reads the currently displayed character at the cursor position.

This function is illegal if CapReadBack is DISP_CRB_NONE.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL CapReadBack is DISP_CRB_NONE.

See Also CapReadBack Property.

382
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display
refreshWindow Method

Syntax refreshWindow (window: int32):
 void { raises exception, use after open-claim-enable }

The window parameter specifies which window must be refreshed.

Remarks Changes the current window to window, then redisplays its viewport. Neither the
mapping of the window to its viewport nor the window’s cursor position is
changed.

This function may be used to restore a window after another window has
overwritten some of its viewport.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL window is larger than DeviceWindows or has not been
created, or in Marquee On Mode.

scrollText Method

Syntax scrollText (direction: int32, units: int32):
 void { raises exception, use after open-claim-enable }

The direction parameter indicates the scrolling direction, and is one of the
following values:

Value Meaning

DISP_ST_UP Scroll the window up.

DISP_ST_DOWN Scroll the window down.

DISP_ST_LEFT Scroll the window left.

DISP_ST_RIGHT Scroll the window right.

The units parameter indicates the number of columns or rows to scroll.

Remarks Scrolls the current window.

This function is only legal in Immediate Mode.

If the window size for the scroll direction matches its viewport size, then the
window data is scrolled, the last units rows or columns are set to spaces, and the
viewport is updated.

If the window size for the scroll direction is larger than its viewport, then the
window data is not changed. Instead, the mapping of the window into the viewport
is moved in the specified direction. The window data is not altered, but the
viewport is updated. If scrolling by units would go beyond the beginning of the
window data, then the window is scrolled so that the first viewport row or column
contains the first window row or column. If scrolling by units would go beyond the
end of the window data, then the window is scrolled so that the last viewport row
or column contains the last window row or column.

383 Methods (UML operations)
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL direction is illegal, or in Teletype Mode or Marquee
Mode.

See Also displayText Method.

Example 1 - Assume a 2x20 display.
 - An application has a line display instance named myLD.
 - The application has performed:

myLD.createWindow(0, 3, 2, 4, 2, 4); // 2x4 viewport of 2x4 window
myLD.displayText(“abcdABCD”, DISP_DT_NORMAL);

The window contains:

and the viewport on the display is:

If the application next performs:
myLD.scrollText (DISP_ST_LEFT, 2);

the window data becomes:

and the viewport becomes:

Example 2 - Assume a 2x20 display.
 - An application has a line display instance named myLD.
 - The application has performed:

myLD.createWindow(0, 3, 2, 4, 2, 8); // 2x4 viewport of 2x8 window
myLD.displayText(“abcdefghABCDEFGH”, DISP_DT_NORMAL);

0 1 2 3

0 a b c d

1 A B C D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 a b c d

1 A B C D

0 1 2 3

0 c d

1 C D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 c d

1 C D

384
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display
The window contains:

and the viewport on the display is:

If the application next performs:
myLD.scrollText (DISP_ST_LEFT, 2);

the window data is unchanged, and the viewport becomes:

If the application next performs:
myLD.scrollText (DISP_ST_UP, 1);

the window data becomes:

and the viewport becomes:

0 1 2 3 4 5 6 7

0 a b c d e f g h

1 A B C D E F G H

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 a b c d

1 A B C D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 c d e f

1 C D E F

0 1 2 3 4 5 6 7

0 A B C D E F G H

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 C D E F

1

385 Methods (UML operations)
setDescriptor Method

Syntax setDescriptor (descriptor: int32, attribute: int32):
 void { raises exception, use after open-claim-enable }

The descriptor parameter indicates which descriptor to change. The value may
range between zero and one less than DeviceDescriptors.

The attribute parameter indicates the attribute for the descriptor. It has one of the
following values:

Value Meaning

DISP_SD_ON Turns the descriptor on.
DISP_SD_BLINK Sets the descriptor to blinking.
DISP_SD_OFF Turns the descriptor off.

Remarks Sets the state of one of the descriptors, which are small indicators with a fixed
label.

This function is illegal if CapDescriptors is false.

The device and its Service determine the mapping of descriptor to its descriptors.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The device does not support descriptors, or one of the
parameters contained an illegal value.

See Also clearDescriptors Method, DeviceDescriptors Property, CapDescriptors
Property.

386
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display
Events (UML interfaces)
DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific Line Display Service to provide events to the
application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Line Display devices which may not have any
knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a Line Display.

Attributes This event contains the following attribute:

Attribute Type Description

Status int32 Reports a change in the power state of a display.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on page 56.

Remarks Enqueued when the Line Display detects a power state change.

See Also “Events” on page 15.

C H A P T E R 1 1

MICR - Magnetic Ink Character Recognition

Reader

This Chapter defines the MICR - Magnetic Ink Character Recognition Reader
device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 open

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.2 open

DataEventEnabled: boolean { read-write } 1.0 open

DeviceEnabled: boolean { read-write } 1.0 open & claim

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 Not Supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open

388
UnifiedPOS Retail Peripheral Architecture Chapter 11

MICR Magnetic Ink Character Recognition
Properties (Continued)

Specific Type Mutability Version May Use After

AccountNumber: string { read-only } 1.0 open

Amount: string { read-only } 1.0 open

BankNumber: string { read-only } 1.0 open

CapValidationDevice: boolean { read-only } 1.0 open

CheckType: int32 { read-only } 1.0 open

CountryCode: int32 { read-only } 1.0 open

EPC: string { read-only } 1.0 open

RawData: string { read-only } 1.0 open

SerialNumber: string { read-only } 1.0 open

TransitNumber: string { read-only } 1.0 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { raises-exception, use after open, claim }

1.0

clearOutput ():
void { }

Not
supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

Specific

Name

beginInsertion (timeout: int32):
void { raises exception, use after open, claim, enable }

1.0

beginRemoval (timeout: int32):
void { raises exception, use after open, claim, enable }

1.0

endInsertion ():
void { raises exception, use after open, claim, enable }

1.0

endRemoval ():
void { raises exception, use after open, claim, enable }

1.0

389 Summary
Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.0

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.0

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not Supported

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }

390
UnifiedPOS Retail Peripheral Architecture Chapter 11

MICR Magnetic Ink Character Recognition
General Information

The MICR - Magnetic Ink Character Recognition Reader programmatic name is
“MICR”.

Capabilities

The MICR Control has the following minimal set of capabilities:

• Reads magnetic ink characters from a check.

• Provides programmatic control of check insertion, reading and removal. For
some MICR devices, this will require no processing in the Service since the
device may automate many of these functions.

• Parses the MICR data into output properties. This version of the specification
defines the parsing of fields as specified in the ANSI MICR standard used in
North America. For other countries, the application may need to parse the
MICR data from the data in RawData.

The MICR device may be physically attached to or incorporated into a check val-
idation print device. If this is the case, once a check is inserted via MICR Control
methods, the check can still be used by the Printer Control prior to check removal.

Some MICR devices support exception tables, which cause non-standard parsing
of the serial number for specific check routing numbers. Exception tables are not
directly supported by this specification release. However, a Service may choose to
support them, and could assign entries under its device name to define the
exception entries.

This release of the specification does not define any parsing of partial MICR check
data if an error occurs while reading a check. This is done intentionally since any
Service that implements such functionality cannot guarantee that fields parsed
from partial data are correct. For example, it is possible to get MICR data that
contains no ‘?’ characters, but fails its checksum. This would indicate that one or
more characters in the data are incorrect, but there is no way to determine which
characters they are. If an application wishes to try and parse the partial data itself,
the RawData property is filled in with whatever was read even in error cases.

391 General Information
MICR Class Diagram

The following diagram shows the relationships between the MICR classes.

UposException
from upos)

<<exception>> UposConst
(from upos)

<<utili ty>>

ICRCons t
(from upos)

<<utility>>

DataEvent

<<prop>> Status : int32

(from events)

<<event>>

irectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32
(from events)

<<event>>

MICRControl

<<capability>> CapValidationDevice : boolean
<<prop>> AccountNumber : string
<<prop>> Amount : string
<<prop>> BankNumber : string
<<prop>> CheckType : int32
<<prop>> CountryCode : int32
<<prop>> EPC : string
<<prop>> RawData : string
<<prop>> SerialNumber : string
<<prop>> TransitNumber : string

beginInsertion(timeout : int32) : void
beginRemoval(timeout : int32) : void
endInsertion() : void
endRemoval() : void

(from upos)

<<Interface>>

<<sends>>

<<us es>>

fires

fires

fires

f ires

BaseControl
(from upos)

<<Interface>> <<uses>>

<<sends>>

392
UnifiedPOS Retail Peripheral Architecture Chapter 11

MICR Magnetic Ink Character Recognition
Model

The MICR Device follows the general “Device Input Model” for input devices.
One point of difference is that the MICR Device requires the invocation of
methods to insert and remove the check for processing. Therefore, this Device
requires more than simply setting the DataEventEnabled property to true in order
to receive data. The basic model is as follows:

• The MICR Control is opened, claimed, and enabled.

• When an application wishes to perform a MICR read, the application calls
beginInsertion, specifying a timeout value. This results in the device being
made ready to have a check inserted. If the check is not inserted before the
timeout limit expires, a UposException is raised.

In the event of a timeout, the MICR device will remain in a state allowing a
check to be inserted while the application provides any additional prompting
required and then reissues the beginInsertion method.

• Once a check is inserted, the method returns and the application calls
endInsertion, which results in the MICR device being taken out of check
insertion mode and the check, if present, actually being read.

• If the check is successfully read, a DataEvent is enqueued.

• If the AutoDisable property is true, then the Device automatically
disables itself when a DataEvent is enqueued.

• A queued DataEvent can be delivered to the application when
DataEventEnabled is true and other event delivery requirements are
met. Just before delivering this event, data is copied into properties, and
further data events are disabled by setting DataEventEnabled to false.
This causes subsequent input data to be enqueued while the application
processes the current input and associated properties. When the
application has finished processing the current input and is ready for more
data, it reenables events by setting DataEventEnabled to true.

• An ErrorEvent (or events) is enqueued if an error occurs while reading
the check, and is delivered to the application when DataEventEnabled is
true and other event delivery requirements are met.

• The DataCount property may be read to obtain the number of enqueued
DataEvents.

• All enqueued input may be deleted by calling clearInput. See the
clearInput method description for more details.

• After processing a DataEvent, the application should query the
CapValidationDevice property to determine if validation printing can be
performed on the check prior to check removal. If this property is true, the
application may call the Printer Service’s beginInsertion and endInsertion
methods. This positions the check for validation printing. The POS Printer’s
validation printing methods can then be used to perform validation printing.
When validation printing is complete, the application should call the Printer
Service’s removal methods to remove the check.

393 General Information
• Once the check is no longer needed in the device, the application must call
beginRemoval, also specifying a timeout value. This method will raise a
UposException if the check is not removed within the timeout period. In this
case, the application may perform any additional prompting prior to calling
the method again. Once the check is removed, the application should call
endRemoval to take the MICR device out of removal mode.

Many models of MICR devices do not require any check handling processing from
the application. Such MICR devices may always be capable of processing a check
and require no commands to actually read and eject the check. For these types of
MICR devices, the beginInsertion, endInsertion, beginRemoval, and
endRemoval methods simply return, and input data will be enqueued until the
DataEventEnabled property is set to true. However, applications should still use
these methods to ensure application portability across different MICR devices.

Device Sharing

The MICR is an exclusive-use device. Its device sharing rules are:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins
reading input, or before calling methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.

394
UnifiedPOS Retail Peripheral Architecture Chapter 11

MICR Magnetic Ink Character Recognition
MICR Character Substitution

The E13B MICR format used by the ANSI MICR standard contains 15 possible
characters. Ten of these are the numbers 0 through 9. A space character may also
be returned. The other four characters are special to MICR data and are known as
the Transit, Amount, On-Us, and Dash characters. These character are used to
mark the boundaries of certain special fields in MICR data. Since these four
characters are not in the ASCII character set, the following lower-case characters
will be used to represent them in properties and in parameters to methods:

 MICR Character Name Substitute
Character

 Transit t

 Amount a

 On-Us o

 Dash -

395 Properties (UML attributes)
Properties (UML attributes)

AccountNumber Property

Syntax AccountNumber: string { read-only, access after open }

Remarks Holds the account number parsed from the most recently read MICR data.

This account number will not include a check serial number if a check serial
number is able to be separately parsed, even if the check serial number is
embedded in the account number portion of the ‘On Us’ field. If the account
number cannot be identified, the string will be empty (“”).

Its value is set prior to a DataEvent being sent to the application.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RawData Property, DataEvent.

Amount Property

Syntax Amount: string { read-only, access after open }

Remarks Holds the amount field parsed from the most recently read MICR data.

The amount field on a check consists of ten digits bordered by Amount symbols.
All non space digits will be represented in the test string including leading 0’s. If
the amount is not present, the string will be empty (“”).

Its value is set prior to a DataEvent being sent to the application.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RawData Property, DataEvent.

BankNumber Property

Syntax BankNumber: string { read-only, access after open }

Remarks Holds the bank number portion of the transit field parsed from the most recently
read MICR data.

The bank number is contained in digits 5 through 8 of the transit field. If the bank
number or transit field is not present or successfully identified, the string will be
empty (“”).

Its value is set prior to a DataEvent being sent to the application.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RawData Property, TransitNumber Property, DataEvent.

396
UnifiedPOS Retail Peripheral Architecture Chapter 11

MICR Magnetic Ink Character Recognition
CapValidationDevice Property

Syntax CapValidationDevice: boolean { read-only, access after open }

Remarks If true, the device also performs validation printing via the POS Printer’s slip
station, and a check does not have to be removed from the MICR device prior to
performing validation printing.

For devices that are both a MICR device as well as a POS Printer, the device will
automatically position the check for validation printing after successfully
performing a MICR read. Either the MICR’s or the POS Printer’s beginRemoval
and endRemoval methods may be called to remove the check once processing is
complete.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CheckType Property

Syntax CheckType: int32 { read-only, access after open }

Remarks Holds the type of check parsed from the most recently read MICR data. It has one
of the following values:

Value Meaning

MICR_CT_PERSONAL The check is a personal check.

MICR_CT_BUSINESS The check is a business or commercial check.

MICR_CT_UNKNOWN Unknown type of check.

Its value is set prior to a DataEvent being sent to the application.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RawData Property, DataEvent.

397 Properties (UML attributes)
CountryCode Property

Syntax CountryCode: int32 { read-only, access after open }

Remarks Holds the country of origin of the check parsed from the most recently read MICR
data. It has one of the following values:

Value Meaning

MICR_CC_USA The check is from America.

MICR_CC_CANADA The check is from Canada.

MICR_CC_MEXICO The check is from Mexico.

MICR_CC_UNKNOWN Check origination is unknown.

Its value is set prior to a DataEvent being sent to the application.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RawData Property, DataEvent.

EPC Property

Syntax EPC: string { read-only, access after open }

Remarks Holds the Extended Processing Code (“EPC”) field parsed from the most recently
read MICR data. It will contain a single character 0 though 9 if the field is present.
If not, the string will be empty (“”).

Its value is set prior to a DataEvent being sent to the application.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RawData Property, DataEvent.

398
UnifiedPOS Retail Peripheral Architecture Chapter 11

MICR Magnetic Ink Character Recognition
RawData Property

Syntax RawData: string { read-only, access after open }

Remarks Holds the MICR data from the most recent MICR read. It contains any of the 15
MICR characters with appropriate substitution to represent non-ASCII characters
(see “MICR Character Substitution”, page 394). No parsing or special processing
is done to the data returned in this property. A sample value may look like the
following:

“2t123456789t123 4 567890o 123 a0000001957a”

Note that spaces are used to represent spaces in the MICR data.

Its value is set prior to a DataEvent being sent to the application.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also AccountNumber Property, Amount Property, BankNumber Property,
CheckType Property, CountryCode Property, EPC Property, SerialNumber
Property, TransitNumber Property, DataEvent.

SerialNumber Property

Syntax SerialNumber: string { read-only, access after open }

Remarks Holds the serial number of the check parsed from the most recently read MICR
data.

If the serial number cannot be successfully parsed, the string will be empty (“”).

Its value is set prior to a DataEvent being sent to the application.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RawData Property, DataEvent.

TransitNumber Property

Syntax TransitNumber: string { read-only, access after open }

Remarks Holds the transit field of the check parsed from the most recently read MICR data.
It consists of all the characters read between the ‘Transit’ symbols on the check. It
is a nine character string.

Its value is set prior to a DataEvent being sent to the application.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RawData Property, DataEvent.

399 Methods (UML operations)
Methods (UML operations)

beginInsertion Method

Syntax beginInsertion (timeout: int32):
 void { raises exception, use after open-claim-enable }

The timeout parameter gives the number of milliseconds before failing the method.

If zero, the method tries to begin insertion mode, then returns immediately if
successful. Otherwise a UposException is raised. If UPOS_FOREVER (-1), the
method initiates the begin insertion mode, then waits as long as needed until either
the check is inserted or an error occurs.

Remarks Initiates check insertion processing.

When called, the MICR is made ready to receive a check by opening the MICR’s
check handling “jaws” or activating a MICR’s check insertion mode. This method
is paired with the endInsertion method for controlling check insertion. Although
some MICR devices do not require this sort of processing, the application should
still use these methods to ensure application portability across different MICR
devices.

If the MICR device cannot be placed into insertion mode, a UposException is
raised. Otherwise, check insertion is monitored until either:

• The check is successfully inserted.

• The check is not inserted before timeout milliseconds have elapsed, or an error
is reported by the MICR device. In this case, a UposException is raised. The
MICR device remains in check insertion mode. This allows an application to
perform some user interaction and reissue the beginInsertion method without
altering the MICR check handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY If the MICR is a combination device, the peer device
may be busy.

E_ILLEGAL An invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the check being
properly inserted.

See Also endInsertion Method, beginRemoval Method, endRemoval Method.

400
UnifiedPOS Retail Peripheral Architecture Chapter 11

MICR Magnetic Ink Character Recognition
beginRemoval Method

Syntax beginRemoval (timeout: int32):
 void { raises exception, use after open-claim-enable }

The timeout parameter gives the number of milliseconds before failing the method.

If zero, the method tries to begin removal mode, then returns immediately if
successful. Otherwise a UposException is raised. If UPOS_FOREVER (-1), the
method initiates the begin removal mode, then waits as long as needed until either
the check is removed or an error occurs.

Remarks Initiates check removal processing.

When called, the MICR is made ready to remove a check, by opening the MICR’s
check handling “jaws” or activating a MICR’s check ejection mode. This method
is paired with the endRemoval method for controlling check removal. Although
some MICR devices do not require this sort of processing, the application should
still use these methods to ensure application portability across different MICR
devices.

If the MICR device cannot be placed into removal or ejection mode, a
UposException is raised. Otherwise, check removal is monitored until either:

• The check is successfully removed.

• The check is not removed before timeout milliseconds have elapsed, or an
error is reported by the MICR device. In this case, a UposException is raised.
The MICR device remains in check removal mode. This allows an application
to perform some user interaction and reissue the beginRemoval method
without altering the MICR check handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY If the MICR is a combination device, the peer device
may be busy.

E_ILLEGAL An invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the check being
properly removed.

See Also beginInsertion Method, endInsertion Method, endRemoval Method.

401 Methods (UML operations)
endInsertion Method

Syntax endInsertion ():
 void { raises exception, use after open-claim-enable }

Remarks Ends check insertion processing.

When called, the MICR is taken out of check insertion mode. If a check is not
detected in the device, a UposException is raised with an extended error code of
EMICR_NOCHECK. Upon completion of this method, the check will be read by
the MICR device, and data will be available as soon as the DataEventEnabled
property is set to true. This allows an application to prompt the user prior to calling
this method to ensure that the form is correctly positioned.

This method is paired with the beginInsertion method for controlling check
insertion. Although some MICR devices do not require this sort of processing, the
application should still use these methods to ensure application portability across
different MICR devices.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The device is not in check insertion mode.

E_EXTENDED ErrorCodeExtended = EMICR_NOCHECK:
The device was taken out of insertion mode without a
check being inserted.

See Also beginInsertion Method, beginRemoval Method, endRemoval Method.

402
UnifiedPOS Retail Peripheral Architecture Chapter 11

MICR Magnetic Ink Character Recognition
endRemoval Method

Syntax endRemoval ():
 void { raises exception, use after open-claim-enable }

Remarks Ends check removal processing.

When called, the MICR is taken out of check removal or ejection mode. If a check
is detected in the device, a UposException is raised with an extended error code of
EMICR_CHECK.

This method is paired with the beginRemoval method for controlling check
removal. Although some MICR devices do not require this sort of processing, the
application should still use these methods to ensure application portability across
different MICR devices.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The device is not in check removal mode.

E_EXTENDED ErrorCodeExtended = EMICR_CHECK:
The device was taken out of removal mode while a
check is still present.

See Also beginInsertion Method, endInsertion Method, beginRemoval Method.

403 Events (UML interfaces)
Events (UML interfaces)
DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when MICR data is read from a check and is available to
be read.

Attributes This event contains the following attribute:

Attribute Type Description

Status int32 Set to zero.

Before delivering this event, the RawData property is updated and the data is
parsed (if possible) into the MICR data fields.

See Also “Device Input Model” on page 18, “Events” on page 15, RawData Property,
AccountNumber Property, Amount Property, BankNumber Property,
CheckType Property, CountryCode Property, EPC Property, SerialNumber
Property, TransitNumber Property.

DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Device Service information directly to the application. This event
provides a means for a vendor-specific MICR Device Service to provide events to
the application that are not otherwise supported by the Device Control.

Attributes This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Device Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Device Service. This property is
settable.

Obj object Additional data whose usage varies by the EventNumber
and Device Service. This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described as part of the JavaPOS standard. Use of this event may
restrict the application program from being used with other vendor’s MICR
devices which may not have any knowledge of the Device Service’s need for this
event.

See Also “Events” on page 15, directIO Method.

404
UnifiedPOS Retail Peripheral Architecture Chapter 11

MICR Magnetic Ink Character Recognition
ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected when reading MICR data.

Attributes This event contains the following attributes:

Attribute Type Description

ErrorCode int32 Error Code causing the error event. See the list of
ErrorCodes on page 16.

ErrorCodeExtended
int32 Extended Error Code causing the error event. This may

contain a Service-specific value.
ErrorLocus int32 Location of the error. See values below.
ErrorResponse int32 Error response, whose default value may be overridden

by the application (i.e., this property is settable). See
values below.

The ErrorLocus property has one of the following values:

Value Meaning

EL_INPUT Error occurred while gathering or processing event-
driven input. No input data is available.

EL_INPUT_DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER_CLEAR Clear the buffered input data. The error state is exited.
Default when locus is EL_INPUT.

ER_CONTINUEINPUT
Use only when locus is EL_INPUT_DATA.
Acknowledges the error and directs the Device to
continue processing. The Device remains in the error
state and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and DataEventEnabled is again set to
true, then another ErrorEvent is delivered with locus
EL_INPUT.
Default when locus is EL_INPUT_DATA.

405 Events (UML interfaces)
Remarks This event is not delivered until DataEventEnabled is true and other event
delivery requirements are met, so that proper application sequencing occurs.

See Also “Device Input Model” on page 18, “Device States” on page 26.

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a MICR
device.

Attributes This event contains the following attribute:

Attribute Type Description

Status int32 Reports a change in the power state of a MICR device.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on page 56.

Remarks Enqueued when the MICR device detects a power state change.

See Also “Events” on page 15.

406
UnifiedPOS Retail Peripheral Architecture Chapter 11

MICR Magnetic Ink Character Recognition

C H A P T E R 1 2

MSR - Magnetic Stripe Reader

This Chapter defines the Magnetic Stripe Reader device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 open

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.2 open

DataEventEnabled: boolean { read-write } 1.0 open

DeviceEnabled: boolean { read-write } 1.0 open & claim

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 Not Supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open

408
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
Properties (Continued)

Specific Type Mutability Version May Use After

CapISO: boolean { read-only } 1.0 open

CapJISOne: boolean { read-only } 1.0 open

CapJISTwo: boolean { read-only } 1.0 open

CapTransmitSentinels: boolean { read-only } 1.5 open

AccountNumber: string { read-only } 1.0 open

DecodeData: boolean { read-write } 1.0 open

ErrorReportingType: int32 { read-write } 1.2 open

ExpirationDate: string { read-only } 1.0 open

FirstName: string { read-only } 1.0 open

MiddleInitial: string { read-only } 1.0 open

ParseDecodeData: boolean { read-write } 1.0 open

ServiceCode: string { read-only } 1.0 open

Suffix: string { read-only } 1.0 open

Surname: string { read-only } 1.0 open

Title: string { read-only } 1.0 open

Track1Data: binary { read-only } 1.0 open

Track1DiscretionaryData: binary { read-only } 1.0 open

Track2Data: binary { read-only } 1.0 open

Track2DiscretionaryData: binary { read-only } 1.0 open

Track3Data: binary { read-only } 1.0 open

Track4Data: binary { read-only } 1.5 open

TracksToRead: int32 { read-write } 1.0 open

TransmitSentinels: boolean { read-write } 1.5 open

409 Summary
Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { raises-exception, use after open, claim }

1.0

clearOutput ():
void { }

Not
supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.0

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.0

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }

410
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
General Information
The Magnetic Stripe Reader programmatic name is “MSR”.

Capabilities

The MSR device class supports attachment of a card reader to provide input to the
application from a card inserted (swiped) through the reader. The targeted
environment is electronic funds data such as an account number, customer name,
etc. from a magnetically encoded credit and/or debit card.

There are no specific methods for this device category.

The MSR Control has the following minimal set of capabilities:

• Reads encoded data from a magnetic stripe. Data is obtainable from any
combination of ISO or JIS-I tracks 1,2, 3, and JIS-II.

• Supports decoding of the alphanumeric data bytes into their corresponding
alphanumeric codes. Furthermore, this decoded alphanumeric data may be
divided into specific fields accessed as device properties.

The MSR Control may have the following additional capabilities:

• Support for specific card types: ISO, JIS Type I and/or JIS Type II. Note: for
the purpose of this standard, the following convention is assumed:

• Track 1 is ISO or JIS-I Track 1

• Track 2 is ISO or JIS-I Track 2

• Track 3 is ISO or JIS-I Track 3

• Track 4 is JIS-II data

• Determination of the type of card is based on the type of content the card
tracks are expected to hold.

• Support for optionally returning the track sentinels with track data.

Clarifications for JIS-II data handling

Prior to Version 1.5 of this specification, it was not clearly stated how the Control
should treat JIS-II data and into which of the TracknData properties the data
should be stored. This version of the specification defines Track4Data, which the
Control should use to store JIS-II data. However, in order to maintain application
backward compatibility with previous versions, the Control may also store the JIS-
II data into the previously used TracknData property. In such cases, the
DataEvent Status and the ErrorEvent ErrorCodeExtended attributes should be
set to reflect both Track4Data and TracknData. Note that applications that use
this particular method of accessing JIS-II data may not be portable across Controls.

411 General Information
MSR Class Diagram

The following diagram shows the relationships between the MSR classes.

UposException

(from upos)

<<exception>>

UposConst

(from upos)

<<utility>>

MSRConst

(from upos)

<<utility>>
BaseControl

(from upos)

<<Interface>>

<<uses>>

<<sends>>

DataEvent
(from events)

<<event>>

DirectIOEvent

(from events)

<<event>>

ErrorEvent
(from events)

<<event>>

MSRControl

<<capability>> CapISO : boolean
<<capability>> CapJISOne : boolean
<<capability>> CapJISTwo : boolean
<<capability>> CapTransmitSentinels : boolean
<<prop>> AccountNumber : string
<<prop>> DecodeData : boolean
<<prop>> ErrorReportingType : int32
<<prop>> ExpirationDate : string
<<prop>> FirstName : string
<<prop>> MiddleInitial : string
<<prop>> ParseDecodeData : boolean
<<prop>> ServiceCode : string
<<prop>> Suffix : string
<<prop>> Surname : string
<<prop>> Title : string
<<prop>> Track1Data : binary
<<prop>> Track1DiscretionaryData : binary
<<prop>> Track2Data : binary
<<prop>> Track2DiscretionaryData : binary
<<prop>> Track3Data : binary
<<prop>> Track4Data : binary
<<prop>> TracksToRead : int32
<<prop>> TransmitSentinels : boolean

(from upos)

<<Interface>>fires

fires

fires

StatusUpdateEvent
(from events)

<<event>> fires

<<uses>>
<<sends>>

<<uses>>

412
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
Device Behavior Model

The general device behavior model of the MSR is:

• Four unique writable properties control MSR data handling:

• The TracksToRead property controls which combination of the tracks
should be read. It is not an error to swipe a card containing less than this
set of tracks. Rather, this property should be set to the set of tracks that the
application may need to process.

• The DecodeData property controls decoding of track data from raw into
displayable data.

• The ParseDecodeData property controls parsing of decoded data into
fields, based on common MSR standards.

• The ErrorReportingType property controls the type of handling that
occurs when a track containing invalid data is read.

Input – MSR

The MSR follows the general “Device Input Model” for event-driven input:

• When input is received from the card reader generated by the card swipe, a
DataEvent is enqueued.

• If the AutoDisable property is true, the device will automatically disable itself
when a DataEvent is enqueued.

• An enqueued DataEvent can be delivered to the application when the
DataEventEnabled property is true and other event delivery requirements are
met. Just before delivering this event, data is copied into corresponding
properties, and further data events are disabled by setting the
DataEventEnabled property to false. This causes subsequent input data to be
enqueued while the application processes the current input and associated
properties. When the application has finished the current input and is ready for
more data, it re-enables events by setting DataEventEnabled to true.

• An ErrorEvent or events are enqueued if an error is encountered while
gathering or processing input, and are delivered to the application when the
DataEventEnabled property is true and other event delivery requirements are
met.

• The DataCount property can be read to obtain the total number of data events
enqueued.

• Queued input may be deleted by calling the clearInput method. See the
clearInput method description for more details.

Device Sharing

The MSR is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins
reading input, or before calling methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.

413 General Information
MSR State Diagrams

The following state diagrams depict the MSR Control device model.

Error Occurred

entry/ { DataEventEnabled = false, enqueue ErrorEvent, State = UPOS_S_ERROR }

open, claim &
enable

ClearInput Processing

entry/ { DataCount = 0, empty data queue }

done clearing input

Event Processing

done delivering error event

user input[DeviceEnabled == true]

user input[DeviceEnabled == false]

clearInput()

error

The details of
the "Event
Processing"

state are
describe in a
separate

diagram below

414
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
Event Processing

Processing input

enqueue DataEvent

entry/ { increase DataCount }

Disable

entry/ {DeviceEnabled = false}

Event Delivering

Pre-processing

entry/ {DataEventEnabled = false}

Process Data

Parse Data
Deliver DataEvent to Listeners

entry/ [decrement DataCount]

Processing input

enqueue DataEvent

entry/ { increase DataCount }

Disable

entry/ {DeviceEnabled = false}

Event Delivering

Pre-processing

entry/ {DataEventEnabled = false}

Process Data

Parse Data
Deliver DataEvent to Listeners

entry/ [decrement DataCount]

enqueue DataEvent

entry/ { increase DataCount }

Disable

entry/ {DeviceEnabled = false}

Pre-processing

entry/ {DataEventEnabled = false}

Process Data

Parse Data
Deliver DataEvent to Listeners

entry/ [decrement DataCount]

Parse Data

[DataEventEnabled == false and DataCount > 0]

[DataCount > 0 and DataEventEnabled == true]

[Auto Disable == true]

[DecodeData == true]

done processing

[DecodeData == false]

[ParseDecodeData == true]

415 General Information
MSR Usage Diagram
The following diagram is a representation of the typical usage of an MSR device.

:Application :MSRControl :MSRService:Human Actor

new

open(logicalName)

bind control to service

start app

claim(timeoutValue)

register to receive DataEvent

register to receive ErrorEvent

This registration process
is platform specific. It
may involve a simple
message or creating a
special listener instance
for callback

Binding the control to its service

depends on platform specific

loader/configurator which

matches the logical name to

the correct service

setAutoDisable(true)
setAutoDisable(true)

claim(timeoutValue)

try to claim for exclusive use

If timeoutValue expires then
raise a UposException with
UPOS_TIMEOUT error code

setDeviceEnabled(true) setDeviceEnabled(true)

be ready for input from device

Valid card swipe

input received

data decoding

If DecodeData is true
then decode the raw
track data into
displayable data.

setDataEventEnabled(true) setDataEventEnabled(true)

If ParseDecodeData is
true then further parse
data into specific
properties...

create DataEvent

disable device (DeviceEnabled == false)

increase DataCount and enqueue event for delivery

deliver new DataEvent via the EventCallback object delivery mechanism

deliver DataEvent to all registered event handlers

After receiving DataEvent

application must re-enable the

device (i.e. DeviceEnabled =

true) in order to receive other

inputs

When delivery criteria are
met, decrement DataCount
and deliver event

416
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
Properties (UML attributes)

AccountNumber Property

Syntax AccountNumber: string { read-only, access after open }

Remarks Holds the account number obtained from the most recently swiped card.

This property is initialized to the empty string if:

• The field was not included in the track data obtained, or,

• The track data format was not one of those listed in the ParseDecodeData
property description, or,

• ParseDecodeData is false.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also ParseDecodeData Property.

CapISO Property

Syntax CapISO: boolean { read-only, access after open }

Remarks If true, the MSR device supports ISO cards.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapJISOne Property

Syntax CapJISOne: boolean { read-only, access after open }

Remarks If true, the MSR device supports JIS Type-I cards.

JIS-I cards are a superset of ISO cards. Therefore, if CapJISOne is true, then it is
implied that CapISO is also true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapJISTwo Property

Syntax CapJISTwo: boolean { read-only, access after open }

Remarks If true, the MSR device supports JIS type-II cards.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

417 Properties (UML attributes)
CapTransmitSentinels Property Added in Release 1.5

Syntax CapTransmitSentinels: boolean { read-only, access after open }

Remarks If true, the device is able to transmit the start and end sentinels.
If false, these characters cannot be returned to the application.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also TransmitSentinels Property.

DecodeData Property

Syntax DecodeData: boolean { read-write, access after open }

Remarks If false, the Track1Data, Track2Data, Track3Data, and Track4Data properties
contain the original encoded bit sequences, known as “raw data format.”

If true, each byte of track data contained within the Track1Data, Track2Data,
Track3Data, and Track4Data, properties is mapped from its original encoded bit
sequence (as it exists on the magnetic card) to its corresponding decoded ASCII
bit sequence. This conversion is mainly of relevance for data that is NOT of the 7-
bit format, since 7-bit data needs no decoding to decipher its corresponding
alphanumeric and/or Katakana characters.

The decoding that takes place is as follows for each card type, track, and track data
format:

This property is initialized to true by the open method.

Setting this property to false automatically sets ParseDecodeData to false.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also ParseDecodeData Property.

Card Type
Track Data

Property
Raw Data

Format
Raw Bytes Decoded Values

Track1Data 6-Bit 0x00 - 0x3F 0x20 through 0x5F

ISO Track2Data 4-Bit 0x00 - 0x0F 0x30 through 0x3F

Track3Data 4-Bit 0x00 - 0x0F 0x30 through 0x3F

Track1Data 6-Bit 0x00 - 0x3F 0x20 through 0x5F

Track1Data 7-Bit 0x00 - 0x7F Data Unaltered

JIS-I Track2Data 4-Bit 0x00 - 0x0F 0x20 through 0x3F

Track3Data 4-Bit 0x00 - 0x0F 0x20 through 0x3F

Track3Data 7-Bit 0x00 - 0x7F Data Unaltered

JIS-II Track4Data 7-Bit 0x00 - 0x7F Data Unaltered

418
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
ErrorReportingType Property

Syntax ErrorReportingType: int32 { read-write, access after open }

Remarks Holds the type of errors to report via ErrorEvents. This property has one of the
following values:

Value Meaning

MSR_ERT_CARD Report errors at a card level.

MSF_ERT_TRACK Report errors at the track level

An error is reported by an ErrorEvent when a card is swiped, and one or more of
the tracks specified by the TracksToRead property contains data with errors.
When the ErrorEvent is delivered to the application, two types of error reporting
are supported:

• Card level: A general error status is given, with no data returned. This level
should be used when a simple pass/fail of the card data is sufficient.

• Track level: The control can return an extended status with a separate status
for each of the tracks. Also, for those tracks that contain valid data or no data,
the track’s properties are updated as with a DataEvent. For those tracks that
contain invalid data, the track’s properties are set to empty. This level should
be used when the application may be able to utilize a successfully read track
or tracks when another of the tracks contains errors. For example, suppose
TracksToRead is MSR_TR_1_2_3, and a swiped card contains good track 1
and 2 data, but track 3 contains “random noise” that is flagged as an error by
the MSR. With track level error reporting, the ErrorEvent sets the track 1 and
2 properties with the valid data, sets the track 3 properties to empty, and re-
turns an error code indicating the status of each track.

This property is initialized to MSR_ERT_CARD by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also ErrorEvent

419 Properties (UML attributes)
ExpirationDate Property
Syntax ExpirationDate: string { read-only, access after open }

Remarks Holds the expiration date obtained from the most recently swiped card.

This property is initialized to the empty string if:

• The field was not included in the track data obtained, or,

• The track data format was not one of those listed in the ParseDecodeData
property description, or,

• ParseDecodeData is false.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also ParseDecodeData Property.

FirstName Property

Syntax FirstName: string { read-only, access after open }

Remarks Holds the first name obtained from the most recently swiped card.

This property is initialized to an empty string if:

• The field was not included in the track data obtained, or,

• The track data format was not one of those listed in the ParseDecodeData
property description, or,

• ParseDecodeData is false.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also ParseDecodeData Property.

MiddleInitial Property

Syntax MiddleInitial: string { read-only, access after open }

Remarks Holds the middle initial obtained from the most recently swiped card. This
property is initialized to the empty string if:

• The field was not included in the track data obtained, or,

• The track data format was not one of those listed in the ParseDecodeData
property description, or,

• ParseDecodeData is false.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also ParseDecodeData Property.

420
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
ParseDecodeData Property

Syntax ParseDecodeData: boolean { read-write, access after open }

Remarks When true, the decoded data contained within the Track1Data and Track2Data
properties is further separated into fields for access via various other properties.
Track3Data is not parsed because its data content is of an open format defined by
the card issuer. JIS-I Track 1 Format C and ISO Track 1 Format C data are not
parsed for similar reasons. Track4Data is also not parsed.

The parsed data properties are the defined possible fields for cards with data
consisting of the following formats:

• JIS-I / ISO Track 1 Format A

• JIS-I / ISO Track 1 Format B

• JIS-I / ISO Track 1 VISA Format (a defacto standard)

• JIS-I / ISO Track 2 Format

This property is initialized to true by the open method.

Setting this property to true automatically sets DecodeData to true.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also DecodeData Property, Surname Property, Suffix Property, AccountNumber
Property, FirstName Property, MiddleInitial Property, Title Property,
ExpirationDate Property, ServiceCode Property, Track1DiscretionaryData
Property, Track2DiscretionaryData Property.

ServiceCode Property

Syntax ServiceCode: string { read-only, access after open }

Remarks Holds the service code obtained from the most recently swiped card.

This property is initialized to the empty string if:

• The field was not included in the track data obtained, or,

• The track data format was not one of those listed in the ParseDecodeData
property description, or,

• ParseDecodeData is false.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also ParseDecodeData Property.

421 Properties (UML attributes)
Suffix Property

Syntax Suffix: string { read-only, access after open }

Remarks Holds the suffix obtained from the most recently swiped card.

This property is initialized to the empty string if:

• The field was not included in the track data obtained, or,

• The track data format was not one of those listed in the ParseDecodeData
property description, or,

• ParseDecodeData is false.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also ParseDecodeData Property.

Surname Property

Syntax Surname: string { read-only, access after open }

Remarks Holds the surname obtained from the most recently swiped card.

This property is initialized to the empty string if:

• The field was not included in the track data obtained, or,

• The track data format was not one of those listed in the ParseDecodeData
property description, or,

• ParseDecodeData is false.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also ParseDecodeData Property.

Title Property

Syntax Title: string { read-only, access after open }

Remarks Holds the title obtained from the most recently swiped card.

This property is initialized to the empty string if:

• The field was not included in the track data obtained, or,

• The track data format was not one of those listed in the ParseDecodeData
property description, or,

• ParseDecodeData is false.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also ParseDecodeData Property.

422
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
Track1Data Property

Syntax Track1Data: binary { read-only, access after open }

Remarks Holds the track 1 data obtained from the most recently swiped card.

If TransmitSentinels is false, this property contains track data between but not
including the start and end sentinels. If TransmitSentinels is true, then the start
and end sentinels are included.

If DecodeData is true, then the data returned by this property has been decoded
from the “raw” format. The data may also be parsed into other properties when the
ParseDecodeData property is set.

A zero length array indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also TracksToRead Property, TransmitSentinels Property, ParseDecodeData
Property.

Track1DiscretionaryData Property

Syntax Track1DiscretionaryData: binary { read-only, access after open }

Remarks Holds the track 1 discretionary data obtained from the most recently swiped card.

The array will be zero length if:

• The field was not included in the track data obtained, or,

• The track data format was not one of those listed in the ParseDecodeData
property description, or,

• ParseDecodeData is false.

The amount of data contained in this property varies widely depending upon the
format of the track 1 data.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also ParseDecodeData Property.

423 Properties (UML attributes)
Track2Data Property

Syntax Track2Data: binary { read-only, access after open }

Remarks Holds the track 2 data obtained from the most recently swiped card.

If TransmitSentinels is false, this property contains track data between but not
including the start and end sentinels. If TransmitSentinels is true, then the start
and end sentinels are included.

If DecodeData is true, then the data returned by this property has been decoded
from the “raw” format. The data may also be parsed into other properties when the
ParseDecodeData property is set.

A zero length array indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also TracksToRead Property, TransmitSentinels Property, ParseDecodeData
Property.

Track2DiscretionaryData Property

Syntax Track2DiscretionaryData: binary { read-only, access after open }

Remarks Holds the track 2 discretionary data obtained from the most recently swiped card.

The array will be zero length if:

• The field was not included in the track data obtained, or,

• The track data format was not one of those listed in the ParseDecodeData
property description, or,

• ParseDecodeData is false.

The amount of data contained in this property varies widely depending upon the
format of the track 2 data.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also ParseDecodeData Property.

424
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
Track3Data Property

Syntax Track3Data: binary { read-only, access after open }

Remarks Holds the track 3 data obtained from the most recently swiped card.

If TransmitSentinels is false, this property contains track data between but not
including the start and end sentinels. If TransmitSentinels is true, then the start
and end sentinels are included.

If DecodeData is true, then the data returned by this property has been decoded
from the “raw” format. The data may also be parsed into other properties when the
ParseDecodeData property is set.

A zero length array indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also TracksToRead Property, TransmitSentinels Property, ParseDecodeData
Property.

Track4Data Property Added in Release 1.5

Syntax Track4Data: binary { read-only, access after open }

Remarks Holds the track 4 data (JIS-II) obtained from the most recently swiped card.

If TransmitSentinels is false, this property contains track data between but not
including the start and end sentinels. If TransmitSentinels is true, then the start
and end sentinels are included.

If DecodeData is true, then the data returned by this property has been decoded
from the “raw” format.

A zero length array indicates that the track was not accessible.

To maintain compatibility with previous versions, the Control may also continue
to store the JIS-II data in another TracknData property. However, it should be
noted that to ensure application portability, Track4Data should be used to access
JIS-II data.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also Track1Data Property, Track2Data Property, Track3Data Property,
TransmitSentinels Property.

425 Properties (UML attributes)
TracksToRead Property Updated in Release 1.5

Syntax TracksToRead: int32 { read-write, access after open }

Remarks Holds the track data that the application wishes to have placed into Track1Data,
Track2Data, Track3Data, and Track4Data properties following a card swipe.
This property has one of the following values:

Value Meaning

MSR_TR_1 Obtain track 1.

MSR_TR_2 Obtain track 2.

MSR_TR_3 Obtain track 3.

MSR_TR_1_2 Obtain tracks 1 and 2.

MSR_TR_1_3 Obtain tracks 1 and 3.

MSR_TR_2_3 Obtain tracks 2 and 3.

MSR_TR_1_2_3 Obtain tracks 1, 2, and 3.

MSR_TR_4 Obtain track 4.

MSR_TR_1_4 Obtain tracks 1 and 4.

MSR_TR_2_4 Obtain tracks 2 and 4.

MSR_TR_3_4 Obtain tracks 3 and 4.

MSR_TR_1_2_4 Obtain tracks 1, 2, and 4.

MSR_TR_1_3_4 Obtain tracks 1, 3, and 4.

MSR_TR_2_3_4 Obtain tracks 2, 3, and 4.

MSR_TR_1_2_3_4 Obtain tracks 1, 2, 3, and 4.

Decreasing the required number of tracks may provide a greater swipe success rate
and somewhat greater responsiveness by removing the processing for unaccessed
data.

TracksToRead does not indicate a capability of the MSR hardware unit but
instead is an application configurable property representing which track(s) will
have their data obtained, potentially decoded, and returned if possible. Cases such
as an ISO card being swiped through a JIS-II read head, cards simply not having
data for particular tracks, and other factors may preclude the desired data from
being obtained.

This property is initialized to MSR_TR_1_2_3 by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

426
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
TransmitSentinels Property Added in Release 1.5

Syntax TransmitSentinels: boolean { read-write, access after open }

Remarks If true, the Track1Data, Track2Data, Track3Data, and Track4Data properties
contain start and end sentinel values.

If false, then these properties contain only the track data between these sentinels.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The CapTransmitSentinels property is false.

See Also CapTransmitSentinels Property, Track1Data Property, Track2Data Property,
Track3Data Property, Track4Data Property.

427 Events (UML interfaces)
Events (UML interfaces)

DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when input data from the MSR device is available.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 See below.

The Status property is divided into four bytes representing information on up to
four tracks of data. The diagram below indicates how the Status property is
divided:

A value of zero for a track byte means that no data was obtained from the swipe
for that particular track. This might be due to the hardware device simply not
having a read head for the track, or perhaps the application intentionally precluded
incoming data from the track via the TracksToRead property.

A value greater than zero indicates the length in bytes of the corresponding
TrackxData Property.

Remarks Before this event is delivered, the swiped data is placed into Track1Data,
Track2Data, Track3Data, and Track4Data. If DecodeData is true, then this
track is decoded. If ParseDecodeData is true, then the data is parsed into several
additional properties.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Track 4 Track 3 Track 2 Track 1

428
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific MSR Service to provide events to the application that
are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Device Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Device Service. This property is
settable.

Obj object Additional data whose usage varies by the EventNumber
and Device Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s MSR devices which may not have any
knowledge of the Device Service’s need for this event.

See Also “Events” on page 15, directIO Method.

429 Events (UML interfaces)
ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected at the MSR device and a
suitable response by the application is necessary to process the error condition.

Attributes This event contains the following properties:

Attributes Type Description

ErrorCode int32 Result code causing the error event. See a list of Error
Codes on page 16.

ErrorCodeExtended int32 Extended Error code causing the error event. If
ErrorCode is E_EXTENDED, then see values below.
Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application. (i.e., this property is settable). See
values below.

If the ErrorReportingType property is MSR_ERT_TRACK, and ErrorCode is
E_EXTENDED, then ErrorCodeExtended contains Track-level status, broken
down as follows:

Where each of the track status bytes has one of the following values:

Value Meaning

SUCCESS No error occurred.

EMSR_START Start sentinel error.

EMSR_END End sentinel error.

EMSR_PARITY Parity error.

EMSR_LRC LRC error.

E_FAILURE Other or general error.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Track 4 Track 3 Track 2 Track 1

430
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
The ErrorLocus property may be one of the following:

Value Meaning

EL_INPUT Error occurred while gathering or processing event-
driven input. No input data is available.

EL_INPUT_DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER_CLEAR Clear the buffered input data. The error state is exited.
Default when locus is EL_INPUT.

ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA.
Acknowledges the error and directs the Device to
continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and the DataEventEnabled property is
again set to true, then another ErrorEvent is delivered
with locus EL_INPUT.
Default when locus is EL_INPUT_DATA.

Remarks Enqueued when an error is detected while trying to read MSR data. This error
event is not delivered until the DataEventEnabled property is true, so that proper
application sequencing occurs.

If the ErrorReportingType property is MSR_ERT_CARD, then the track that
caused the fault cannot be determined. The track data properties are not changed.

If the ErrorReportingType property is MSR_ERT_TRACK then the ErrorCode
and the ErrorCodeExtended properties may indicate the track-level status. Also,
the track data properties are updated as with DataEvent, with the properties for
the track or tracks in error set to empty strings.

Unlike DataEvent, individual track lengths are not reported. However, the
application can determine their lengths by getting the length of each of the
TrackxData properties.

Also, since this is an ErrorEvent (even though it is reporting partial data), the
DataCount property is not incremented and the Control remains enabled,
regardless of the AutoDisable property value.

See Also “Device Behavior Models” on page 10 and ErrorReportingType Property.

431 Events (UML interfaces)
StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the MSR
device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the power status of the unit.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on page 56.

Remarks Enqueued when the magnetic stripe reader device detects a power state change.

See Also “Events” on page 15.

432
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader

C H A P T E R 1 3

PIN Pad

This Chapter defines the PIN Pad device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.3 Not Supported

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.3 open

Claimed: boolean { read-only } 1.3 open

DataCount: int32 { read-only } 1.3 open

DataEventEnabled: boolean { read-write } 1.3 open

DeviceEnabled: boolean { read-write } 1.3 open & claim

FreezeEvents: boolean { read-write } 1.3 open

OutputID: int32 { read-only } 1.3 Not Supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.3 --

DeviceControlDescription: string { read-only } 1.3 --

DeviceControlVersion: int32 { read-only } 1.3 --

DeviceServiceDescription: string { read-only } 1.3 open

DeviceServiceVersion: int32 { read-only } 1.3 open

PhysicalDeviceDescription: string { read-only } 1.3 open

PhysicalDeviceName: string { read-only } 1.3 open

434
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
Properties (Continued)

Specific Type Mutability Version May Use After

CapDisplay: int32 { read-only } 1.3 open

CapKeyboard: boolean { read-only } 1.3 open

CapLanguage: int32 { read-only } 1.3 open

CapMACCalculation: boolean { read-only } 1.3 open

CapTone: boolean { read-only } 1.3 open

AccountNumber: string { read-write } 1.3 open

AdditionalSecurityInformation: string { read-only } 1.3 open

Amount: int32 { read-write } 1.3 open

AvailableLanguagesList: string { read-only } 1.3 open

AvailablePromptsList: string { read-only } 1.3 open

EncryptedPIN: string { read-only } 1.3 open

MaximumPINLength: int32 { read-write } 1.3 open

MerchantID: string { read-write } 1.3 open

MinimumPINLength: int32 { read-write } 1.3 open

PINEntryEnabled: boolean { read-only } 1.3 open

Prompt: int32 { read-write } 1.3 open

PromptLanguage: nls { read-write } 1.3 open

TerminalID: string { read-write } 1.3 open

Track1Data: binary { read-write } 1.3 open

Track2Data: binary { read-write } 1.3 open

Track3Data: binary { read-write } 1.3 open

Track4Data: binary { read-write } 1.5 open

TransactionType: string { read-write } 1.3 open

435 Summary
Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.3

close ():
void { raises-exception, use after open }

1.3

claim (timeout: int32):
void { raises-exception, use after open }

1.3

release ():
void { raises-exception, use after open, claim }

1.3

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.3

clearInput ():
void { raises-exception, use after open, claim, enable }

1.3

clearOutput ():
void { }

Not
supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.3

Specific

Name

beginEFTTransaction (PINPadSystem: string, transactionHost: int32):
void { raises exception, use after open, claim, enable }

1.3

computeMAC (inMsg: string, outMsg: object):
void { raises exception, use after beginEFTTransaction }

1.3

enablePINEntry():
void { raises exception, use after beginEFTTransaction }

1.3

endEFTTransaction (completionCode: int32):
void { raises exception, use after beginEFTTransaction }

1.3

updateKey (keyNum: int32, key: string):
void { raises exception, use after beginEFTTransaction }

1.3

verifyMAC (message: string):
void { raises exception, use after beginEFTTransaction }

1.3

436
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.3

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.3

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.3

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse int32 { read-write }

upos::events::OutputCompleteEvent Not supported

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }

437 General Information
General Information

The PIN Pad programmatic name is “PINPad”.

A PIN Pad:

• Provides a mechanism for customers to perform PIN Entry.

• Acts as a cryptographic engine for communicating with an EFT
Transaction Host.

A PIN Pad will perform these functions by implementing one or more PIN Pad
Management Systems. A PIN Pad Management System defines the manner in
which the PIN Pad will perform functions such as PIN Encryption, Message
Authentication Code calculation, and Key Updating. Examples of PIN Pad
Management Systems include: Master-Session, DUKPT, APACS40,
HGEPOS, AS2805, and JDEBIT2, along with many others

Capabilities
The PIN Pad Control has the following minimal capability:

• Accept a PIN Entry at its keyboard and provide an Encrypted PIN to the
application.

The PIN Pad Control may have the following additional capabilities:

• Compute Message Authentication Codes.

• Perform Key Updating in accordance with the selected PIN Pad
Management System.

• Supports multiple PIN Pad Management Systems.

• Allow use of the PIN Pad Keyboard, Display, & Tone Generator for
application usage. If one or more of these features are available, then the
application opens and uses the associated POS Keyboard, Line Display, or
Tone Indicator Device Objects:

438
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
PIN Pad Class Diagram

The following diagram shows the relationships between the PIN Pad classes.

UposConst
(from upos)

<<utility>>

UposException
(from upos)

<<exception>>

PINPadConst
(from upos)

<<utility>>

DataEvent
(from events)

<<event>>

ErrorEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

PINPadControl

<<capability>> CapDisplay : int32
<<capability>> CapLanguage : int32
<<capability>> CapKeyboard : boolean
<<capability>> CapMACCalculation : boolean
<<capability>> CapTone : boolean
<<prop>> AccountNumber : string
<<prop>> AdditionalSecurityInformation : string
<<prop>> Amount : currency
<<prop>> AvailableLanguagesList : string
<<prop>> AvailablePromptsList : string
<<prop>> EncryptedPIN : string
<<prop>> MaximumPINLength : int32
<<prop>> MerchantID : string
<<prop>> MinimumPINLength : int32
<<prop>> PINEntryEnabled : boolean
<<prop>> Prompt : int32
<<prop>> PromptLanguage : int32
<<prop>> TerminalID : string
<<prop>> Track1Data : binary
<<prop>> Track2Data : binary
<<prop>> Track3Data : binary
<<prop>> Track4Data : binary
<<prop>> TransactionType : int32

beginEFTTransaction(PINPadSystem : string, transactionHost : int32) : void
computeMAC(inMsg : string, outMsg : object) : void
enablePINEntry() : void
endEFTTransaction(completionCode : int32) : void
updateKey(keyNum : int32, key : string) : void
verifyMAC(message : string) : void

(from upos)

<<Interface>>

fires

fires

fires

DirectIOEvent
(from events)

<<event>>

fires

BaseControl
(from upos)

<<Interface>>

<<sends>>

<<uses>>
<<uses>>

<<uses>>

<<sends>>

439 General Information
Feature Not Supported
This specification does not include support for the following:

• Initial Key Loading. This operation usually requires downloading at least
one key in the clear and must be done in a secure location (typically either
the factory or at a Financial Institution). Thus, support for initial key
loading is outside the scope of this specification. However, this
specification does include support for updating keys while a PIN Pad unit
is installed at a retail site.

• Full EFT functionality. This specification addresses the functionality of a
PIN Pad that is used solely as a peripheral device by an Electronic Funds
Transfer application. It specifically does not define the functionality of an
Electronic Funds Transfer application that might execute within an
intelligent PIN Pad. This specification does not include support for
applications in which the PIN Pad application determines that a message
needs to be transmitted to the EFT Transaction Host. Consequently, this
specification will not apply in Canada, Germany, Netherlands, and
possibly other countries. It also does not apply to PIN Pad in which the
vendor has chosen to provide EFT Functionality in the PIN Pad.

• Smartcard Reader. Some PIN Pad devices will include a Smartcard reader.
Support for this device may be included in a future revision of this
specification. In the interim, the directIO method could not be used to control
such added functionality.

Note on Terminology
For the PIN Pad device, clarification of the terminology used to describe the
data exchange with the device is necessary. “Hex-ASCII” is used to indicate
that the “standard” representation of bytes as hexadecimal ASCII characters is
used. For instance, the byte stream {0x15, 0xC7, 0xF0} would be represented
in hex-ASCII as “15C7F0”.

440
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
Model
A PIN Pad performs encryption functions under control of a PIN Pad
Management System. Some PIN Pads will support multiple PIN Pad
Management Systems. Some PIN Pad Management Systems support multiple
keys (sets) for different EFT Transaction Hosts. Thus, for each EFT
transaction, the application will need to select the PIN Pad Management
System and EFT Transaction Host to be used. Depending on the PIN Pad
Management System, one or more EFT transaction parameters will need to be
provided to the PIN Pad for use in the encryption functions. The application
should set the value of ALL EFT Transaction parameter properties to enable
easier migration to EFT Transaction Hosts that require a different PIN Pad
Management System.

After opening, claiming, and enabling the PIN Pad Control, an application
should use the following general scenario for each EFT Transaction.

• Set the EFT transaction parameters (AccountNumber, Amount,
MerchantID, TerminalID, Track1Data, Track2Data, Track3Data,
Track4Data, and TransactionType properties) and then call the
beginEFTTransaction method. This will initialize the Device to perform
the encryption functions for the EFT transaction.

• If PIN Entry is required, call the enablePINEntry method. Then set the
DataEventEnabled property and wait for the DataEvent.

• If Message Authentication Codes are required, use the computeMAC and
verifyMAC methods as needed.

• Call the endEFTTransaction method to notify the Device that all
operations for the EFT transaction have been completed.

This specification supports two models of usage of the display. The
CapDisplay property indicates one of the following models.

• An application has complete control of the text that is to be displayed. For
this model, there is an associated Line Display Control that is used by the
application to interact with the display.

• An application cannot supply the text to be displayed. Instead, it can only
select from a list of pre-defined messages to be displayed. For this model,
there is a set of PIN Pad properties that are used to control the display.

441 General Information
Device Sharing
The PIN Pad is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins
reading input, or before calling methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.

442
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
PIN Pad State Diagram

The following state diagram depicts the PIN Pad Control device model.

Closed Opened Claimed

Enabled

EFT Transaction

Idle

MAC
Processing

PIN Input Processing

Wait PIN Input

Error Event
Processing

Data Event
Processing

Idle

MAC
Processing

PIN Input Processing

Wait PIN Input

Error Event
Processing

Data Event
Processing

Wait for PIN Input

ErrorEvent
Processing

DataEvent
Processing

open()

close()

claim()

Error
[DataEventEnabled == true]

release()

/set DeviceEnabled(true)

close()

beginEFTTransaction()

endEFTTransaction()

release()

/set DeviceEnabled(false)

close()

done

enablePINEntry()

computeMAC(),
verifyMAC()

done

443 Properties (UML attributes)
Properties (UML attributes)
AccountNumber Property

Syntax AccountNumber: string { read-write, access after open }

Remarks Holds the account number to be used for the current EFT transaction. The
application must set this property before calling the beginEFTTransaction
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
beginEFTTransaction method has been called.

AdditionalSecurityInformation Property

Syntax AdditionalSecurityInformation: string { read-only, access after open }

Remarks Holds additional security/encryption information when a DataEvent is delivered.
This property will be formatted as a HEX-ASCII string. The information content
and internal format of this string will vary among PIN Pad Management Systems.
For example, if the PIN Pad Management System is DUKPT, then this property
will contain the “PIN Pad sequence number”. If the PIN Entry was cancelled, this
property will contain the empty string.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Amount Property

Syntax Amount: int32 { read-write, access after open }

Remarks Holds the amount of the current EFT transaction. The application must set this
property before calling the beginEFTTransaction method. This property is a
monetary value stored using an implied four decimal places. For example, an
actual value of 12345 represents 1.2345.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
beginEFTTransaction method has been called.

444
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
AvailableLanguagesList Property

Syntax AvailableLanguagesList: string { read-only, access after open }

Remarks Holds a semi-colon separated list of a set of a “language definitions” that are
supported by the pre-defined prompts in the PIN Pad. A “language definition”
consists of an ISO-639 language code and an ISO-3166 country code. The two
codes are comma separated.

For example, the string “EN,US;FR,CAN” represents two supported language
definitions. US English and Canadian French where the variant of French used will
be dependent on what is available on the device.

If CapLanguage is PPAD_LANG_NONE, then this property will be the empty
string.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also PromptLanguage Property.

AvailablePromptsList Property

Syntax AvailablePromptsList: string { read-only, access after open }

Remarks Holds a comma-separated string representation of the supported values for the
Prompt property.

The full set of supported Prompt values are shown below:

Name (Value) Meaning

PPAD_MSG_ENTERPIN (1)
Enter pin number on the PIN Pad.

PPAD_MSG_PLEASEWAIT (2)
The system is processing. Wait.

PPAD_MSG_ENTERVALIDPIN (3)
The pin that was entered is not correct. Enter the correct
pin number.

PPAD_MSG_RETRIESEXCEEDED (4)
The user has failed to enter the correct pin number and
the maximum number of attempts has been exceeded.

PPAD_MSG_APPROVED (5)
The request has been approved.

PPAD_MSG_DECLINED (6)
The EFT Transaction Host has declined to perform the
requested function.

445 Properties (UML attributes)
PPAD_MSG_CANCELED (7)
The request is cancelled.

PAD_MSG_AMOUNTOK (8)
Enter Yes/No to approve the amount.

PPAD_MSG_NOTREADY (9)
PIN Pad is not ready for use.

PPAD_MSG_IDLE (10)
The System is Idle.

PPAD_MSG_SLIDE_CARD (11)
Slide card through the integrated MSR.

PPAD_MSG_INSERTCARD (12)
Insert (smart)card.

PPAD_MSG_SELECTCARDTYPE (13)
Select the card type (typically credit or debit).

Value 1000 and above are reserved for device specific defined values.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

446
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
CapDisplay Property

Syntax CapDisplay: int32 { read-only, access after open }

Remarks Defines the operations that the application may perform on the PIN Pad display.

Value Meaning

PPAD_DISP_UNRESTRICTED
The application can use the PIN Pad display in an
unrestricted manner to display messages. In this case, an
associated Line Display Control Object is the interface
to the PIN Pad display. The application must call Line
Display methods to manipulate the display.

PPAD_DISP_PINRESTRICTED
The application can use the PIN Pad display in an
unrestricted manner except during PIN Entry. The PIN
Pad will display a pre-defined message during PIN
Entry. If an attempt is made to use the associated Line
Display Control Object while PIN Entry is enabled, the
Line Display Control will throw a UposException with
an associated ErrorCode of E_BUSY.

PPAD_DISP_RESTRICTED_LIST
The application cannot specify the text of messages to
display. It can only select from a list of pre-defined
messages. There is no associated Line Display Device
Control.

PPAD_DISP_RESTRICTED_ORDER
The application cannot specify the text of messages to
display. It can only select from a list of pre-defined
messages. The selections must occur in a pre-defined
acceptable order. There is no associated Line Display
Device Control.

PPAD_DISP_NONE The PIN Pad does not have the PIN Pad display.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

447 Properties (UML attributes)
CapKeyboard Property

Syntax CapKeyboard: boolean { read-only, access after open }

Remarks If true, the application can use the PIN Pad to obtain input. The application will
use an associated POS Keyboard Device Control object as the interface to the PIN
Pad keyboard. Note that the associated POS Keyboard Control is effectively
disabled while PINEntryEnabled is true.

If false, the application cannot obtain input directly from the PIN Pad keyboard.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapLanguage Property

Syntax CapLanguage: int32 { read-only, access after open }

Remarks Defines the capabilities that the application has to select the language of pre-
defined messages (e.g. English, French, Arabic etc.).

Value Meaning

PPAD_LANG_NONE The PIN Pad supports no pre-defined prompt messages.
The property will be set to this value if CapDisplay =
PPAD_DISP_UNRESTRICTED. Any attempt to set the
value of the PromptLanguage property will cause a
UposException to be thrown with the associated
ErrorCode of E_ILLEGAL.

PPAD_LANG_ONE The PIN Pad supports pre-defined prompt messages in
one language. Any attempt to set the value of the
PromptLanguage property to other than the default
value will cause a UposException to be thrown with the
associated ErrorCode of E_ILLEGAL.

PPAD_LANG_PINRESTRICTED
The PIN Pad cannot change prompt languages during
PIN Entry. The application must set the desired value
into the PromptLanguage property before calling
enablePINEntry. Any attempt to set the value of the
PromptLanguage while PINEntryEnabled is true will
cause a UposException to be thrown with the associated
ErrorCode of E_BUSY.

PPAD_DISP_RESTRICTED_ORDER
The application can change the language of pre-defined
prompt messages at anytime. The currently displayed
message will change immediately.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also PromptLanguage Property.

448
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
CapMACCalculation Property

Syntax CapMACCalculation: boolean { read-only, access after open }

Remarks If true, the PIN Pad supports MAC calculation.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapTone Property

Syntax CapTone: boolean { read-only, access after open }

Remarks If true, the PIN Pad has a Tone Indicator. The Tone Indicator may be accessed by
use of an associated Tone Indicator Control. If false, there is no Tone Indicator.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

EncryptedPIN Property

Syntax EncryptedPIN: string { read-only, access after open }

Remarks Holds the value of the Encrypted PIN after a DataEvent. This property will be
formatted as a hexadecimal ASCII string. Each character is in the ranges ‘0’
through ‘9’ or ‘A’ through ‘F’. Each pair of characters is the hexadecimal
representation for a byte.
For example, if the first four characters are “12FA”, then the first two bytes of the
PIN are 12 hexadecimal (18) and FA hexadecimal (250).

If the PIN Entry was cancelled, this property will contain the empty string.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

MaximumPINLength Property

Syntax MaximumPINLength: int32 { read-write, access after open }

Remarks Holds the maximum acceptable number of digits in a PIN. This property must be
set to a default value by the open method. If the application wishes to change this
property, it should be set before the enablePINEntry method is called. Note that
in some implementations, this value cannot be changed by the application.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
enablePINEntry method has been called.

449 Properties (UML attributes)
MerchantID Property

Syntax MerchantID: string { read-write, access after open }

Remarks Holds the Merchant ID, as it is known to the EFT Transaction Host. The
application must set this property before calling the beginEFTTransaction
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
enablePINEntry method has been called.

MinimumPINLength Property

Syntax MinimumPINLength: int32 { read-only, access after open }

Remarks Holds the minimum acceptable number of digits in a PIN. This property will be set
to a default value by the open method. If the application wishes to change this
property, it should be set before the enablePINEntry method is called. Note that
in some implementations, this value cannot be changed by the application.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
enablePINEntry method has been called.

PINEntryEnabled Property

Syntax PINEntryEnabled: boolean { read-write, access after open }

Remarks If true, the PIN entry operation is enabled. It is set when the enablePINEntry
method is called. It will be set to false when the user has completed the PIN Entry
operation or when the endEFTTransaction method has completed.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

450
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
Prompt Property

Syntax Prompt: int32 { read-write, access after open }

Remarks Holds the identifies a pre-defined message to be displayed on the PIN Pad. This
property is used if CapDisplay is PPAD_DISP_RESTRICTED_LIST or
PPAD_DISP_RESTRICTED_ORDER. It is also used during PIN Entry if
CapDisplay has a value of PPAD_DISP_PINRESTRICTED. The
AvailablePromptsList property lists the possible values for this property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following has occurred.
* An attempt was made to set the property to a value that
is not supported by the PIN Pad Device Service.
* An attempt was made to select prompt messages in an
unacceptable order (if CapDisplay is
PPAD_DISP_RESTRICTED_ORDER).

See Also PromptLanguage Property.

451 Properties (UML attributes)
PromptLanguage Property

Syntax PromptLanguage: nls { read-write, access after open }

Remarks Holds the “language definition” for the message to be displayed (as specified by
the Prompt property). This property is used if the Prompt property is begin used.
The exact effect of changing this property depends on the value of CapLanguage.

A “language definition” consists of an ISO-639 language code and an ISO-3166
country code. The two codes are comma separated.

The country code is optional and implies that the application does not care which
country variant of the language is used.

For example, the string “EN,US” represents a US English language definition, the
string “FR”, represents a French language definition where the variant of French
used will be dependent on what is available on the device.

The property is initialized to a default value by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following occurred.
* An attempt was made to set the property to a value that
is not supported by the PIN Pad Device Service.
* CapLanguage is PPAD_LANG_NONE. and an
attempt was made to set the value of this property.
* CapLanguage is PPAD_LANG_ONE and an attempt
was made to set the value of this property to other than
the default value.

E_BUSY CapLanguage is PPAD_LANG_PINRESTRICTED
and PINEntryEnabled is true.

See Also CapLanguage Property, AvailableLanguagesList Property.

TerminalID Property

Syntax TerminalID: string { read-write, access after open }

Remarks Holds the terminal ID, as it is known to the EFT Transaction Host. The application
must set this property before calling the beginEFTTransaction method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
beginEFTTransaction method has been called.

452
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
Track1Data Property

Syntax Track1Data: binary { read-write, access after open }

Remarks Holds either the decoded track 1 data from the previous card swipe or an empty
array. An empty array indicates that the track was not physically read. The
application must set this property before calling the beginEFTTransaction
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
beginEFTTransaction method has been called.

Track2Data Property

Syntax Track2Data: binary { read-write, access after open }

Remarks Holds either the decoded track 2 data from the previous card swipe or an empty
array. An empty array indicates that the track was not physically read. The
application must set this property before calling the beginEFTTransaction
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
beginEFTTransaction method has been called.

Track3Data Property

Syntax Track3Data: binary { read-write, access after open }

Remarks Holds either the decoded track 3 data from the previous card swipe or an empty
array. An empty array indicates that the track was not physically read. The
application must set this property before calling the beginEFTTransaction
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
beginEFTTransaction method has been called.

453 Properties (UML attributes)
Track4Data Property Added in Release 1.5

Syntax Track4Data: binary { read-write, access after open }

Remarks Holds either the decoded track 4 (JIS-II) data from the previous card swipe or an
empty array. An empty array indicates that the track was not physically read. The
application must set this property before calling the beginEFTTransaction
method.

To maintain compatibility with previous versions, the Control may also continue
to store the JIS-II data in another TracknData property. However, it should be
noted that to ensure application portability, Track4Data should be used to access
JIS-II data.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
beginEFTTransaction method has been called.

TransactionType Property

Syntax TransactionType: int32 { read-write, access after open }

Remarks Holds the type of the current EFT Transaction. The application must set this
property before calling the beginEFTTransaction method.

This property have one of the following values:

Value Meaning

PPAD_TRANS_DEBIT Debit (decrease) the specified account

PPAD_TRANS_CREDITCredit (increase) the specified account

PPAD_TRANS_INQ (Balance) Inquiry

PPAD_TRANS_RECONCILE
Reconciliation/Settlement

PPAD_TRANS_ADMINAdministrative Transaction

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
beginEFTTransaction method has been called.

454
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
Methods (UML operations)

beginEFTTransaction Method

Syntax beginEFTTransaction (PINPadSystem: string, transactionHost: int32):
void { raises-exception, use after open-claim-enable }

Value Description

PINPadSystem Name of the desired PIN Pad Management System (see
below). The Device Service my support other PIN Pad
Management systems.

transactionHost Identifications particular EFT Transaction Host to be
used for this transaction.

The PINPadSystem Parameter has one of the following values:

Value Description

“M/S” Master/Session (U.S.A Latin America)

“DUKPT” Derived Unique Key Per Transaction (USA, Latin
America)

“APACS40” Standard 40 (UK and other countries)

“AS2805” Australian Standard 2805

“HGEPOS” (Italian)

“JDEBIT2” Japan Debit 2

Remarks Initialize the beginning of an EFT Transaction. The device will perform
initialization functions (such as computing session keys). No other PIN Pad
functions can be performed until this method is called.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The requested PIN Pad Management System is not
supported by the Control, or the requested EFT
Transaction Host is an illegal value for the selected PIN
Pad Management System.

E_BUSY The PIN Pad is already performing an EFT transaction.

455 Methods (UML operations)
computeMAC Method

Syntax computeMAC (inMsg: string, outMsg: object):
void { raises-exception, use after beginEFTTransaction)

Value Description

inMsg The message that the application intends to send to an
EFT Transaction.

outMsg Contains the result of applying the MAC calculation to
inMsg. This output parameter will contain a reformatted
message that may actually be transmitted to an EFT
Transaction Host.

Remarks Computers a MAC value and appends it to the designated message. Depending on
the selected PIN Pad management system, the PIN Pad may also insert other fields
into the message. Note that this method cannot be used while PIN Pad input (PIN
Entry) is enabled.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_DISABLED A beginEFTTransaction method has not been
performed.

E_BUSY PINEntryEnabled is true. The PIN Pad cannot perform a
MAC calculation during PIN Entry.

enablePINEntry Method

Syntax enablePINEntry ():
void { raises-exception, use after beginEFTTransaction);

Remarks Enable PIN Entry at the PIN Pad device. When this method is called, the

PINEntryEnabled property will be changed to true. If the PIN Pad uses pre-
defined prompts for PIN Entry, then the Prompt property will be changed to
PPAD_MSG_ENTERPIN.

When the user has completed the PIN entry operation (either by entering their PIN
or by hitting Cancel), the PINEntryEnabled property will be changed to false. A
DataEvent will be delivered to provide the encrypted PIN to the application when
DataEventEnabled is set to true. Note that any data entered at the PIN Pad while
PINEntryEnabled is true will be supplied in encrypted form and will NOT be
provided to any associated Keyboard Control Object.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_DISABLED A beginEFTTransaction method has not been
performed.

456
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
endEFTTransaction Method

Syntax endEFTTransaction (completionCode: int32):
void { raises-exception, use after beginEFTTransaction }

The completionCode is one of the following values:

Value Description

PPAD_EFT_NORMAL The EFT transaction completed normally. Note that this
does not mean that the EFT transaction was approved. It
merely means that the proper sequence of messages was
transmitted and received.

PPAD_EFT_ABNORMALThe proper sequence of messages was not transmitted
& received.

Remarks Ends an EFT Transaction. The Device will perform termination functions (such as
computing next transaction keys).

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

updateKey Method

Syntax updateKey (keyNum: int32, key: string):
void { raises-exception, use after beginEFTTransaction }

Parameter Description

keyNum A key number.

key A Hex-ASCII value for a new key.

Remarks Provides a new encryption key to the PIN Pad. It is used only for those PIN Pad
Management Systems in which new key values are sent to the terminal as a field
in standard messages from the EFT Transaction Host.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following conditions occurred.
* The selected PIN Pad Management System does not
support this function.
* The keyNum specifies an unacceptable key number.
* The key contains a bad key (not Hex-ASCII or wrong
length or bad parity).

457 Methods (UML operations)
verifyMAC Method

Syntax verifyMAC (message: string):
void { raises-exception, use after beginEFTTransaction }

Parameter Description

message Contains a message received from an EFT Transaction
Host.

Remarks Verify the MAC value in a message received from an EFT Transaction Host. This
method throws a UposException if it can verify the message. Note that this method
cannot be used while PIN Entry is enabled.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_DISABLED A beginEFTTransaction method has not been
performed.

E_BUSY PINEntryEnabled is true. The PIN Pad cannot perform
a MAC verification during PIN Entry.

458
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
Events (UML interfaces)

DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when a PIN Entry operation has completed.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 See below.

The status property has one of the following values:

Value Meaning

PPAD_SUCCESS PIN Entry has occurred and values have been stored into
the EncryptedPIN and
AdditionalSecurityInformation properties.

PPAD_CANCEL The user hit the cancel button on the PIN Pad.

PPAD_TIMEOUT A timeout condition occurred in the PIN Pad. (Not all
PIN Pads will report this condition).

Remarks This event is enqueued after the request’s data has been both sent and the Service
has confirmation that is was processed by the device successfully.

See Also “Device Input Model” on page 18.

459 Events (UML interfaces)
DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Device Service information directly to the application. This event
provides a means for a vendor-specific PIN Pad Service to provide events to the
application that are not otherwise supported by the Device Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service event.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Device Service. This property is
settable.

Obj object Additional data whose usage varies by the EventNumber
and Device Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s PIN Pad devices which may not have any
knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method

ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-only }

Description Notifies the application that an error was detected while trying to perform a PIN
encryption function.

Attributes This event contains the following properties:

Attributes Type Description

ErrorCode int32 Result code causing the error event. See a list of Error
Codes on page 16.

ErrorCodeExtended int32 Extended Error code causing the error event. If
ErrorCode is E_EXTENDED, then see values below.
Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error, and is set to EL_INPUT indicating
that the error occurred while gathering or processing
event-driven input.

460
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
ErrorResponse int32 Error response, whose default value may be overridden
by the application (i.e., this property is settable). See
values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the
following values:

Value Meaning

EPPAD_BAD_KEY An Encryption Key is corrupted or missing.

The ErrorLocus property may be one of the following:

Value Meaning

EL_INPUT Error occurred while gathering or processing event-
driven input. No input data is available.

The application’s error event listener may change ErrorResponse to the following
values:

Value Meaning

ER_CLEAR Clear the buffered input data. The error state is exited.
Default when locus is EL_INPUT.

Remarks Enqueued when an error is detected and the Service’s State transitions into the
error state. This event is not delivered until DataEventEnabled is true, so that
proper application sequencing occurs.

See Also “Device Behavior Models” on page 10 and ErrorReportingType Property.

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a PIN Pad.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates the status change, and has one of the
following values:

Note that Release 1.3 added Power State
Reporting with additional Power reporting
StatusUpdateEvent values. See
“StatusUpdateEvent” description on page 56.

Remarks Enqueued when the PIN Pad detects a power state change.

See Also “Events” on page 15.

C H A P T E R 1 4

Point Card Reader Writer

This Chapter defines the Point Card Reader Writer device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.5 Not Supported

CapPowerReporting: int32 { read-only } 1.5 open

CheckHealthText: string { read-only } 1.5 open

Claimed: boolean { read-only } 1.5 open

DataCount: int32 { read-only } 1.5 open

DataEventEnabled: boolean { read-write } 1.5 open

DeviceEnabled: boolean { read-write } 1.5 open & claim

FreezeEvents: boolean { read-write } 1.5 open

OutputID: int32 { read-only } 1.5 open

PowerNotify: int32 { read-write } 1.5 open

PowerState: int32 { read-only } 1.5 open

State: int32 { read-only } 1.5 --

DeviceControlDescription: string { read-only } 1.5 --

DeviceControlVersion: int32 { read-only } 1.5 --

DeviceServiceDescription: string { read-only } 1.5 open

DeviceServiceVersion: int32 { read-only } 1.5 open

PhysicalDeviceDescription: string { read-only } 1.5 open

PhysicalDeviceName: string { read-only } 1.5 open

462
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
Properties (Continued)

Specific: Type Mutability Version May Use After

CapBold: boolean { read-only } 1.5 open

CapCardEntranceSensor: int32 { read-only } 1.5 open

CapCharacterSet: int32 { read-only } 1.5 open

CapCleanCard: boolean { read-only } 1.5 open

CapClearPrint: boolean { read-only } 1.5 open

CapDhigh: boolean { read-only } 1.5 open

CapDwide: boolean { read-only } 1.5 open

CapDwideDhigh: boolean { read-only } 1.5 open

CapItalic: boolean { read-only } 1.5 open

CapLeft90: boolean { read-only } 1.5 open

CapPrint: boolean { read-only } 1.5 open

CapPrintMode: boolean { read-only } 1.5 open

CapRight90: boolean { read-only } 1.5 open

CapRotate180: boolean { read-only } 1.5 open

CapTracksToRead: int32 { read-only } 1.5 open

CapTracksToWrite: int32 { read-only } 1.5 open

CardState: int32 { read-only } 1.5 open

CharacterSet: int32 { read-write } 1.5 open, claim, & enable

CharacterSetList: string { read-only } 1.5 open

FontTypeFaceList: string { read-only } 1.5 open

LineChars: int32 { read-only } 1.5 open, claim, & enable

LineCharsList: string { read-only } 1.5 open

LineHeight: int32 { read-only } 1.5 open, claim, & enable

LineSpacing: int32 { read-only } 1.5 open, claim, & enable

LineWidth: int32 { read-only } 1.5 open, claim, & enable

MapMode: int32 { read-only } 1.5 open, claim, & enable

MaxLine: int32 { read-only } 1.5 open, claim, & enable

PrintHeight: int32 { read-only } 1.5 open, claim, & enable

ReadState1: int32 { read-only } 1.5 open

ReadState2: int32 { read-only } 1.5 open

RecvLength1: int32 { read-only } 1.5 open, claim, & enable

RecvLength2: int32 { read-only } 1.5 open, claim, & enable

SidewaysMaxChars: int32 { read-only } 1.5 open

SidewaysMaxLines: int32 { read-only } 1.5 open

463Summary
Properties (Continued)

Specific: Type Mutability Version May Use After

TracksToRead: int32 { read-write } 1.5 open, claim, & enable

TracksToWrite: int32 { read-write } 1.5 open, claim, & enable

Track1Data: binary { read-only } 1.5 open

Track2Data: binary { read-only } 1.5 open

Track3Data: binary { read-only) 1.5 open

Track4Data: binary { read-only } 1.5 open

Track5Data: binary { read-only } 1.5 open

Track6Data: binary { read-only } 1.5 open

WriteState1: int32 { read-only } 1.5 open

WriteState2: int32 { read-only } 1.5 open

Write1Data: binary { read-write } 1.5 open

Write2Data: binary { read-write } 1.5 open

Write3Data: binary { read-write } 1.5 open

Write4Data: binary { read-write } 1.5 open

Write5Data: binary { read-write } 1.5 open

Write6Data: binary { read-write } 1.5 open

464
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.5

close ():
void { raises-exception, use after open }

1.5

claim (timeout: int32):
void { raises-exception, use after open }

1.5

release ():
void { raises-exception, use after open, claim }

1.5

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.5

clearInput ():
void { raises-exception, use after open, claim }

1.5

clearOutput ():
void { raises-exception, use after open, claim }

1.5

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.5

Specific

Name

beginInsertion (timeout: int32):
void { raises exception, use after open, claim, enable }

1.5

beginRemoval (timeout: int32):
void{ raises exception, use after open, claim, enable }

1.5

cleanCard ():
void { raises exception, use after open, claim, enable }

1.5

clearPrintWrite (kind: int32, hposition: int32, vposition: int32, width:
int32, height: int32):
void { raises exception, use after open, claim, enable }

1.5

endInsertion ():
void { raises exception, use after open, claim, enable }

1.5

endRemoval ():
void { raises exception, use after open, claim, enable }

1.5

printWrite (kind: int32, hposition: int32,vposition: int32,data: string):
void { raises exception, use after open, claim, enable }

1.5

rotatePrint (rotation: int32):
void { raises exception, use after open, claim, enable }

1.5

validateData (data: string):
void { raises exception, use after open, claim, enable }

1.5

465Summary
Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.5

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.5

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.5

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent 1.5

 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.5

 Status: int32 { read-only }

466
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
General Information

The Point Card Reader Writer programmatic name is “PointCardRW”.
This device was introduced in Version 1.5 of the specification.

Capabilities
The Point Card Reader Writer has the following capabilities.

• Both reading and writing of the point card magnetic data are possible.

• Supports reading and writing of data from up to 6 tracks.

• The data on the tracks is in a device specific format, see the device manual
for specific definition. The data is usually in ASCII format.

• Supports point cards with or without a printing area. Actual printing support
depends upon the capabilities of the device.

• Supports both card insertion and ejection.

• No special security capabilities (e.g., encryption) are supported.

467General Information
Point Card Reader Writer Class Diagram

The following diagram shows the relationships between the Point Card Reader
Writer classes.

UposException
(from upos)

<<exception>>

UposConst

(from upos)

<<utility>>

PointCardRWConst

(from upos)

<<utility>>

DataEvent
(from events)

<<event>>

StatusUpdateEvent

(from events)

<<event>>

ErrorEvent
(from events)

<<event>>

DirectIOEvent

(from events)

<<event>>

PointCardRWControl

<<capability>> CapBold : boolean
<<capability>> CapCardEntranceSensor : boolean
<<capability>> CapCharacterSet : int32
<<capability>> CapCleanCard : boolean
<<capability>> CapClearPrint : boolean
<<capability>> CapDhigh : boolean
<<capability>> CapDwide : boolean
<<capability>> CapDwideDhigh : boolean
<<capability>> CapItalic : boolean
<<capability>> CapLeft90 : boolean
<<capability>> CapPrint : boolean
<<capability>> CapPrintMode : boolean
<<capability>> CapRight90 : boolean
<<capability>> CapRotate180 : boolean
<<capability>> CapTracksToRead : int32
<<capability>> CapTracksToWrite : int32
<<prop>> CardState : int32
<<prop>> CharacterSet : int32
<<prop>> CharacterSetList : string
<<prop>> FontTypeFaceList : string
<<prop>> LineChars : int32
<<prop>> LineCharsList : string
<<prop>> LineHeight : int32
<<prop>> LineSpacing : int32
<<prop>> LineWidth : int32
<<prop>> MapMode : int32
<<prop>> MaxLines : int32
<<prop>> PrintHeight : int32
<<prop>> RecvLength1 : int32
<<prop>> RecvLength2 : int32
<<prop>> ReadState1 : int32
<<prop>> ReadState2 : int32
<<prop>> SidewaysMaxChars : int32
<<prop>> SidewaysMaxLines : int32
<<prop>> Tracks1Data : binary
<<prop>> Tracks2Data : binary
<<prop>> Tracks3Data : binary
<<prop>> Tracks4Data : binary
<<prop>> Tracks5Data : binary
<<prop>> Tracks6Data : binary
<<prop>> TracksToRead : int32
<<prop>> TracksToWrite : int32
<<prop>> Write1Data : binary
<<prop>> Write2Data : binary
<<prop>> Write3Data : binary
<<prop>> Write4Data : binary
<<prop>> Write5Data : binary
<<prop>> Write6Data : binary
<<prop>> WriteState1 : int32
<<prop>> WriteState2 : int32

beginInsertion()
beginRemoval()
cleanCard()
clearPrintWrite()
endInsertion()
endRemoval()
printWrite()
rotatePrint()
validateData()

(from upos)

<<Interface>>

<<uses>>

<<sends>>

fires

fires

fires

fires

BaseControl

(from upos)

<<Interface>>

<<uses>>

<<uses>>

<<sends>>

468
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
Model
The general model of Point Card Reader Writer is as follows:

• The Point Card Reader Writer reads all the magnetic stripes on a point card.
The data length and reading information are placed in the property
corresponding to the track.

• The Point Card Reader Writer follows the input model of event driven input
during the card insertion processing. Also, writing to the printing area and the
magnetic stripe follows the output model.

Input Model
• An application must call open and claim, then set DeviceEnabled to true.

• When an application wants a card inserted, it calls the beginInsertion
method, specifying a timeout value.

• If a card is not inserted before the timeout period elapses, the Point Card
Reader Writer fires an exception.

• Even if a timeout occurs, the Point Card Reader Writer remains in insertion
mode. If the application still wants a card inserted, it must call the
beginInsertion method again.

• To exit insertion mode, either after a card was inserted or the application
wishes to abort insertion, the application calls the endInsertion method.

• If there is a point card in the Point Card Reader Writer when endInsertion is
called, the point card’s data tracks are automatically read and a DataEvent is
enqueued. When the application sets the DataEventEnabled property to
true, the DataEvent will be delivered.

• If an error occurs while reading the point card’s data tracks, an ErrorEvent
is enqueued instead of a DataEvent. When the application sets the
DataEventEnabled property to true, the ErrorEvent will be delivered.

• The application can obtain the current number of enqueued data events by
reading the DataCount property.

• All enqueued but undelivered input may be deleted by calling the clearInput
method.

469General Information
Output Model

• To write data to a card, the application calls the printWrite method. The
ability to write data depends upon the capabilities of the device.

• The printWrite method is always performed asynchronously. All
asynchronous output is performed on a first-in, first-out basis.

• When the application calls printWrite, the Point Card Reader Writer assigns
a unique identification number for this request. This ID is stored in the
property OutputID. The Point Card Reader Writer then either queues the
request or starts its processing. Either way, the Point Card Reader Writer
returns to the application quickly.

• When the printWrite method completes, an OutputCompleteEvent is
delivered to the application. The OutputID associated with the completed
request is passed in the OutputCompleteEvent.

• If the printWrite method fails during its processing, an ErrorEvent will be
delivered to the application. If the application had multiple outstanding
output requests, the OutputID of the request that failed can be determined by
watching which requests have successfully completed by monitoring
OutputCompleteEvents. The request that failed is the one that was issued
immediately after the last request that successfully completed.

• All incomplete output requests may be deleted by calling the clearOutput
method. This method also stops any output that is in progress, if possible. No
OutputCompleteEvents will be delivered for output requests terminated in
this manner.

• When done accessing the point card, the application calls the beginRemoval
method, specifying a timeout value.

• If the card is not removed before the timeout period elapses, the Point Card
Reader Writer fires an exception.

• Even if a timeout occurs, the Point Card Reader Writer remains in removal
mode. If the application still wants the card removed, it must call the
beginRemoval method again.

• To exit removal mode, either after the card was physically removed or the
application wishes to abort removal, the application calls the endRemoval
method.

470
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
Card Insertion Diagram
The processing from card insertion to card removal is shown below. All methods,
other than printWrite, are performed synchronously.

(1) If the card is not inserted into the Point Card Reader Writer before the
application specified timeout elapses, an exception is fired. The application
needs to call beginInsertion again to confirm that a point card has been
inserted or call endInsertion to cancel the card insertion. After a successful
beginInsertion, the application must call endInsertion to cause the Point
Card Reader Writer to exit insertion mode and to read the magnetic stripe
data from the point card.

(2) If the card is not removed from the Point Card Reader Writer before the
application specified timeout elapses, an exception is fired. The application
needs to call beginRemoval again to confirm that the point card has been
removed, or call endRemoval to cancel the card removal. After a successful
beginRemoval, the application must call endRemoval to cause the Point
Card Reader Writer to exit removal mode.

DataEvent

beginInsertion

endInsertion

DataEventEnabled = true

OutputCompleteEvent

printWrite

beginRemoval

endRemoval

Card
insertion

Card
write

Card
removal

beginInsertion
(1)

beginRemoval

Application

Point Card
Reader Writer

(2)

471General Information
Printing Capability

• The Point Card Reader Writer supports devices that allow for rewriting the
print area of a card.

• The Point Card Reader Writer supports printing specified either by dot units
or by line units. When CapPrintMode is true, the unit type is determined by
the value of the MapMode property. When CapPrintMode is false, the unit
type is defined as lines.

• The data to print is passed to the printWrite method as the data parameter.
Special character modifications, such as double height, are dependent upon
the capabilities of the device. The starting print location is specified by the
vposition and hposition parameters respectively indicating the vertical and
horizontal start position expressed in units defined by the MapMode
property value.

• When using line units, the start position for lines containing both single and
double high characters is the top of a single high character for horizontal
printing and the bottom of all characters for vertical printing. See the diagram
below for further clarification.

Horizontal printing Vertical printing

0

0

hposition

vposition

0

0

B
A

Line feed

BA

hposition

vposition

d
ire

c
tio

n
 o

f
in

s
e

rtio
n

L
in

e
 fe

e
d

d
ire

c
tio

n
 o

f
in

s
e

rtio
n

472
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
Cleaning Capability

• Cleaning of the Point Card Reader Writer is necessary to prevent errors
caused by dirt build up inside the device.

• A special cleaning card is used. There are two types of cleaning card: a wet
card (such as a card wet with ethanol before use) and a dry card.

• Cleaning is carried out by having the inserted cleaning card make several
passes over the read heads inside the device.

• Some Point Card Reader Writers perform the cleaning operation by use of a
switch on the device. Others perform the cleaning operation entirely under
control of the application.

Initialization of Magnetic Stripe Data

• Some Point Card Reader Writers can initialize the magnetic stripe data to
prevent the illegal use of a point card.

• There are three initialization techniques in use for Point Card Reader Writers:

• Initialize all of the data, including the start sentinel, end sentinel, and a
correct LRC.

• Write an application specific code into the data area using no sentinels.
• Initialize all tracks to empty by just writing start and end sentinels.

• Initialization of the magnetic stripe is dependent upon the capability of the
device.

Device Sharing
The Point Card Reader Writer is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many
Point Card Reader Writer specific properties.

• The application must claim and enable the device before calling methods that
manipulate the device.

• See the “Summary” table for precise usage prerequisites.

473General Information
Data Characters and Escape Sequences

The default character set of all Point Card Reader Writers is assumed to support at
least the ASCII characters 20-hex through 7F-hex, which include spaces, digits,
uppercase, lowercase, and some special characters. If the Point Card Reader
Writer does not support lowercase characters, then the Service may translate them
to uppercase.

Every escape sequence begins with the escape character ESC, whose value is 27
decimal, followed by a vertical bar (‘|’). This is followed by zero or more digits
and/or lowercase alphabetic characters. The escape sequence is terminated by an
uppercase alphabetic character. Sequences that do not begin with ESC “|” are
passed through to Point Card Reader Writer. Also, sequences that begin with ESC
“|” but which are not valid UnifiedPOS escape sequences are passed through to
Point Card Reader Writer.

To determine if escape sequences or data can be performed on Point Card Reader
Writer, the application can call the validateData method. (For some escape
sequences, corresponding capability properties can also be used.)

The following escape sequences are recognized. If an escape sequence specifies
an operation that is not supported by the Point Card Reader Writer, then it is
ignored.

Print Mode Characteristics that are remembered until explicitly changed.

Name Data Remarks

Font typeface selection ESC |#fT Selects a new typeface for the following data. Values for the

character ‘#’ are:

0 = Default typeface.

1 = Select first typeface from the FontTypefaceList property.

2 = Select second typeface from the FontTypefaceList property.

And so on.

474
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
Print Line Characteristics that are reset at the end of each print method or by a
“Normal” sequence.

Name Data Remarks

Bold ESC |bC Prints in bold or double-strike.

Underline ESC |#uC Prints with underline. The character ‘#’ is replaced by

an ASCII decimal string telling the thickness of the

underline in printer dot units. If ‘#’ is omitted, then a

printer-specific default thickness is used.

Italic ESC |iC Prints in italics.

Reverse video ESC |rvC Prints in a reverse video format.

Single high & wide ESC |1C Prints normal size.

Double wide ESC |2C Prints double-wide characters.

Double high ESC |3C Prints double-high characters.

Double high & wide ESC |4C Prints double-high/double-wide characters.

Scale horizontally ESC |#hC Prints with the width scaled ‘#’ times the normal size,

where ‘#’ is replaced by an ASCII decimal string.

Scale vertically ESC |#vC Prints with the height scaled ‘#’ times the normal size,

where ‘#’ is replaced by an ASCII decimal string.

Center ESC |cA Aligns following text in the center.

Right justify ESC |rA Aligns following text at the right.

Normal ESC |N Restores printer characteristics to normal condition.

475General Information
Point Card Reader Writer State Diagram

2SHQ��

&ORVH�� &ODLP��

5HOHDVH��

&ORVH��

6HW'HYLFH(QDEOH�IDOVH�

6HW'HYLFH(QDEOH�WUXH�

%HJLQ,QVHUWLRQ��
(QG,QVHUWLRQ��

(QG5HPRYDO��

(QG,QVHUWLRQ�� %HJLQ5HPRYDO��

&OHDU,QSXW��

>'HYLFH(QDEOH WUXH�DQG�&DUG�RXW@

&OHDU,QSXW��

&ORVHG 2SHQHG &ODLPHG

(QDEOH

&OHDULQSXW
3URFHVVLQJ

(MHFWHG�0RGH

(MHFW�&DUG

(MHFW�&DUG

���&DUG�,QVHUWLQJ

,QVHUW�&DUG

��,QSXW

&DUG�LQ�3RLQW&DUG�5�:

3ULQW:ULWH��

:ULWLQJ�DQG�3ULQWLQJ�0RGH

2XWSXW&RPSOHWH(YHQW

(UURU(YHQW

6HWWLQJ
2XWSXWGDWD

%HJLQ5HPRYDO��>&DUG�LQ@

�(UURU(YHQW

'DWD(YHQW

&OHDU,QSXW��

5HOHDVH��

'DWD(YHQW(Q
DEOHG WUXH

	
HUURU

4XHXLQJ

'DWD(YHQW(QDEOHG WUXH
	

HUURU

'DWD(YHQW(QDEOHG WUXH
	

HUURU

:ULWH�DQG�3ULQW�0RGH

:ULWH�DQG�3ULQW

'DWD(YHQW(QDEOHG WUXH
	

HUURU

'DWD(YHQW(QDEOHG WUXH
	

HUURU

476
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
Properties (UML Attributes)

CapBold Property
Syntax CapBold: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print bold characters, false if it
cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapCardEntranceSensor Property
Syntax CapCardEntranceSensor: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer has an entrance sensor, false if it does
not.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapCharacterSet Property
Syntax CapCharacterSet: int32 { read-only, access after open }

Remarks Holds the default character set capability. It may be one of the following:

Value Meaning

PCRW_CCS_ALPHA The default character set supports upper case
alphabetic plus numeric, space, minus, and period.

PCRW_CCS_ASCII The default character set supports all ASCII
characters between 20-hex and 7F-hex.

PCRW_CCS_KANA The default character set supports partial code page
932, including ASCII characters 20-hex through 7F-
hex and the Japanese Kana characters A1-hex through
DF-hex, but excluding the Japanese Kanji characters.

PCRW_CCS_KANJI The default character set supports code page 932,
including the Shift-JIS Kanji characters, Levels 1 and
2.

PCRW_CCS_UNICODE The default character set supports UNICODE.

The default character set may contain a superset of these ranges. The initial
CharacterSet property may be examined for additional information.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

477Properties (UML Attributes)
CapCleanCard Property
Syntax CapCleanCard: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer supports cleaning under application
control, false if it does not.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapClearPrint Property
Syntax CapClearPrint: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer supports clearing (erasing) the printing
area, false if it does not.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapDhigh Property
Syntax CapDhigh: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print double high characters, false
if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapDwide Property
Syntax CapDwide: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print double wide characters, false
if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

478
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
CapDwideDhigh Property

Syntax CapDwideDhigh: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print double high / double wide
characters, false if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapItalic Property
Syntax CapItalic: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print italic characters, false if it
cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapLeft90 Property
Syntax CapLeft90: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print in rotated 90° left mode, false
if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapPrint Property
Syntax CapPrint: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer has printing capability; false if it does
not.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapPrintMode Property
Syntax CapPrintMode: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can designate a printing start position
with the MapMode property, false if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

479Properties (UML Attributes)
CapRight90 Property
Syntax CapRight90: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print in a rotated 90° right mode,
false if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapRotate180 Property
Syntax CapRotate180: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print in a rotated upside down mode,
false if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapTracksToRead Property
Syntax CapTracksToRead: int32 { read-only, access after open }

Remarks A bitmask indicating which magnetic tracks are accessible on the inserted point
card. The value contained in this property is a bitwise OR of the constants
PCRW_TRACK1 through PCRW_TRACK6.

For example, access to track 1 is possible when PCRW_TRACK1 is set.

This property is initialized by the open method.

Value Meaning

PCRW_TRACK1 Track1

PCRW_TRACK2 Track2

PCRW_TRACK3 Track3

PCRW_TRACK4 Track4

PCRW_TRACK5 Track5

PCRW_TRACK6 Track6

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

480
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
CapTracksToWrite Property

Syntax CapTracksToWrite: int32 { read-only, access after open }

Remarks A bitmask indicating which magnetic tracks are writable on the inserted point
card. The value contained in this property is a bitwise OR of the constants
PCRW_TRACK1 through PCRW_TRACK6.

For example, access to track 1 is possible when PCRW_TRACK1 is set.

This property is initialized by the open method.

Value Meaning

PCRW_TRACK1 Track1

PCRW_TRACK2 Track2

PCRW_TRACK3 Track3

PCRW_TRACK4 Track4

PCRW_TRACK5 Track5

PCRW_TRACK6 Track6

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CardState Property
Syntax CardState: int32 { read-only, access after open }

Remarks If CapCardEntranceSensor is true, the current card entrance sensor status is
stored in this property. The value will be one of the following.

Value Meaning

PCRW_STATE_NOCARD No card or card sensor position indeterminate

PCRW_STATE_REMAINING Card remaining at the entrance

PCRW_STATE_INRW There is a card in the device

If CapCardEntranceSensor is false, then CardState will always be set to
PCRW_STATE_NOCARD.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CapCardEntranceSensor Property.

481Properties (UML Attributes)
CharacterSet Property

Syntax CharacterSet: int32 { read-write, access after open-claim-enable }

Remarks The character set for printing characters.

Value Meaning

Range 101 - 199 Device-specific character sets that do not match a code
page or the ASCII or ANSI character sets.

Range 400 - 990 Code page; matches one of the standard values.

PCRW_CS_UNICODE The character set supports UNICODE. The value of this
constant is 997.

PCRW_CS_ASCII The ASCII character set, supporting the ASCII
characters between 0x20 and 0x7F. The value of this
constant is 998.

PCRW_CS_ANSI The ANSI character set. The value of this constant is
999.

Range 1000 and higher Windows code page; matches one of the standard
values.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid property value was specified.

See Also CharacterSetList Property.

CharacterSetList Property
Syntax CharacterSetList: string { read-only, access after open }

Remarks Holds the string of character set numbers. The string consists of an ASCII numeric
set numbers separated by commas.

For example, if the string is “101,850,999”, then the device supports a device
specific character set, code page 850, and the ANSI character set.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CharacterSet Property.

482
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
FontTypefaceList Property

Syntax FontTypefaceList: string { read-only, access after open }

Remarks A string that specifies the fonts and/or typefaces that are supported by the Point
Card Reader Writer.

The string consists of font or typeface names separated by commas. The
application selects a font or typeface for the Point Card Reader Writer by using the
font typeface selection escape sequence (ESC |#fT). The “#” character is replaced
by the number of the font or typeface within the list: 1, 2, and so on.

In Japan, this property will frequently include the fonts “Mincho” and “Gothic”.
Other fonts or typefaces may be commonly supported in other countries.

An empty string indicates that only the default typeface is supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also “Data Characters and Escape Sequences” on page 473.

LineChars Property
Syntax LineChars: int32 { read-write, access after open-claim-enable }

Remarks The number of characters that may be printed on a line on the Point Card Reader
Writer.

If changed to a line character width that can be supported, then the width is set to
the specified value. If the exact width cannot be supported, then subsequent lines
will be printed with a character size that most closely supports the specified
characters per line. (For example, if set to 36 and the Point Card Reader Writer can
print either 30 or 40 characters per line, then the Service should select the character
size “40” and print up to 36 characters on each line.)

If the character width cannot be supported, then an exception is thrown. (For
example, if set to 42 and Point Card Reader Writer can print either 30 or 40
characters per line, then the Service cannot support the request.)

Setting LineChars may also update LineWidth, LineHeight, and LineSpacing,
since the character pitch or font may be changed.

The value of LineChars is initialized to the Point Card Reader Writer’s default
line character width when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid line character width was specified.

See Also LineCharsList Property.

483Properties (UML Attributes)
LineCharsList Property

Syntax LineCharsList: string { read-only, access after open }

Remarks A string containing the line character widths supported by the Point Card Reader
Writer.

The string consists of an ASCII numeric set numbers separated by commas. For
example, if the string is “32,36,40”, then the station supports line widths of 32, 36,
and 40 characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also LineChars Property.

LineHeight Property
Syntax LineHeight: int32 { read-write, access after open-claim-enable }

Remarks The Point Card Reader Writer print line height. If CapPrintMode is true, this is
expressed in the unit of measure given by MapMode.

If changed to a height that can be supported with the current character width, then
the line height is set to this value. If the exact height cannot be supported, then the
height is set to the closest supported value.

When LineChars is changed, LineHeight is updated to the default line height for
the selected width.

The value of LineHeight is initialized to the Point Card Reader Writer’s default
line height when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

LineSpacing Property

Syntax LineSpacing: int32 { read-write, access after open-claim-enable }

Remarks The spacing of each single-high print line, including both the printed line height
plus the white space between each pair of lines. Depending upon the Point Card
Reader Writer and the current line spacing, a multi-high print line might exceed
this value. If CapPrintMode is true, line spacing is expressed in the unit of
measure given by MapMode.

If changed to a spacing that can be supported by the Point Card Reader Writer, then
the line spacing is set to this value. If the spacing cannot be supported, then the
spacing is set to the closest supported value.

When LineChars or LineHeight is changed, LineSpacing is updated to the
default line spacing for the selected width or height.

The value of LineSpacing is initialized to the Point Card Reader Writer’s default
line spacing when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

484
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
LineWidth Property
Syntax LineWidth: int32 { read-only, access after open-claim-enable }

Remarks The width of a line of LineChars characters. If CapPrintMode is true, expressed
in the unit of measure given by MapMode.

Setting LineChars may also update LineWidth.

The value of LineWidth is initialized to the Point Card Reader Writer’s default
line width when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

MapMode Property
Syntax MapMode: int32 { read-write, access after open-claim-enable }

Remarks Contains the mapping mode of the Point Card Reader Writer. The mapping mode
defines the unit of measure used for other properties, such as line heights and line
spacings. The following map modes are supported:

Value Meaning

PCRW_MM_DOTS The Point Card Reader Writer’s dot width. This
width may be different for each Point Card Reader
Writer.

PCRW_MM_TWIPS 1/1440 of an inch.
PCRW_MM_ENGLISH 0.001 inch.
PCRW_MM_METRIC 0.01 millimeter.

Setting MapMode may also change LineHeight, LineSpacing, and LineWidth.

The value of MapMode is initialized to PCRW_MM_DOTS when the device is
first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid mapping mode value was specified.

MaxLine Property
Syntax MaxLine: int32 { read-only, access after open-claim-enable }

Remarks When the CapPrintMode property is false, MaxLine contains the maximum
printable line number.

In the case where there is a double-high character in the same line, this is
dependent upon the capability of the device.

When the LineHeight property and/or the LineSpacing property change, the
MaxLine property may be changed.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also LineHeight Property.

485Properties (UML Attributes)
PrintHeight Property
Syntax PrintHeight: int32 { read-only, access after open-claim-enable }

Remarks When the CapPrintMode property is true, the height of the largest character in the
character set is stored in this property expressed in MapMode units.

When the MapMode property is changed the value of the PrintHeight property
changes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CapPrintMode Property, MapMode Property.

ReadState1 Property

Syntax ReadState1: int32 { read-only, access after open }

Remarks The property is divided into four bytes with each byte containing status
information about the first four tracks. The diagram below indicates how the
property value is divided:

The Control sets a value to this property immediately before it enqueues the
ErrorEvent or DataEvent.

The following values can be set:

Value Meaning

SUCCESS Successful read of the data.

EPCRW_START It is a start sentinel error.

EPCRW_END It is a end sentinel error.

EPCRW_PARITY It is a parity error.

EPCRW_ENCODE There is no encoding.

EPCRW_LRC It is a LRC error.

EPCRW_VERIFY It is a verify error.

E_FAILURE It is other error.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also ReadState2 Property.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Track4 Track 3 Track 2 Track 1

486
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
ReadState2 Property
Syntax ReadState2: int32 { read-only, access after open }

Remarks The property is divided into four bytes with two bytes containing status
information about the fifth and sixth tracks. The diagram below indicates how the
property value is divided:

The Point Card Reader Writer sets a value to this property immediately before it
enqueues the ErrorEvent or DataEvent.

The following values can be set.

Value Meaning

SUCCESS Successful read of the data.

EPCRW_START It is a start sentinel error.

EPCRW_END It is a end sentinel error.

EPCRW_PARITY It is a parity error.

EPCRW_ENCODE There is no encoding.

EPCRW_LRC It is a LRC error.

EPCRW_VERIFY It is a verify error.

E_FAILURE It is other error.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also ReadState1 Property.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Unused Unused Track 6 Track 5

487Properties (UML Attributes)
RecvLength1 Property

Syntax RecvLength1: int32 { read-only, access after open-claim-enable }

Remarks The property is divided into four bytes with each of the bytes representing
information about the first four tracks. The diagram below indicates how the value
is divided:

A value of zero for a track byte means that no data was obtained from the swipe
for that particular track. This might be due to the hardware device simply not
having a read head for the track, or STX, ETX and LRC only was obtained from
the swipe for that particular track, or reading of data without being made with
some errors, or perhaps the application intentionally precluded incoming data from
the track via the TracksToRead property.

A value greater than zero indicates the length in bytes of the corresponding
TrackxData property.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CapTracksToRead property, TracksToRead property, RecvLength2 Property.

RecvLength2 Property

Syntax RecvLength2: int32 { read-only, access after open-claim-enable }

Remarks The property is divided into four bytes with two of the bytes representing
information about the fifth and sixth tracks, while the third and fourth bytes are
unused. The diagram below indicates how the value is divided:

A value of zero for a track byte means that no data was obtained from the swipe
for that particular track. This might be due to the hardware device simply not
having a read head for the track, or STX, ETX, and LRC only was obtained from
the swipe for that particular track, or reading of data without being made with
some errors, or perhaps the application intentionally precluded incoming data from
the track via the TracksToRead property.

A value greater than zero indicates the length in bytes of the corresponding
TrackxData property.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CapTracksToRead property, TracksToRead property, RecvLength1 Property.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Track4 Track 3 Track 2 Track 1

High Word Low Word

High Byte Low Byte High Byte Low Byte

Unused Unused Track 6 Track 5

488
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
SidewaysMaxChars Property
Syntax SidewaysMaxChars: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of characters that may be printed on each line in
sideways mode.

If the capabilities CapLeft90 and CapRight90 are both false, then
SidewaysMaxChars is zero.

Changing the properties LineHeight, LineSpacing, and LineChars may cause
this property to change.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also SidewaysMaxLines Property.

SidewaysMaxLines Property
Syntax SidewaysMaxLines: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of lines that may be printed in sideways mode.

If the capabilities CapLeft90 and CapRight90 are both false, then
SidewaysMaxLines is zero.

Changing the properties LineHeight, LineSpacing, and LineChars may cause
this property to change.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also SidewaysMaxChars Property.

489Properties (UML Attributes)
TracksToRead Property

Syntax TracksToRead: int32 { read-write, access after open-claim-enable }

Remarks Holds the tracks that are to be read from the point card. It contains a bitwise OR
of the constants PCRW_TRACK1 through PCRW_TRACK6. It may only contain
values that are marked as allowable by the CapTracksToRead property. For
example, to read tracks 1, 2, and 3, this property should be set to:
PCRW_TRACK1 | PCRW_TRACK2 | PCRW_TRACK3.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY This operation cannot be performed because
asynchronous output is in progress.

E_ILLEGAL An illegal track was defined. The track is not
available for reading. Refer to CapTracksToRead.

See Also CapTracksToRead Property.

TracksToWrite Property

Syntax TracksToWrite: int32 { read-write, access after open-claim-enable }

Remarks Holds the tracks that are to be written to the point card. It contains a bitwise OR of
the constants PCRW_TRACK1 through PCRW_TRACK6. It may only contain
values that are marked as allowable by the CapTracksToWrite property. For
example, to write tracks 1, 2, and 3, this property should be set to:
PCRW_TRACK1 | PCRW_TRACK2 | PCRW_TRACK3.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY This operation cannot be performed because
asynchronous output is in progress.

E_ILLEGAL An illegal track was defined. The track is not
available for writing. Refer to CapTracksToWrite.

See Also CapTracksToWrite Property, printWrite Method.

490
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
Track1Data Property

Syntax Track1Data: binary { read-only, access after open }

Remarks Contains the track 1 data from the point card.

This property contains track data between but not including the start and end
sentinels.

An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Track2Data Property
Syntax Track2Data: binary { read-only, access after open }

Remarks Contains the track 2 data from the point card.

This property contains track data between but not including the start and end
sentinels.

An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Track3Data Property

Syntax Track3Data: binary { read-only, access after open }

Remarks Contains the track 3 data from the point card.

This property contains track data between but not including the start and end
sentinels.

An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Track4Data Property
Syntax Track4Data: binary { read-only, access after open }

Remarks Contains the track 4 data from the point card.

This property contains track data between but not including the start and end
sentinels.

An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

491Properties (UML Attributes)
Track5Data Property

Syntax Track5Data: binary { read-only, access after open }

Remarks Contains the track 5 data from the point card.

This property contains track data between but not including the start and end
sentinels.

An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Track6Data Property

Syntax Track6Data: binary { read-only, access after open }

Remarks Contains the track 6 data from the point card.

This property contains track data between but not including the start and end
sentinels.

An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

492
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
 WriteState1 Property
Syntax WriteState1: int32 { read-only, access after open }

Remarks The property is divided into four bytes with each byte containing status
information about the first four tracks. The diagram below indicates how the
property is divided:

The Control sets a value to this property immediately before it enqueues the
ErrorEvent.

The following value is set.

Value Meaning

SUCCESS Successful write of the data.

EPCRW_START It is a start sentinel error.

EPCRW_END It is a end sentinel error.

EPCRW_PARITY It is a parity error.

EPCRW_ENCODE There is not encoding.

EPCRW_LRC It is a LRC error.

EPCRW_VERIFY It is a verify error.

E_FAILURE It is other error.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also WriteState2 Property.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Track4 Track 3 Track 2 Track 1

493Properties (UML Attributes)
WriteState2 Property
Syntax WriteState2: int32 { read-only, access after open }

Remarks The property is divided into four bytes with each byte containing status
information about the fifth and sixth tracks. The diagram below indicates how the
property is divided:

The Control sets a value to this property immediately before it enqueues the
ErrorEvent.

The following value is set.

Value Meaning

SUCCESS Successful write of the data.

EPCRW_START It is a start sentinel error.

EPCRW_END It is a end sentinel error.

EPCRW_PARITY It is a parity error.

EPCRW_ENCODE There is not encoding.

EPCRW_LRC It is a LRC error.

EPCRW_VERIFY It is a verify error.

E_FAILURE It is other error.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also WriteState1 Property.

Write1Data Property
Syntax Write1Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 1 of a point card.

This property contains track data between but not including the start and end
sentinels.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Unused Unused Track 6 Track 5

494
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
Write2Data Property

Syntax Write2Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 2 of a point card.

This property contains track data between but not including the start and end
sentinels.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Write3Data Property

Syntax Write3Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 3 of a point card.

This property contains track data between but not including the start and end
sentinels.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Write4Data Property
Syntax Write4Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 4 of a point card.

This property contains track data between but not including the start and end
sentinels.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Write5Data Property
Syntax Write5Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 5 of a point card.

This property contains track data between but not including the start and end
sentinels.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Write6Data Property
Syntax Write6Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 6 of a point card.

This property contains track data between but not including the start and end
sentinels.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

495Methods (UML operations)
Methods (UML operations)
beginInsertion Method

Syntax beginInsertion (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

timeout The number of milliseconds before failing the method

If zero, the method initiates insertion mode and either returns immediately if
successful, or raises an exception. If FOREVER (-1), the method initiates the
begin insertion mode, then waits as long as needed until either the point card is
inserted or an error occurs.

Remarks Called to initiate point card insertion processing.

When called, Point Card Reader Writer state is changed to allow the insertion of a
point card and the point card insertion mode is entered. This method is paired with
the endInsertion method for controlling point card insertion.

If the Point Card Reader Writer device cannot be placed into insertion mode an
exception is raised. Otherwise, the Control continues to monitor point card
insertion until either the point card is not inserted before timeout milliseconds have
elapsed, or an error is reported by the Point Card Reader Writer device. In the latter
case, the Control raises an exception with the appropriate error code. The Point
Card Reader Writer device remains in point card insertion mode. This allows an
application to perform some user interaction and reissue the beginInsertion
method without altering the point card handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY This operation cannot be performed because
asynchronous output is in progress.

E_ILLEGAL The Point Card Reader Writer does not exist or an
invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the point
card being properly inserted.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in
the Events section “ErrorEvent” on page 504.

See Also endInsertion Method, beginRemoval Method, endRemoval Method.

496
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
beginRemoval Method

Syntax beginRemoval (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

timeout The number of milliseconds before failing the method

If zero, the method initiates the begin removal mode and either returns
immediately or raises an exception. If FOREVER (-1), the method initiates the
begin removal mode, then waits as long as needed until either the form is removed
or an error occurs.

Remarks Called to initiate point card removal processing.

When called, the Point Card Reader Writer is made ready to eject a point card or
activating a point card ejection mode. This method is paired with the endRemoval
method for controlling point card removal.

The model that has the sensor in the entrance ends normally when a card is ejected
from Point Card Reader Writer. The model without the sensor ends normally when
that ejection processing is implemented.

If the Point Card Reader Writer cannot be placed into removal or ejection mode,
an exception is raised. Otherwise, the Control continues to monitor point card
removal until either the point card is not ejected before timeout milliseconds have
elapsed, or an error is reported by the Point Card Reader Writer. In this case, the
Control raises an exception with the appropriate error code. The Point Card Reader
Writer remains in point card ejection mode. This allows an application to perform
some user interaction and reissue the beginRemoval method without altering the
point card handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY This operation cannot be performed because
asynchronous output is in progress.

E_ILLEGAL The Point Card Reader Writer does not exist or an
invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the point
card being properly inserted.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in
the Events section “ErrorEvent” on page 504.

See Also CapCardEntranceSensor Property, CardState Property, beginInsertion
Method, endInsertion Method, endRemoval Method.

497Methods (UML operations)
cleanCard Method

Syntax cleanCard():
void { raises-exception, use after open-claim-enable }

Remarks This method is used to clean the read/write heads of the Point Card Reader Writer.
This method is only supported if the CapCleanCard property is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Point Card Reader Writer does not exist or
CapCleanCard is false.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in
the Events section “ErrorEvent” on page 504.

See Also CapCleanCard Property.

498
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
clearPrintWrite Method

Syntax clearPrintWrite (kind: int32, hposition: int32, vposition: int32, width: int32,
height: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

kind Defines the parts of the point card that will be cleared.
1: Printing area
2: Magnetic tracks
3: Both printing area and magnetic tracks

hposition The horizontal start position for erasing the printing area.
The value is in MapMode units if CapPrintMode is true.

vposition The vertical start position for erasing the printing area. The
value is in MapMode units if CapPrintMode is true.

width The width used for erasing the printing area. The value is in
MapMode units if CapPrintMode is true.

height The height used for erasing the printing area. The value is in
MapMode units if CapPrintMode is true.

Remarks Used to erase the printing area of a point card and/or erase the magnetic track data
on a point card.

When the CapPrint and CapClearPrint properties are both true, this method can
be used to clear the printing area of a point card. The hposition, vposition, width,
and height parameters define the rectangle that will be cleared. If these
parameters are 0, 0, -1, -1 respectively, this method will erase the entire printing
area.

The initialization of the magnetic track data relies upon the capability of the
device.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY This operation cannot be performed because
asynchronous output is in progress.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in
the Events section “ErrorEvent” on page 504.

See Also CapClearPrint Property, CapPrint Property, CapPrintMode Property,
MapMode Property.

499Methods (UML operations)
endInsertion Method

Syntax endInsertion ():
void { raises-exception, use after open-claim-enable }

Remarks Called to end point card insertion processing.
When called, the Point Card Reader Writer is taken out of point card insertion
mode. If no point card is present, an exception is raised.

This method is paired with the beginInsertion method for controlling point card
insertion.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Point Card Reader Writer is not in point card
insertion mode.

E_FAILURE A card is not inserted in the Point Card Reader
Writer.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in
the Events section “ErrorEvent” on page 504.

See Also beginInsertion Method, beginRemoval Method, endRemoval Method.

endRemoval Method
Syntax endRemoval ():

void { raises-exception, use after open-claim-enable }

Remarks Called to end point card removal processing.
When called, the Point Card Reader Writer is taken out of point card removal or
ejection mode. If a point card is present, an exception is raised. This method is
paired with the beginRemoval method for controlling point card removal.

The application may choose to call this method immediately after a successful
beginRemoval if it wants to use the Point Card Reader Writer sensors to deter-
mine when the point card has been ejected. Alternatively, the application may
prompt the user and wait for a key being pressed before calling this method.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Point Card Reader Writer is not in point card
removal mode.

E_FAILURE There is a card in the Point Card Reader Writer.
E_EXTENDED Refer to the definitions for ErrorCodeExtended in

the Events section “ErrorEvent” on page 504.

See Also beginInsertion Method, beginRemoval Method, endInsertion Method.

500
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
printWrite Method

Syntax printWrite (kind: int32, hposition: int32, vposition: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

kind Designates the effect of the point card.
1: Print 2: Write 3: Print+Write

hposition The horizontal start position for printing. The value is in
MapMode units if CapPrintMode is true.

vposition The vertical start position for printing. The value is in
MapMode units if CapPrintMode is true.

data The data to be printed. Any escape sequences in the data
are dependent upon the capabilities of the device.

Remarks This method will either print the specified data on the printing area of the point
card, write data from the WriteXData properties to the magnetic tracks, or both.
In order to print on a point card, the CapPrint property must be true. In order to
write the magnetic tracks on a point card, the WriteXData properties for each
desired track must be set to the desired value, the TracksToWrite property must
be set to a bitmask indicating which tracks to write (see TracksToWrite for a
complete description) and the CapTracksToWrite property must indicate that
each tracks specified in TracksToWrite is legal.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL There is no card in the Point Card Reader Writer.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in
the Events section “ErrorEvent” on page 504.

See Also CapPrint Property, CapPrintMode Property, CapTracksToWrite Property,
MapMode Property, TracksToWrite Property, WriteXData Property.

501Methods (UML operations)
rotatePrint Method

Syntax rotatePrint (rotation: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

rotation Direction of rotation. See values below.

Value Meaning

PCRW_RP_RIGHT90 Rotate printing 90º to the right (clockwise).

PCRW_RP_LEFT90 Rotate printing 90º to the left (counter-clockwise).

PCRW_RP_ROTATE180 Rotate printing 180º, that is print upside-down.

PCRW _RP_NORMAL End rotated printing.

Remarks Enters or exits rotated print mode.

The rotatePrint method designates the rotation of the printing area. After calling
this method, the application calls the printWrite method and the print data is
printed in the direction specified by the rotatePrint call. If rotation is
PCRW_RP_NORMAL, then rotated print mode is exited.

Changing the rotation mode may also change the Point Card Reader Writer’s line
height, line spacing, line width, and other metrics.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY This operation cannot be performed because
asynchronous output is in progress.

E_ILLEGAL The Point Card Reader Writer does not support the
specified rotation.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in
the Events section “ErrorEvent” on page 504.

See Also “Data Characters and Escape Sequences” on page 473, printWrite Method.

502
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
validateData Method

Syntax validateData (data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

data The data to be validated. May include printable data and
escape sequences.

Remarks Called to determine whether a data sequence, possibly including one or more
escape sequences, is valid for printing, prior to calling the printWrite method.
This method does not cause any printing, but is used to determine the capabilities
of the Point Card Reader Writer.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL Some of the data is not precisely supported by the
device, but the Control can select valid alternatives.

E_FAILURE Some of the data is not supported. No alternatives can be
selected.

Cases which cause ErrorCode of E_ILLEGAL:

Escape Sequence Condition

Underline The thickness ‘#’ is not precisely supported: Control
will select the closest supported value.

Shading The percentage ‘#’ is not precisely supported: Control
will select the closest supported value.

Scale horizontally The scaling factor ‘#’ is not supported. Control will
select the closest supported value.

Scale vertically The scaling factor ‘#’ is not supported. Control will
select the closest supported value.

Cases which will cause E_FAILURE to be returned are:

Escape Sequence Condition

(General) The escape sequence format is not valid
Font typeface The typeface ‘#’ is not supported:
Bold Not supported.
Underline Not supported.
Italic Not supported.
Reverse video Not supported.
Single high & wide Not supported.
Double wide Not supported.
Double high Not supported.
Double high & wide Not supported.

See Also “Data Characters and Escape Sequences” on page 473, printWrite Method.

503Events (UML Interfaces)
Events (UML Interfaces)

DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Fired to present input data from the device to the application.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 The Status parameter contains zero.

Remarks The point card data is placed in each property before this event is delivered.

DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific PointCard Service to provide events to the application
that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s point card devices which may not have any
knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.

504
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a PointCard error has been detected and a suitable
response by the application is necessary to process the error condition.

Attributes This event contains the following properties:

Attributes Type Description

ErrorCode int32 Result code causing the error event. See a list of Error
Codes on page 16.

ErrorCodeExtended int32 Extended Error code causing the error event. If
ErrorCode is E_EXTENDED, then see values below.
Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application. (i.e., this property is settable). See
values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the
following values:

Value Meaning

EPCRW_READ There was a read error.

EPCRW_WRITE There was a write error.

EPCRW_JAM There was a card jam.

EPCRW_MOTOR There was a conveyance motor error.

EPCRW_COVER The conveyance motor cover was open.

EPCRW_PRINTER The printer has an error.

EPCRW_RELEASE There is a card remaining in the entrance.

EPCRW_DISPLAY There was a display indicator error.

EPCRW_NOCARD There is no card in the reader.

505Events (UML Interfaces)
The ErrorLocus property may be one of the following:

Value Meaning

EL_OUTPUT Error occurred while processing asynchronous output.

EL_INPUT Error occurred while gathering or processing event-
driven input. No input data is available.

EL_INPUT_DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER_RETRY Typically valid only when locus is EL_OUTPUT.
Retry the asynchronous output. The error state is exited.
May be valid when locus is EL_INPUT.
Default when locus is EL_OUTPUT.

ER_CLEAR Clear the asynchronous output or buffered input data.
The error state is exited. Default when locus is
EL_INPUT.

ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA.
Acknowledges the error and directs the Control to
continue processing. The Control remains in the error
state and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and the DataEventEnabled
 property is again set to true, then another ErrorEvent
is delivered with locus EL_INPUT. Default when locus
is EL_INPUT_DATA.

Remarks Input error events are generated when errors occur while reading the magnetic
track data from a newly inserted card. These error events are not delivered until
the DataEventEnabled property is set to true so as to allow proper application
sequencing. All error information is placed into the ReadStateX properties before
this event is delivered. The RecvLengthX property is set to 0 for each track that
had an error and the TrackXData property is set to empty for each track that had
an error.

Output error events are generated and delivered when an error occurs during
asynchronous printWrite processing. The errors are placed into the WriteStateX
properties before the event is delivered.

See Also ReadStatex Property, RecvLengthx Property, TrackxData Property,
WriteStatex Property.

506
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the
OutputID attribute has completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description

OutputID int32 The ID number of the asynchronous output request that
is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service
has confirmation that is was processed by the device successfully.

See Also “Device Output Models” on page 21.

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the PointCard device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the power status of the unit.

If Status parameter has one of the following values:

Value Meaning

PCRW_SUE_NOCARD No card or card sensor position indeterminate.

PCRW_SUE_REMAINING Card remaining in the entrance.

PCRW_SUE_INRW There is a card in the device.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on page 56.

Remarks Fired when the entrance sensor status of the Point Card Reader Writer changes. If
the capability CapCardEntranceSensor is false, then the device does not
support status reporting, and this event will never be fired to report card insertion
state changes.

See Also “Events” on page 15, CapCardEntranceSensor Property.

C H A P T E R 1 5

POS Keyboard

This Chapter defines the POS Keyboard device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 open

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.1 open

Claimed: boolean { read-only } 1.1 open

DataCount: int32 { read-only } 1.2 open

DataEventEnabled: boolean { read-write } 1.1 open

DeviceEnabled: boolean { read-write } 1.1 open & claim

FreezeEvents: boolean { read-write } 1.1 open

OutputID: int32 { read-only } 1.1 Not Supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.1 --

DeviceControlDescription: string { read-only } 1.1 --

DeviceControlVersion: int32 { read-only } 1.1 --

DeviceServiceDescription: string { read-only } 1.1 open

DeviceServiceVersion: int32 { read-only } 1.1 open

PhysicalDeviceDescription: string { read-only } 1.1 open

PhysicalDeviceName: string { read-only } 1.1 open

508
UnifiedPOS Retail Peripheral Architecture Chapter 15

POS Keyboard
Properties (Continued)

Specific Type Mutability Version May Use After

CapKeyUp: boolean { read-only } 1.2 open

EventTypes: int32 { read-write } 1.2 open

POSKeyData: int32 { read-only } 1.1 open

POSKeyEventType: int32 { read-only } 1.2 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.1

close ():
void { raises-exception, use after open }

1.1

claim (timeout: int32):
void { raises-exception, use after open }

1.1

release ():
void { raises-exception, use after open, claim }

1.1

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.1

clearInput ():
void { raises-exception, use after open, claim }

1.1

clearOutput ():
void { }

Not
supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.1

Specific

None

509 Summary
Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.1

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.1

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.1

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not Supported

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }

510
UnifiedPOS Retail Peripheral Architecture Chapter 15

POS Keyboard
General Information

The POS Keyboard programmatic name is “POSKeyboard”.

Capabilities

The POS Keyboard has the following capability:

• Reads keys from a POS keyboard. A POS keyboard may be an auxiliary
keyboard, or it may be a virtual keyboard consisting of some or all of the keys
on the system keyboard.

POS Keyboard Class Diagram

The following diagram shows the relationships between the POS Keyboard
classes.

UposException
(from upos)

<<exception>>

UposConst
(from upos)

<<uti lity>>

POSKeyboardConst
(from upos)

<<utility>>

DataEvent

<<prop>> Status : int32

(from events)

<<event>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

rrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

POSKeyboardControl

<<capability>> CapKeyUp : boolean
<<prop>> EventTypes : int32
<<prop>> POSKeyData : int32
<<prop>> POSKeyEventType : int32

(from upos)

<<Interface>>

<<sends>>

<<uses>>

fires

fires

fires

fires

BaseControl
(from upos)

<<Interface>>
<<uses>><<sends>>

511 General Information
Model

The POS Keyboard follows the general “Device Input Model” for input devices:

• When input is received from the POS Keyboard a DataEvent is enqueued.
• If the AutoDisable property is true, then the Device automatically disables

itself when a DataEvent is enqueued.
• A queued DataEvent can be delivered to the application when the

DataEventEnabled property is true and other event delivery requirements are
met. Just before firing this event, data is copied into the properties, and further
data events are disabled by setting DataEventEnabled to false. This causes
subsequent input data to be enqueued while the application processes the
current input and associated properties. When the application has finished the
current input and is ready for more data, it reenables events by setting
DataEventEnabled to true.

• An ErrorEvent (or events) is enqueued if an error occurs while gathering or
processing input, and is delivered to the application when DataEventEnabled
is true and other event delivery requirements are met.

• The DataCount property may be read to obtain the number of queued
DataEvents.

• All queued input may be deleted by calling clearInput.

Keyboard Translation

The POS Keyboard Control must supply a mechanism for translating its internal
key codes into user-defined codes which are returned by the DataEvents. Note
that this translation must be end-user configurable.

Device Sharing

The POS keyboard is an exclusive-use device, as follows:

• The application must claim the device before enabling it.
• The application must claim and enable the device before the device begins

reading input.
• See the “Summary” table for precise usage prerequisites.

512
UnifiedPOS Retail Peripheral Architecture Chapter 15

POS Keyboard
Properties (UML attributes)

CapKeyUp Property

Syntax CapKeyUp: boolean { read-only, access after open }

Remarks If true, then the device is able to generate both key down and key up events,
depending upon the setting of the EventTypes. If false, then the device is only able
to generate the key down event.

This property is initialized the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also EventTypes Property.

EventTypes Property

Syntax EventTypes: int32 { read-write, access after open }

Remarks Holds the type of events that the application wants to receive. It has one of the
following values:

Value Meaning

KBD_ET_DOWN Generate key down events.

KBD_ET_DOWN_UP Generate key down and key up events.

This property is initialized to KBD_ET_DOWN by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

POSKeyData Property

Syntax POSKeyData: int32 { read-only, access after open }

Remarks Holds the value of the key from the last DataEvent. The application may treat this
value as device independent, assuming that the system installer has configured the
Service to translate internal key codes to the codes expected by the application.
Such configuration is inherently Service-specific.

This property is set just before delivering the DataEvent.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also DataEvent.

513 Properties (UML attributes)
POSKeyEventType Property

Syntax POSKeyEventType: int32 { read-only, access after open }

Remarks Holds the type of the last keyboard event: Is the key being pressed or released? It
has one of the following values:

Value Meaning

KBD_KET_KEYDOWN The key in POSKeyData was pressed.

KBD_KET_KEYUP The key in POSKeyData was released.

This property is set just before delivering the DataEvent.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also POSKeyData Property, DataEvent.

514
UnifiedPOS Retail Peripheral Architecture Chapter 15

POS Keyboard
Events (UML interfaces)

DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application that input data is available from the POS Keyboard device.

Attributes This event contains the following attribute:

Attribute Type Description

Status int32 Contains zero.

Remarks The logical key number is placed in the POSKeyData property and the event type
is placed in the POSKeyEventType property before this event is delivered.

See Also POSKeyData Property, POSKeyEventType Property, “Events” on page 15

DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific POS Keyboard Service to provide events to the
application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This property is settable.

Obj Object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s POS Keyboard devices which may not have
any knowledge of the Device Service’s need for this event.

See Also “Events” on page 15, directIO Method

515 Events (UML interfaces)
ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error was detected trying to read POS Keyboard
data.

Attributes This event contains the following attributes:

Attribute Type Description

ErrorCode int32 Error Code causing the error event. See list of
ErrorCodes on page 16.

ErrorCodeExtended int32 Extended Error Code causing the error event. It
may contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be
overridden by the application (i.e., this property
is settable). See values below.

The ErrorLocus property has one of the following values:

Value Meaning

EL_INPUT Error occurred while gathering or processing event-
driven input. No input data is available.

EL_INPUT_DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER_CLEAR Clear the buffered input data. The error state is exited.
Default when locus is EL_INPUT.

ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA.
Acknowledges the error and directs the Device to
continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and DataEventEnabled is again set to
true, then another ErrorEvent is delivered with locus
EL_INPUT.
Default when locus is EL_INPUT_DATA.

516
UnifiedPOS Retail Peripheral Architecture Chapter 15

POS Keyboard
Remarks Enqueued when an error is detected while trying to read POS Keyboard data. This
event is not delivered until DataEventEnabled is true, so that proper application
sequencing occurs.

See Also “Device Input Model” on page 18, “Device States” on page 26

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the working status of the POS Keyboard changes.

Attributes This event contains the following attribute:

Attribute Type Description

Status int32 The status reported from the POS Keyboard.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on page 56.

Remarks Enqueued when the POS Keyboard needs to alert the application of a device state
change.

See Also “Events” on page 15

C H A P T E R 1 6

POS Power

This Chapter defines the POS Power device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.5 Not Supported

CapPowerReporting: int32 { read-only } 1.5 open

CheckHealthText: string { read-only } 1.5 open

Claimed: boolean { read-only } 1.5 open

DataCount: int32 { read-only } 1.5 Not Supported

DataEventEnabled: boolean { read-write } 1.5 Not Supported

DeviceEnabled: boolean { read-write } 1.5 open

FreezeEvents: boolean { read-write } 1.5 open

OutputID: int32 { read-only } 1.5 Not Supported

PowerNotify: int32 { read-write } 1.5 open

PowerState: int32 { read-only } 1.5 open

State: int32 { read-only } 1.5 --

DeviceControlDescription: string { read-only } 1.5 --

DeviceControlVersion: int32 { read-only } 1.5 --

DeviceServiceDescription: string { read-only } 1.5 open

DeviceServiceVersion: int32 { read-only } 1.5 open

PhysicalDeviceDescription: string { read-only } 1.5 open

PhysicalDeviceName: string { read-only } 1.5 open

518
UnifiedPOS Retail Peripheral Architecture Chapter 16

POS Power
Properties (Continued)

Specific Type Mutability Version May Use After

CapFanAlarm: boolean { read-only } 1.5 open

CapHeatAlarm: boolean { read-only } 1.5 open

CapQuickCharge: boolean { read-only } 1.5 open

CapShutdownPOS: boolean { read-only } 1.5 open

CapUPSChargeState: int32 { read-only } 1.5 open

EnforcedShutdownDelayTime: int32 { read-write } 1.5 open

PowerFailDelayTime: int32 { read-only } 1.5 open

QuickChargeMode: boolean { read-only } 1.5 open

QuickChargeTime: int32 { read-only } 1.5 open

UPSChargeState: int32 { read-only } 1.5 open & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.5

close ():
void { raises-exception, use after open }

1.5

claim (timeout: int32):
void { raises-exception, use after open }

1.5

release ():
void { raises-exception, use after open, claim }

1.5

checkHealth (level: int32):
void { raises-exception, use after open, enable }

1.5

clearInput ():
void { }

Not
supported

clearOutput ():
void { }

Not
supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.5

Specific

Name

shutdownPOS ():
void { raises exception, use after open, enable }

1.5

519 Summary
Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not Supported

upos::events::DirectIOEvent 1.5

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent Not Supported

upos::events::OutputCompleteEvent Not Supported

upos::events::StatusUpdateEvent 1.5

 Status: int32 { read-only }

520
UnifiedPOS Retail Peripheral Architecture Chapter 16

POS Power
General Information

The POS Power programmatic name is “POSPower”.

Capabilities
The POSPower device class has the following capabilities:

• Supports a command to “shut down” the system.

• Supports accessing a power handling mechanism of the underlying operating
system and hardware.

• Informs the application if a power fail situation has occurred.

• Informs the application if the UPS charge state has changed.

• Informs the application about high CPU temperature.

• Informs the application about stopped CPU fan.

• Informs the application if an operating system dependant enforced shutdown
mechanism is processed.

• Allows the application after saving application data locally or transferring
application data to a server to shut down the POS terminal.

• Informs the application about an initiated shutdown.

Device Sharing
The POSPower is a sharable device. Its device sharing rules are:

• After opening and enabling the device, the application may access all
properties and methods and will receive status update events.

• If more than one application has opened and enabled the device, all
applications may access its properties and methods. Status update events are
fired to all of the applications.

• If one application claims the POSPower, then only that application may call
the shutdownPOS method. This feature provides a degree of security, such
that these methods may effectively be restricted to the main POS application
if that application claims the device at startup.

• See the “Summary” table for precise usage prerequisites.

521 General Information
Model
The general model of POSPower is based on the power model of each device in
version 1.3 or later. The same common properties are used but all states relate to
the POS terminal itself and not to a peripheral device.

There are three states of the POSPower:

• ONLINE. The POS terminal is powered on and ready for use. This is the
“operational” state.

• OFF. The POS terminal is powered off or detached from the power supplying
net. The POS terminal runs on battery power support. This is the powerfail
situation.

• OFFLINE. The POS terminal is powered on but is running is a “lower-power-
consumption” mode. It may need to be placed online by pressing a button or
key or something else which may wake up the system.

Power reporting only occurs while the device is open, enabled and power
notification is switched on.

In a powerfail situation - that means the POSPower is in the state OFF - the POS
terminal will be shut down automatically after the last application has closed the
POSPower device or the time specified by the EnforcedShutdownDelayTime
property has been elapsed.

A call to the shutdownPOS method will always shut down the POS terminal
independent of the system power state.

522
UnifiedPOS Retail Peripheral Architecture Chapter 16

POS Power
POSPower Class Diagram

The following diagram shows the relationships between the POSPower classes.

POSPowerConst

$ PWR_UPS_FULL : int32 {frozen}
$ PWR_UPS_WARNING : int32 {frozen}
$ PWR_UPS_LOW : int32 {frozen}
$ PWR_UPS_CRITICAL : int32 {frozen}
$ PWR_SUE_UPS_FULL : int32 {frozen}
$ PWR_SUE_UPS_WARNING : int32 {frozen}
$ PWR_SUE_UPS_LOW : int32 {frozen}
$ PWR_SUE_UPS_CRITICAL : int32 {frozen}
$ PWR_SUE_FAN_STOPPED : int32 {frozen}
$ PWR_SUE_FAN_RUNNING : int32 {frozen}
$ PWR_SUE_TEMPERATURE_HIGH : int32 {frozen}
$ PWR_SUE_TEMPERATURE_OK : int32 {frozen}
$ PWR_SUE_SHUTDOWN : int32 {frozen}

(from upos)

<<utility>>

UposException
(from upos)

<<exception>>

UposConst
(from upos)

<<utility>>

BaseControl

(from upos)

<<Interface>>

<<uses>>

<<sends>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

POSPowerControl

<<capability>> CapFanAlarm : boolean
<<capability>> CapHeatAlarm : boolean
<<capability>> CapQuickCharge : boolean
<<capability>> CapShutdownPOS : boolean
<<capability>> CapUPSChargeState : int32
<<prop>> EnforcedShutdownDelayTime : int32
<<prop>> PowerFailDelayTime : int32
<<prop>> QuickChargeMode : boolean
<<prop>> QuickChargeTime : int32
<<prop>> UPSChargeState : int32

shutdownPOS() : void

(from upos)

<<Interface>>fires

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

fires

<<uses>>

<<uses>>

<<sends>>

523 General Information
POSPower State Diagram

The following state diagram depicts the POSPower Control device model.

The State Diagram shows
the states when the device is
opened, claimed, enabled and
additionally when PowerNotify is enabled.
Claiming the device is optional since
POSPower is a sharable device.

Additionally, for CapPowerReporting only
the value PR_ADVANCED is possible.

/open(…)

/ claim(...)/ release()

/close()

/ setDevice-
Enabled(false)

/ setDevice-
Enabled (true)

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_ENABLED]

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_DISABLED]

/ claim(...)

/ setDevice-
Enabled(true)

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_ENABLED]

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_DISABLED]

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_ENABLED]

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_DISABLED]

/ setDevice-
Enabled(false)

/ release()

/ setDevice-
Enabled(true)

/ setDevice-
Enabled(false)

/ release()/ claim(...)

/ setDevice-
Enabled (true)

/ setDevice-
Enabled(false)

/ release()/ claim(...)
[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_ENABLED]

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_DISABLED]

Opened &Claimed
State == S_IDLE

Claimed == true

DeviceEnabled == false

PowerNotify == PN_DISABLED

Opened, Claimed & Enabled
State == S_IDLE

Claimed == true

DeviceEnabled == true

PowerNotify == PN_DISABLED

Opened &PowerEnabled
State == S_IDLE

Claimed == false

DeviceEnabled == false

PowerNotify == PN_ENABLED

Opened,Claimed &PowerEnabled
State == S_IDLE

Claimed == true

DeviceEnabled == false

PowerNotify == PN_ENABLED

Opened & Enabled
State == S_IDLE

Claimed == false

DeviceEnabled == true

PowerNotify == PN_DISABLED

Opened
State = S_IDLE

Claimed=false

DeviceEnabled=false

PowerNotify=PN_DISABLED

OS / application stopped.

[CapShutdownPOS == true]
/ Application saves all data and
sets itself to a defined state.
/ shutdownPOS()

Shutdown Operating System
entry / {Deliver StatusUpdateEvent

 (PWR_SUE_SHUTDOWN) }

Opened, Claimed, Enabled
& PowerEnabled
State == S_IDLE

Claimed == true

DeviceEnabled == true

PowerNotify == PN_ENABLED

Opened,, Enabled
& PowerEnabled
State == S_IDLE

Claimed == false

DeviceEnabled == true

PowerNotify == PN_ENABLED

The
details of
these
states are
described
in
separate
diagrams
below.

524
UnifiedPOS Retail Peripheral Architecture Chapter 16

POS Power
POSPower PowerState Diagram - part 1

The following state diagram depicts the POSPower Power States.

Opened,Enabled & PowerEnabled OR Opened, Claimed, Enabled & PowerEnabled

The State Diagram shows
the states when the POS terminal
changes its power state.

PowerState ONLINE

The POS terminal is powered on and ready for use

PowerState= = PS_ONLINE

entry / {Deliver StatusUpdateEvent (SUE_POWER_ONLINE) }

PowerState OFFLINE

The POS terminal is powered on but is running

 is a “lower-power-consumption” mode

PowerState= = PS_OFFLINE

entry / {Deliver StatusUpdateEvent
 (SUE_POWER_OFFLINE) }

[The POS terminal is powered off or
detached from the power supplying net.]

[The POS terminal is
again powered on
or attached to the
power supplying net.]

[The POS terminal is running in a
“lower-power-consumption” mode]

[The POS
terminal is
placed online by
pressing a
button or key or
due to a power
fail situation or
some-thing else
which may wake
up the system.]

Application saves all
data and sets itself
to a defined state.

OS/ application stopped.

 [last POSPower
 Device instance
 opened]
/ close ()

 [EnforcedShutdown-
 DelayTime >0]

 After the time specified in
EnforcedShutdown-DelayTime

PowerState OFF
(Power Fail Situation)

The POS terminal runs on battery power

 support. This is the powerfail situation.

PowerState == PS_OFF

entry / {Deliver StatusUpdateEvent
 (SUE_POWER_OFF) }

[PowerFailDelayTime >0 && The POS terminal is
powered off or detached from the power supplying
net

[The POS terminal is again powered on or attached
to the power supplying net within the time specified in
PowerFailDelayTime.]

OFFONLINE

Shutdown Operating System
entry / {Deliver StatusUpdateEvent

 (PWR_SUE_SHUTDOWN) }

The details of these
states are described
in separate diagrams
below.

525 General Information
POSPower PowerState Diagram - part 2

The following state diagram depicts the POSPower PowerState ONLINE.

PowerState ONLINE

The State Diagram shows
the sub states in the
PowerState ONLINE state
when charging the UPS battery.

UPSChargeState PWR_UPS_CRITICAL

UPS battery is in a critical state

PowerState= = PS_ONLINE

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_CRITICAL) }

[(CapUPSChargeState &
PWR_UPS_LOW) != 0
 && physical battery
charge state is near empty]
/ Battery is loading

UPSChargeState PWR_UPS_WARNING

UPS battery UPS battery is near 50% charge

PowerState= = PS_ONLINE

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_WARNING) }

UPSChargeState PWR_UPS_LOW

UPS battery UPS battery is near empty.

PowerState= = PS_ONLINE

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_LOW) }

UPSChargeState PWR_UPS_FULL

UPS battery UPS battery is near full charge

PowerState= = PS_ONLINE

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_FULL) }

[(CapUPSChargeState &
PWR_UPS_WARNING) != 0
 && physical battery charge state
is near 50%]
/ Battery is loading

[(CapUPSChargeState &
PWR_UPS_FULL) != 0
 && physical battery charge
state is near full]
/ Battery is loading

[(CapUPSChargeState & PWR_UPS_CRITICAL) != 0
 && physical battery charge state is critical]

[(CapUPSChargeState & PWR_UPS_LOW) != 0
 && physical battery charge state is near empty]

[(CapUPSChargeState &
PWR_UPS_WARNING) != 0 &&
physical battery charge state is
near 50% charge]

[(CapUPSChargeState &
PWR_UPS_FULL) != 0 &&
physical battery charge state
 is near full]

526
UnifiedPOS Retail Peripheral Architecture Chapter 16

POS Power
POSPower PowerState Diagram - part 3
The following state diagram depicts the POSPower PowerState OFF.

PowerState OFF

The State Diagram shows
the sub states in the
PowerState OFF state
when unloading the UPS battery.

UPSChargeState PWR_UPS_CRITICAL

UPS battery is in a critical state

PowerState= = PS_OFF

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_CRITICAL) }

[(CapUPSChargeState &
PWR_UPS_CRITICAL) != 0
 && physical battery charge
state is critical]
/ Battery is unloading

UPSChargeState PWR_UPS_WARNING

UPS battery UPS battery is near 50% charge

PowerState= = PS_OFF

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_WARNING) }

UPSChargeState PWR_UPS_LOW

UPS battery UPS battery is near empty.

PowerState= = PS_OFF

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_LOW) }

UPSChargeState PWR_UPS_FULL

UPS battery UPS battery is near full charge

PowerState= = PS_OFF

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_FULL) }

[(CapUPSChargeState &
PWR_UPS_LOW) != 0
 && physical battery charge
state is near empty] / Battery
is unloading

[(CapUPSChargeState &
PWR_UPS_WARNING) != 0
&& physical battery charge
state is near 50%]
/ Battery is unloading

[(CapUPSChargeState & PWR_UPS_CRITICAL) != 0
 && physical battery charge state is critical]

[(CapUPSChargeState & PWR_UPS_LOW) != 0
 && physical battery charge state is near empty]

[(CapUPSChargeState &
PWR_UPS_WARNING) != 0 &&
physical battery charge state is
near 50% charge]

[(CapUPSChargeState &
PWR_UPS_FULL) != 0 &&
physical battery charge state
 is near full]

527 General Information
POSPower State chart Diagram for fan and temperature

The following state diagram depicts the handling of fan and temperature alarms.

Opened,Enabled & PowerEnabled OR Opened, Claimed, Enabled & PowerEnabled

The State Diagrams shows
the states for handling
high CPU temperature and
stopped CPU fan.

CPU temperature is high

entry / {Deliver StatusUpdateEvent
 (PWR_SUE_TEMPERATURE_HIGH) }

CPU temperature
decrease and leaves
the critical state

CPU temperature
increases and reaches
 a critical state

CPU temperature is low

entry / {Deliver StatusUpdateEvent
 (PWR_SUE_TEMPERATURE_OK) }

[(CapHeatAlarm == true &&
 CPU temperature is critical]

[(CapHeatAlarm == true &&
 CPU temperature is uncritical]

Opened,Enabled & PowerEnabled OR Opened, Claimed, Enabled & PowerEnabled

The CPU fan is stopped.

entry / {Deliver StatusUpdateEvent
 (PWR_SUE_FAN_STOPPED) }

Fan starts running
Fan stops running

CPU fan is running

entry / {Deliver StatusUpdateEvent
 (PWR_SUE_FAN_RUNNING) }

[(CapFanAlarm == true &&
 fan is stopped]

[(CapFanAlarm == true &&
 fan works properly]

528
UnifiedPOS Retail Peripheral Architecture Chapter 16

POS Power
Properties (UML attributes)

CapFanAlarm Property

Syntax CapFanAlarm: boolean { read-only, access after open }

Remarks If true the device is able to detect whether the CPU fan is stopped. Otherwise it is
false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapHeatAlarm Property

Syntax CapHeatAlarm: boolean { read-only, access after open }

Remarks If true the device is able to detect whether the CPU is running at too high of a
temperature. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapQuickCharge Property

Syntax CapQuickCharge: boolean { read-only, access after open }

Remarks If true the power management allows the charging of the battery in quick mode.
The time for charging the battery is shorter than usual. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also QuickChargeMode Property, QuickChargeTime Property.

CapShutdownPOS Property

Syntax CapShutdownPOS: boolean { read-only, access after open }

Remarks If true the device is able to explicitly shut down the POS. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also shutdownPOS Method.

529 Properties (UML attributes)
CapUPSChargeState Property

Syntax CapUPSChargeState: int32 { read-only, access after open }

Remarks If not equal to zero, the UPS can deliver one or more charge states. It can contain
any of the following values logically ORed together.

Value Meaning

PWR_UPS_FULL UPS battery is near full charge.

PWR_UPS_WARNING UPS battery is near 50% charge.

PWR_UPS_LOW UPS battery is near empty. Application shutdown
should be started to ensure that is can be completed
before the battery charge is depleted. A minimum of
2 minutes of normal system operation can be
assumed when this state is entered unless this is the
first state reported upon entering the “Off” power
state.

PWR_UPS_CRITICAL UPS battery is in a critical state and could be
disconnected at any time without further warning.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also UPSChargeState Property.

EnforcedShutdownDelayTime Property

Syntax EnforcedShutdownDelayTime: int32 { read-write, access after open }

Remarks If not equal to zero the system has a built-in mechanism to shut down the POS
terminal after a determined time in a power fail situation. This property contains
the time in milliseconds when the system will shut down automatically after a
power failure. A power failure is the situation when the POS terminal is powered
off or detached from the power supplying net and runs on battery power support.
If zero no automatic shutdown is performed and the application has to call itself
the shutdownPOS method.

Applications will be informed about an initiated automatic shutdown.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also shutdownPOS Method.

530
UnifiedPOS Retail Peripheral Architecture Chapter 16

POS Power
PowerFailDelayTime Property

Syntax PowerFailDelayTime: int32 { read-only, access after open }

Remarks This property contains the time in milliseconds for power fail intervals which will
not create a power fail situation. In some countries the power has sometimes short
intervals where the power supply is interrupted. Those short intervals are in the
range of milliseconds up to a few seconds and are handled by batteries or other
electric equipment and should not cause a power fail situation. The power fail
interval starts when the POS terminal is powered off or detached from the power
supplying net and runs on battery power support. The power fail interval ends
when the POS terminal is again powered on or attached to the power supplying net.
However, if the power fail interval is longer than the time specified in the
PowerFailDelayTime property a power fail situation is created.

Usually this parameter is a configuration parameter of the underlying power
management. So, the application can only read this property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

QuickChargeMode Property

Syntax QuickChargeMode: boolean { read-only, access after open }

Remarks If true, the battery is being recharged in a quick charge mode.
If false, it is being charged in a normal mode.

This property is only set if CapQuickCharge is true.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CapQuickCharge Property, QuickChargeTime Property.

QuickChargeTime Property

Syntax QuickChargeTime: int32 { read-only, access after open }

Remarks This time specifies the remaining time for loading the battery in quick charge
mode. After the time has elapsed, the battery loading mechanism of power
management usually switches into normal mode.

This time is specified in milliseconds.

This property is only set if CapQuickCharge is true.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CapQuickCharge Property, QuickChargeMode Property.

531 Properties (UML attributes)
UPSChargeState Property

Syntax UPSChargeState: int32 { read-only, access after open-enable }

Remarks This property holds the actual UPS charge state.

It has one of the following values:

Value Meaning

PWR_UPS_FULL UPS battery is near full charge.

PWR_UPS_WARNING UPS battery is near 50% charge.

PWR_UPS_LOW UPS battery is near empty. Application shutdown
should be started to ensure that is can be completed
before the battery charge is depleted. A minimum of
2 minutes of normal system operation can be
assumed when this state is entered unless this is the
first state reported upon entering the “Off” power
state.

PWR_UPS_CRITICAL UPS battery is in a critical state and could be
disconnected at any time without further warning.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16

See Also CapUPSChargeState Property.

532
UnifiedPOS Retail Peripheral Architecture Chapter 16

POS Power
Methods (UML operations)

shutdownPOS Method

Syntax shutdownPOS ():
void { raises exception, use after open-enable }

Remarks Call to shut down the POS terminal. This method will always shut down the
system independent of the system power state.

If the POSPower is claimed, only the application which claimed the device is able
to shut down the POS terminal.

Applications will be informed about an initiated shutdown.

It is recommended that in a power fail situation an application has to call this
method after saving all data and setting the application to a defined state.
If the EnforcedShutdownDelayTime property specifies a time greater than zero
and the application did not call the shutdownPOS method within the time
specified in EnforcedShutdownDelayTime, the system will be shut down
automatically. This mechanism may be provided by an underlying operating
system to prevent the battery from being emptied before the system is shut down.
This method is only supported if CapShutdownPOS is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL This method is not supported (see the
CapShutdownPOS property)

See Also CapShutdownPOS Property, EnforcedShutdownDelayTime Property.

533 Events (UML Interfaces)
Events (UML Interfaces)

DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific POSPower Service to provide events to the
application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Device Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Device Service. This property is
settable.

Obj object Additional data whose usage varies by the EventNumber
and Device Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s POSPower devices which may not have any
knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.

534
UnifiedPOS Retail Peripheral Architecture Chapter 16

POS Power
StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
 Status: int32 { read-only }

Description Delivered when UPSChargeState changes or an alarm situation occurs.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 See below.

The Status property contains the updated power status or alarm status.

Value Meaning

PWR_SUE_UPS_FULL UPS battery is near full charge. Can be
returned if CapUPSChargeState contains
PWR_UPS_FULL.

PWR_SUE_UPS_WARNING UPS battery is near 50% charge. Can be
returned if CapUPSChargeState contains
PWR_UPS_WARNING.

PWR_SUE_UPS_LOW UPS battery is near empty. Application
shutdown should be started to ensure that it
can be completed before the battery charge
is depleted. A minimum of 2 minutes of
normal system operation can be assumed
when this state is entered unless this is the
first charge state reported upon entering the
“Off” state. Can be returned if
CapUPSChargeState contains
PWR_UPS_LOW.

PWR_SUE_UPS_CRITICAL UPS is in critical state, and will in short
time be disconnected. Can be returned if
CapUPSChargeState contains
PWR_UPS_CRITICAL.

PWR_SUE_FAN_STOPPED The CPU fan is stopped. Can be returned if
CapFanAlarm is true.

PWR_SUE_FAN_RUNNING The CPU fan is running. Can be returned if
CapFanAlarm is true.

PWR_SUE_TEMPERATURE_HIGHThe CPU is running on high temperature.
Can be returned if CapHeatAlarm is true.

PWR_SUE_TEMPERATURE_OK The CPU is running on normal
temperature. Can be returned if
CapHeatAlarm is true.

PWR_SUE_SHUTDOWN The system will shutdown immediately.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on page 56.

See Also CapFanAlarm, CapHeatAlarm, CapUPSChargeState, and UPSChargeState
Properties.

C H A P T E R 1 7

POS Printer

This Chapter defines the POS Printer device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 Not Supported

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.2 Not Supported

DataEventEnabled: boolean { read-write } 1.0 Not Supported

DeviceEnabled: boolean { read-write } 1.0 open & claim

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 open

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open

536
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Properties (Continued)

Specific Type Mutability Version May Use After

CapCharacterSet:

CapConcurrentJrnRec:

CapConcurrentJrnSlp:

CapConcurrentRecSlp:

CapCoverSensor:

CapTransaction:

int32

boolean

boolean

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

1.1

1.0

1.0

1.0

1.0

1.1

open

open

open

open

open

open

CapJrnPresent:

CapJrn2Color:

CapJrnBold:

CapJrnDhigh:

CapJrnDwide:

CapJrnDwideDhigh:

CapJrnEmptySensor:

CapJrnItalic:

CapJrnNearEndSensor:

CapJrnUnderline:

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

open

open

open

open

open

open

open

open

open

open

CapJrnCartridgeSensor:

CapJrnColor:

int32
int32

{ read-only }

{ read-only }

1.5

1.5

open

open

CapRecPresent:

CapRec2Color:

CapRecBarCode:

CapRecBitmap:

CapRecBold:

CapRecDhigh:

CapRecDwide:

CapRecDwideDhigh:

CapRecEmptySensor:

CapRecItalic:

CapRecLeft90:

CapRecNearEndSensor:

CapRecPapercut:

CapRecRight90:

CapRecRotate180:

CapRecStamp:

CapRecUnderline:

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

CapRecCartridgeSensor: int32 { read-only } 1.5 open

CapRecColor: int32 { read-only } 1.5 open

CapRecMarkFeed: int32 { read-only } 1.5 open

537 Summary
Properties (Continued)

Specific (continued) Type Mutability Version May Use After

CapSlpPresent:

CapSlpFullslip:

CapSlp2Color:

CapSlpBarCode:

CapSlpBitmap:

CapSlpBold:

CapSlpDhigh:

CapSlpDwide:

CapSlpDwideDhigh:

CapSlpEmptySensor:

CapSlpItalic:

CapSlpLeft90:

CapSlpNearEndSensor:

CapSlpRight90:

CapSlpRotate180:

CapSlpUnderline:

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

CapSlpBothSidesPrint: boolean { read-only } 1.5 open

CapSlpCartridgeSensor: int32 { read-only } 1.5 open

CapSlpColor: int32 { read-only } 1.5 open

AsyncMode: boolean { read-write } 1.0 open

CartridgeNotify: int32 { read-write } 1.5 open

CharacterSet: int32 { read-write } 1.0 open, claim, & enable

CharacterSetList: string { read-only } 1.0 open

CoverOpen: boolean { read-only } 1.0 open, claim, & enable

ErrorLevel: int32 { read-only } 1.1 open

ErrorStation: int32 { read-only } 1.0 open

ErrorString: string { read-only } 1.1 open

FontTypefaceList: string { read-only } 1.1 open

FlagWhenIdle: boolean { read-write } 1.0 open

MapMode: int32 { read-write } 1.0 open

RotateSpecial: int32 { read-write } 1.1 open

JrnLineChars: int32 { read-write } 1.0 open, claim, & enable

JrnLineCharsList: string { read-only } 1.0 open

JrnLineHeight: int32 { read-write } 1.0 open, claim, & enable

JrnLineSpacing: int32 { read-write } 1.0 open, claim, & enable

JrnLineWidth: int32 { read-only } 1.0 open, claim, & enable

538
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Properties (Continued)

Specific (continued) Type Mutability Version May Use After

JrnLetterQuality: boolean { read-write } 1.0 open, claim, & enable

JrnEmpty: boolean { read-only } 1.0 open, claim, & enable

JrnNearEnd: boolean { read-only } 1.0 open, claim, & enable

JrnCartridgeState: int32 { read-only } 1.5 open, claim, & enable

JrnCurrentCartridge: int32 (read-write } 1.5 open, claim, & enable

RecLineChars: int32 { read-write } 1.0 open, claim, & enable

RecLineCharsList: string { read-only } 1.0 open

RecLineHeight: int32 { read-write } 1.0 open, claim, & enable

RecLineSpacing: int32 { read-write } 1.0 open, claim, & enable

RecLineWidth: int32 { read-only } 1.0 open, claim, & enable

RecLetterQuality: boolean { read-write } 1.0 open, claim, & enable

RecEmpty: boolean { read-only } 1.0 open, claim, & enable

RecNearEnd: boolean { read-only } 1.0 open, claim, & enable

RecSidewaysMaxLines: int32 { read-only } 1.0 open, claim, & enable

RecSidewaysMaxChars: int32 { read-only } 1.0 open, claim, & enable

RecLinesToPaperCut: int32 { read-only } 1.0 open, claim, & enable

RecBarCodeRotationList: string { read-only } 1.0 open

RecCartridgeState: int32 { read-only } 1.5 open, claim, & enable

RecCurrentCartridge: int32 { read-write } 1.5 open, claim, & enable

SlpLineChars: int32 { read-write } 1.0 open, claim, & enable

SlpLineCharsList: string { read-only } 1.0 open

SlpLineHeight: int32 { read-write } 1.0 open, claim, & enable

SlpLineSpacing: int32 { read-write } 1.0 open, claim, & enable

SlpLineWidth: int32 { read-only } 1.0 open, claim, & enable

SlpLetterQuality: boolean { read-write } 1.0 open, claim, & enable

SlpEmpty: boolean { read-only } 1.0 open, claim, & enable

SlpNearEnd: boolean { read-only } 1.0 open, claim, & enable

SlpSidewaysMaxLines: int32 { read-only } 1.0 open, claim, & enable

SlpSidewaysMaxChars: int32 { read-only } 1.0 open, claim, & enable

SlpMaxLines: int32 { read-only } 1.0 open, claim, & enable

SlpLinesNearEndToEnd: int32 { read-only } 1.0 open, claim, & enable

SlpBarCodeRotationList: string { read-only } 1.1 open

SlpPrintSide: int32 { read-only } 1.5 open, claim, & enable

SlpCartridgeState: int32 { read-only } 1.5 open, claim, & enable

SlpCurrentCartridge: int32 { read-write } 1.5 open, claim, & enable

539 Summary
Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { }

Not
supported

clearOutput ():
void { raises-exception, use after open, claim }

1.0

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

Specific

Name

beginInsertion (timeout: int32):
void { raises exception, use after open, claim, enable }

1.0

beginRemoval (timeout: int32):
void { raises exception, use after open, claim, enable }

1.0

changePrintSide (side: int32):
void { raises exception, use after open, claim, enable }

1.5

cutPaper (percentage: int32):
void { raises exception, use after open, claim, enable }

1.0

endInsertion ():
void { raises exception, use after open, claim, enable }

1.0

endRemoval ():
void { raises exception, use after open, claim, enable }

1.0

markFeed (side: int32):
void { raises exception, use after open, claim, enable }

1.5

printBarCode (station: int32, data: string, symbology: int32, height:
int32, width: int32, alignment: int32, textPosition: int32):
void { raises exception, use after open, claim, enable }

1.0

printBitmap (station: int32, fileName: string, width: int32, alignment:
int32):
void { raises exception, use after open, claim, enable }

1.0

printImmediate (station: int32, data: string):
void { raises exception, use after open, claim, enable }

1.0

printNormal (station: int32, data: string):
void { raises exception, use after open, claim, enable }

1.0

540
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Methods (Continued)

printTwoNormal (station: int32, data1: string, data2: string):
void { raises exception, use after open, claim, enable }

1.0

rotatePrint (station: int32, rotation: int32):
void { raises exception, use after open, claim, enable }

1.0

setBitmap (bitmapNumber: int32, station: int32, fileName: string,
width: int32, alignment: int32):
void { raises exception, use after open, claim, enable }

1.0

setLogo (location: int32, data: string):
void { raises exception, use after open, claim, enable }

1.0

transactionPrint (station: int32, control: int32):
void { raises exception, use after open, claim, enable }

1.1

validateData (station: int32, data: string):
void { raises exception, use after open, claim, enable }

1.1

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not Supported

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.0

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse int32 { read-write }

upos::events::OutputCompleteEvent 1.0

 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.0

 Status: int32 { read-only }

541 General Information
General Information

The POS Printer programmatic name is “POSPrinter”.

The POS Printer Service does not attempt to encapsulate the behavior of a generic
graphics printer. Rather, for performance and ease of use considerations, the
interfaces are defined to directly control a POS printer. Usually, an application will
print one line to one station per method, for ease of use and accuracy in recovering
from errors.

The printer model defines three stations with the following general uses:

• Journal Used for simple text to log transaction and activity information. Kept
by the store for audit and other purposes.

• Receipt Used to print transaction information. Usually given to the customer.
Also often used for store reports. Contains either a knife to cut the paper
between transactions, or a tear bar to manually cut the paper.

• Slip Used to print information on a form. Usually given to the customer.
Also used to print “validation” information on a form. The form type is
typically a check or credit card slip.

Sometimes, limited forms-handling capability is integrated with the receipt or
journal station to permit validation printing. Often this limits the number of
print lines, due to the station’s forms-handling throat depth. The Printer
Service nevertheless addresses this printer functionality as a slip station.

Capabilities
The POS printer has the following capability:

• The default character set can print ASCII characters (0x20 through 0x7F),
which includes space, digits, uppercase, lowercase, and some special
characters. (If the printer does not support all of these, then it should translate
them to close approximations – such as lowercase to uppercase.)

The POS printer may have several additional capabilities. See the capabilities
properties for specific information.

The following capabilities are not addressed in this version of the specification. A
Service may choose to support them through the directIO mechanism.

• Downloadable character sets.

• Character substitution.

• General graphics printing, where each pixel of the printer line may be
specified.

542
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
POS Printer Class Diagram

The following diagram shows the relationships between the POS Printer classes.

POS Printer Class Diagram - Version 1.5 Updates

The following diagram shows the relationships between the POS Printer classes
that were updated in version 1.5 of the specification.

StatusUpdateEvent
(from events)

<<event>>
ErrorEvent
(from events)

<<event>>

OutputCompleteEvent
(from events)

<<event>>
DirectIOEvent

(from events)

<<event>>

POSPrinterControl

beginInsertion(timeout : int32) : void
beginRemoval(timeout : int32) : void
changePrintSide(side : int32) : void
cutPaper(percentage : int32) : void
endInsertion() : void
endRemoval() : void
markFeed(type : int32) : void
printBarCode(station : int32, data : string, symbology : int32, height : int32, width : int32, alignment : int32, textPosition : int32) : voi
printBitmap(station : int32, fileName : string, width : int32, alignment : int32) : void
printImmediate(station : int32, data : string) : void
printNormal(station : int32, data : string) : void
printTwoNormal(stations : int32, data1 : string, data2 : string) : void
rotatePrint(station : int32, rotation : int32) : void
setBitmap(bitmapNumber : int32, station : int32, fileName : string, width : int32, alignment : int32) : void
setLogo(location : int32, data : string) : void
transactionPrint(station : int32, control : int32) : void
validateData(station : int32, data : string) : void

(from upos)

<<Interface>>

fires fires fires fires

POSPrinterConst
(from upos)

<<utility>>

<<uses>>

UposConst
(from upos)

<<utility>>

<<uses>>

UposException
(from upos)

<<exception>>
BaseControl

(from upos)

<<Interface>>

<<uses>> <<sends>>

<<sends>>

Only the methods of the
POSPrinterControl are shown in
order to avoid cluttering the diagram.

543 General Information
UposConst
(from upos)

<<utility>>

POSPrinterConst

$ PTR_PS_UNKNOWN : int32 {frozen}
$ PTR_PS_SIDE1 : int32 {frozen}
$ PTR_PS_SIDE2 : int32 {frozen}
$ PTR_PS_OPPOSITE : int32 {frozen}
$ PTR_MF_TAKEUP : int32 {frozen}
$ PTR_MF_FEED_TO_CUTTER : int32 {frozen}
$ PTR_MF_PRESENT_TOF : int32 {frozen}
$ PTR_MF_NEXT_TOF : int32 {frozen}
$ PTR_CART_UNKNOWN : int32 {frozen}
$ PTR_CART_OK : int32 {frozen}
$ PTR_CART_REMOVED : int32 {frozen}
$ PTR_CART_EMPTY : int32 {frozen}
$ PTR_CART_NEAREND : int32 {frozen}
$ PTR_CART_CLEANING : int32 {frozen}
$ PTR_COLOR_PRIMARY : int32 {frozen}
$ PTR_COLOR_CUSTOM1 : int32 {frozen}
$ PTR_COLOR_CUSTOM2 : int32 {frozen}
$ PTR_COLOR_CUSTOM3 : int32 {frozen}
$ PTR_COLOR_CUSTOM4 : int32 {frozen}
$ PTR_COLOR_CUSTOM5 : int32 {frozen}
$ PTR_COLOR_CUSTOM6 : int32 {frozen}
$ PTR_COLOR_CYAN : int32 {frozen}
$ PTR_COLOR_MAGENTA : int32 {frozen}
$ PTR_COLOR_YELLOW : int32 {frozen}
$ PTR_COLOR_FULL : int32 {frozen}
$ PTR_CN_DISABLED : int32 {frozen}
$ PTR_CN_ENABLED : int32 {frozen}
$ PTR_SUE_JRN_CARTRIDGE_EMPTY : int32 {frozen}
$ PTR_SUE_JRN_CARTRIDGE_NEAREMPTY : int32 {frozen}
$ PTR_SUE_JRN_HEAD_CLEANING : int32 {frozen}
$ PTR_SUE_JRN_CARTRIDGE_OK : int32 {frozen}
$ PTR_SUE_REC_CARTRIDGE_EMPTY : int32 {frozen}
$ PTR_SUE_REC_CARTRIDGE_NEAREMPTY : int32 {frozen}
$ PTR_SUE_REC_HEAD_CLEANING : int32 {frozen}
$ PTR_SUE_REC_CARTRIDGE_OK : int32 {frozen}
$ PTR_SUE_SLP_CARTRIDGE_EMPTY : int32 {frozen}
$ PTR_SUE_SLP_CARTRIDGE_NEAREMPTY : int32 {frozen}
$ PTR_SUE_SLP_HEAD_CLEANING : int32 {frozen}
$ PTR_SUE_SLP_CARTRIDGE_OK : int32 {frozen}
$ EPTR_JRN_CARTRIDGE_REMOVED : int32 {frozen}
$ EPTR_JRN_CARTRIDGE_EMPTY : int32 {frozen}
$ EPTR_JRN_HEAD_CLEANING : int32 {frozen}
$ EPTR_REC_CARTRIDGE_REMOVED : int32 {frozen}
$ EPTR_REC_CARTRIDGE_EMPTY : int32 {frozen}
$ EPTR_REC_HEAD_CLEANING : int32 {frozen}
$ EPTR_SLP_CARTRIDGE_REMOVED : int32 {frozen}
$ EPTR_SLP_CARTRIDGE_EMPTY : int32 {frozen}
$ EPTR_SLP_HEAD_CLEANING : int32 {frozen}

(from upos)

<<utility>>

Only the new 1.5 properties and
methods of the
POSPrinterControl are shown in
order to avoid cluttering the
diagram.

BaseControl

(from upos)

<<Interface>>

UposException
(from upos)

<<exception>>

<<uses>>

<<sends>>

ErrorEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>
OutputCompleteEvent

(from events)

<<event>>

POSPrinterControl

<<capability>> CapSlpBothSidesPrint : boolean
<<capability>> CapRecMarkFeed : int32
<<prop>> SlpPrintSide : int32

changePrintSide(side : int32) : void
markFeed(type : int32) : void

(from upos)

<<Interface>>

fires

fires

fires

<<uses>>

<<uses>>

<<sends>>

fires

544
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Model
The POS Printer follows the general device behavior model for output devices,
with some enhancements:

• The following methods are always performed synchronously:
beginInsertion, endInsertion, beginRemoval, endRemoval,
changePrintSide, and checkHealth. These methods will fail if asynchronous
output is outstanding.

• The printImmediate method is also always performed synchronously: This
method tries to print its data immediately (that is, as the very next printer
operation). It may be called when asynchronous output is outstanding. This
method is primarily intended for use in exception conditions when
asynchronous output is outstanding.

• The following methods are performed either synchronously or
asynchronously, depending on the value of the AsyncMode property:
cutPaper, markFeed, printBarCode, printBitmap, printNormal,
printTwoNormal, rotatePrint, and transactionPrint. When AsyncMode is
false, then these methods are performed synchronously.

• When AsyncMode is true, then these methods operate as follows:

• The Service buffers the request, sets the OutputID property to an
identifier for this request, and returns as soon as possible. When the
request completes successfully, an OutputCompleteEvent is enqueued.
A property of this event contains the OutputID of the completed request.

• Asynchronous printer methods will not raise an exception due to a
printing problem, such as out of paper or printer fault. These errors will
only be reported by an ErrorEvent. An exception is raised only if the
printer is not claimed and enabled, a parameter is invalid, or the request
cannot be enqueued. The first two error cases are due to an application
error, while the last is a serious system resource error exception.

• If an error occurs while performing an asynchronous request, an
ErrorEvent is enqueued. The ErrorStation property is set to the station
or stations that were printing when the error occurred. The ErrorLevel
and ErrorString properties are also set.

• The event handler may call synchronous print methods (but not
asynchronous methods), then can either retry the outstanding output or
clear it.

• All asynchronous output is performed on a first-in first-out basis.

• All output buffered may be deleted by calling clearOutput.
OutputCompleteEvents will not be delivered for cleared output. This
method also stops any output that may be in progress (when possible).

• The property FlagWhenIdle may be set to cause a StatusUpdateEvent
to be enqueued when all outstanding outputs have finished, whether
successfully or because they were cleared.

545 General Information
• Transaction mode printing is supported. A transaction is a sequence of print
operations that are printed to a station as a unit. Print operations which may be
included in a transaction are printNormal, cutPaper, rotatePrint,
printBarCode, printBitmap, and markFeed. During a transaction, the print
operations are first validated. If valid, they are added to the transaction but not
printed yet. Once the application has added as many operations as required,
then the transaction print method is called.

If the transaction is printed synchronously and an exception is not raised, then
the entire transaction printing was successful. If the transaction is printed
asynchronously, then the asynchronous print rules listed above are followed.
If an error occurs and the Error Event handler causes a retry, the entire
transaction is retried.

The printer error reporting model is as follows:

• Printer out-of-paper and cover open conditions are reported by setting the
exception’s (or ErrorEvent’s) ErrorCode to E_EXTENDED and then setting
the associated ErrorCodeExtended to one of the following error conditions:
EPTR_JRN_EMPTY,
EPTR_REC_EMPTY,
EPTR_SLP_EMPTY,
EPTR_COVER_OPEN,
EPTR_JRN_CARTRIDGE_REMOVED,
EPTR_REC_CARTRIDGE_REMOVED,
EPTR_SLP_CARTRIDGE_REMOVED,
EPTR_JRN_CARTRIDGE_EMPTY,
EPTR_REC_CARTRIDGE_EMPTY,
EPTR_SLP_CARTRIDGE_EMPTY,
EPTR_JRN_HEAD_CLEANING,
EPTR_REC_HEAD_CLEANING, or
EPTR_SLP_HEAD_CLEANING.

• Other printer errors are reported by setting the exception’s (or ErrorEvent’s)
ErrorCode to E_FAILURE or another standard error status. These failures are
typically due to a printer fault or jam, or to a more serious error.

Release 1.5 and later – Print cartridge support added

The print cartridge model is as follows:

546
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
• The CapJrnCartridgeSensor, CapRecCartridgeSensor, and the
CapSlpCartridgeSensor capabilities are used to determine whether the
printer has the ability to detect the operating condition of the cartridge.

• Prior to determining a cartridge’s operating condition, a cartridge is selected
by using one of the following properties: JrnCurrentCartridge,
RecCurrentCartridge, or SlpCurrentCartridge.

• The condition of the selected cartridge is set up using one of the
JrnCartridgeState, RecCartridgeState or SlpCartridgeState properties.
The values that these properties can take in order of high priority to low
priority are as follows: PTR_CART_UNKNOWN,
PTR_CART_REMOVED, PTR_CART_EMPTY,
PTR_CART_CLEANING, PTR_CART_NEAREND, PTR_CART_OK.

• CapJrnColor, CapRecColor, and CapSlpColor capabilities are used to
determine the color capabilities of the station.

Mono Color

• CapJrnColor, CapRecColor, and CapSlpColor capabilities are set to
PTR_COLOR_PRIMARY.

Two Color

• CapJrnColor, CapRecColor, and CapSlpColor capabilities are a logical
OR combination of PTR_COLOR_PRIMARY and
PTR_COLOR_CUSTOM1.

• PTR_COLOR_CUSTOM1 refers to the secondary color, usually red.
• Secondary color printing can be done by using the ESC|rC escape sequence.

Custom Color

• CapJrnColor, CapRecColor, and CapSlpColor capabilities are a logical
OR combination of PTR_COLOR_PRIMARY and any of the following bit
values:
PTR_COLOR_CUSTOM1, PTR_COLOR_CUSTOM2,
PTR_COLOR_CUSTOM3, PTR_COLOR_CUSTOM4,
PTR_COLOR_CUSTOM5, PTR_COLOR_CUSTOM6.

• Selection of a custom color can be done using the ESC|#rC escape sequence.

Full Color

• CapJrnColor, CapRecColor, and CapSlpColor capabilities are a logical
OR combination of PTR_COLOR_FULL and the following values:
PTR_COLOR_CYAN, PTR_COLOR_MAGENTA,
PTR_COLOR_YELLOW.

• PTR_COLOR_FULL is not used to indicate that a print cartridge is currently
installed in the printer. Rather, it is used to indicate that the printer has the
ability to print in full color mode.

• Full color printing is accomplished by using the ESC|#fC escape sequence.

547 General Information
Full Color with Custom Color(s)

• CapJrnColor, CapRecColor, and CapSlpColor are a logical OR
combination of the settings for Custom Color and Full Color.

Release 1 .5 and la ter – Cartridge State Reporting Requirements
for DeviceEnabled

The print cartridge state reporting model is:

• CartridgeNotify property: The application may set this property to enable
cartridge state reporting via StatusUpdateEvents and JrnCartridgeState,
RecCartridgeState, and SlpCartridgeState properties. This property may
only be set before the device is enabled (that is, before DeviceEnabled is set
to true). This restriction allows simpler implementation of cartridge status
notification with no adverse effects on the application. The application is
either prepared to receive notifications or doesn’t want them, and has no need
to switch between these cases. This property may be one of:

PTR_CN_DISABLED, or PTR_CN_ENABLED

The following semantics are added to DeviceEnabled when the
CapJrnCartridgeSensor, CapRecCartridgeSensor, and
CapSlpCartridgeSensor capabilities are not zero, and CartridgeNotify is set to
PTR_CN_ENABLED:

• Monitoring the cartridge state begins when DeviceEnabled changes from
false to true.

• When DeviceEnabled changes from true to false, the state of the cartridge is
no longer valid. Therefore, JrnCartridgeState, RecCartridgeState, and
SlpCartridgeState properties are set to PTR_CART_UNKNOWN.

Device Sharing
The POS Printer is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many
printer-specific properties.

• The application must claim and enable the device before calling methods that
manipulate the device.

• See the “Summary” table for precise usage prerequisites.

548
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
POS Printer State Diagram

549 General Information
“Both sides printing” sequence Diagram

The following sequence diagram is a representation of the typical usage of the
“Both sides printing” feature.

:POSPrinterControl:Client

beginInsertion(1000)

endInsertion()

Example on how to print some string on both

side with a POSPrinter service supporting both

sides printing.

NOTE: the sequence below assumes no errors

Prints "Some
String Data"

on the Side1
of the Slip of
POSPrinter

changePrintSide(PTR_PS_SIDE2) [CapSlpBothSidesPrint == true]

changePrintSide(PTR_PS_SIDE1) [CapSlpBothSidesPrint == true]

printNormal(PTR_S_SLIP, "Some String Data")

printNormal(PTR_S_SLIP, "Some String Data")

Prints "Some
String Data"

on the Side2
of the Slip of

POSPrinter

beginRemoval(5000)

endRemoval()

550
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Data Characters and Escape Sequences

The default character set of all POS printers is assumed to support at least the
ASCII characters 0x20 through 0x7F, which include spaces, digits, uppercase,
lowercase, and some special characters. If the printer does not support lowercase
characters, then the Service may translate them to uppercase.

Every escape sequence begins with the escape character ESC, whose value is 27
decimal, followed by a vertical bar (‘|’). This is followed by zero or more digits
and/or lowercase alphabetic characters. The escape sequence is terminated by an
uppercase alphabetic character. Sequences that do not begin with ESC “|” are
passed through to the printer. Also, sequences that begin with ESC “|” but which
are not valid escape sequences are passed through to the printer.

To determine if escape sequences or data can be performed on a printer station, the
application can call the validateData method. (For some escape sequences,
corresponding capability properties can also be used.)

The following escape sequences are recognized. If an escape sequence specifies an
operation that is not supported by the printer station, then it is ignored.

551 General Information
Commands Perform indicated action.

Print Mode Characteristics that are remembered until explicitly changed.

Name Data Remarks

Paper cut ESC |#P Cuts receipt paper. The character ‘#’ is replaced by an
ASCII decimal string telling the percentage cut desired. If
‘#’ is omitted, then a full cut is performed. For example:
The C string “\x1B|75P” requests a 75% partial cut.

Feed and Paper cut ESC |#fp Cuts receipt paper, after feeding the paper by the
RecLinesToPaperCut lines. The character ‘#’ is defined
by the “Paper cut” escape sequence.

Feed, Paper cut, and Stamp ESC |#sP Cuts and stamps receipt paper, after feeding the paper by
the RecLinesToPaperCut lines. The character ‘#’ is
defined by the “Paper cut” escape sequence.

Fire stamp ESC |sL Fires the stamp solenoid, which usually contains a
graphical store emblem.

Print bitmap ESC |#B Prints the pre-stored bitmap. The character ‘#’ is replaced
by the bitmap number. See setBitmap method.

Print top logo ESC |tL Prints the pre-stored top logo.

Print bottom logo ESC |bL Prints the pre-stored bottom logo.

Feed lines ESC |#lF Feed the paper forward by lines. The character ‘#’ is
replaced by an ASCII decimal string telling the number of
lines to be fed. If ‘#’ is omitted, then one line is fed.

Feed units ESC |#uF Feed the paper forward by mapping mode units. The
character ‘#’ is replaced by an ASCII decimal string
telling the number of units to be fed. If ‘#’ is omitted, then
one unit is fed.

Feed reverse ESC |#rF Feed the paper backward. The character ‘#’ is replaced by
an ASCII decimal string telling the number of lines to be
fed. If ‘#’ is omitted, then one line is fed.

Name Data Remarks

Font typeface selection ESC |#fT Selects a new typeface for the following data. Values for
the character ‘#’ are:

0 = Default typeface.
1 = Select first typeface from the FontTypefaceList
property.
2 = Select second typeface from the FontTypefaceList
property.
And so on.

552
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Print Line Characteristics that are reset at the end of each print method or by a
“Normal” sequence.

Note: These escape sequences are only available in Version 1.5 and later.

Name Data Remarks

Bold ESC |bC Prints in bold or double-strike.

Underline ESC |#uC Prints with underline. The character ‘#’ is replaced by an
ASCII decimal string telling the thickness of the
underline in printer dot units. If ‘#’ is omitted, then a
printer-specific default thickness is used.

Italic ESC |iC Prints in italics.

Alternate color (Custom) ESC |#rC Prints using an alternate custom color. The character ‘#’
is replaced by an ASCII decimal string indicating the
desired color. The value of the decimal string is equal to
the value of the cartridge constant used in the printer
device properties. If ‘#’ is omitted, then the secondary
color (Custom Color 1) is selected. Custom Color 1 is
usually red.

Reverse video ESC |rvC Prints in a reverse video format.

Shading ESC |#sC Prints in a shaded manner. The character ‘#’ is replaced
by an ASCII decimal string telling the percentage shading
desired. If ‘#’ is omitted, then a printer-specific default
level of shading is used.

Single high & wide ESC |1C Prints normal size.

Double wide ESC |2C Prints double-wide characters.

Double high ESC |3C Prints double-high characters.

Double high & wide ESC |4C Prints double-high/double-wide characters.

Scale horizontally ESC |#hC Prints with the width scaled ‘#’ times the normal size,
where ‘#’ is replaced by an ASCII decimal string.

Scale vertically ESC |#vC Prints with the height scaled ‘#’ times the normal size,
where ‘#’ is replaced by an ASCII decimal string.

RGB Color ESC |#fC Prints in # color. The character ‘#’ is replaced by an
ASCII decimal string indicating the additive amount of
RGB to produce the desired color. There are 3 digits each
of Red, Green, and Blue elements. Valid values range
from “000” to “255”. (E.g., “255255000” represents
yellow). Color Matching to the subtractive percentage of
CMY (Cyan, Magenta and Yellow color components) to
produce the desired color matching specified by RGB is
up to the Service. If ‘#’ is omitted, then the primary color
is used. Bitmap printing is not affected. (See Note below.)

SubScript ESC |tbC Prints SubScript characters. (See Note below.)

SuperScript ESC |tpC Prints SuperScript characters. (See Note below.)

Center ESC |cA Aligns following text in the center.

Right justify ESC |rA Aligns following text at the right.

Normal ESC |N Restores printer characteristics to normal condition.

553 POS Printer State Diagrams (Low Level)
POS Printer State Diagrams (Low Level)
Purpose:

The Low level state diagrams show a simplified, implementable flow of the
POSPrinter.

They are intended to be used by Device service implementers as an example of
how a Service may be designed. It uses multiple threads of execution to separate
initiation of requests (via the POSPrinter APIs) with their processing and event
delivery.

They are also intended to be used by application developers to show more details
on processing of their API calls than can be given in the high level state diagram.

These diagrams assume:

- A separate request thread that processes print request.
Print requests are placed on a request queue (RequestQ) for the request thread to
access. The request thread has some mechanism to report request completion
and results.

- A separate event thread that delivers events.
Events are placed on an event queue (EventQ) for the event thread to access. The
event thread has some mechanism to report error event results.

Print Commands: changePrintSide, cutPaper, markFeed, printBarCode,
printBitmap, printNormal, printTwoNormal, rotatePrint.

Not Shown: Validation of APIs. If an API fails during validation, then it may
return an error result and return prematurely to the “Wait for API“ state.

554
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
POS Printer State Diagram (Low Level): API

[Opened &&
Claimed &&
Enabled]

[Closed ||
Released ||
Disabled]

Begin Transaction
do { Init transaction buffer; Set Trans-

action-Mode (TM) flag }

Print Immediate
do { Add print request to beginning of

RequestQ }

End Transaction
do { Make print request from

transaction buffer; Reset TM flag }

Print
do { Add print request to end of

RequestQ }

Print Transaction
do { Add print request to transaction

buffer;
set ResultCode to success }

Clear Output
do { Add clear request to end of RequestQ; cancel TM }

Begin Insertion
do { Wait for up to app specified

timeout for form in }

Begin Removal
do { Wait for up to app specified

timeout for form out }

Other
do { Process command }

End Removal
do { If form not out, then error }

Removal
Mode

[No form out before timeout ||
other failure]

/ beginRemoval

/ endRemoval

[Form out] / endRemoval

End Insertion
do { If form in, then close “jaws”; else error}

Insertion
Mode

[No form in before timeout ||
other failure]

/ beginInsertion

[Form in] / endInsertion

/ endInsertion

/ Other Command

/ beginRemoval

/ beginInsertion

/ clearOutput

[TM]
/ Print Command

[no TM] / Print Command

/ transactionPrint (end)

/ transactionPrint (begin)

/ printImmediate

Request Complete
do { Set ResultCode to

print request result }

Async Request Started
do { Assign & Set OutputID;
Set ResultCode to success }

[AsyncMode == true]

[(AsyncMode == false)
&& request complete]

[request
complete]

Wait For API

[request complete]

555 POS Printer State Diagrams (Low Level)
POS Printer State Diagram (Low Level):
Request Thread

[Started
by main
Service
Thread]

[Stopped before
Service terminates]

Wait For Work

Clear
do { Stop printer; clear

RequestQ & InProgressQ;
mark as complete }

Error
do { Stop printer; enqueue

ErrorEvent }

Done
do { Set print request

result; mark as complete;
remove from InProgressQ }

Print Request
do { Send to printer; move

from PrintQ to
InProgressQ }

StatusUpdateEvent
do { Enqueue

StatusUpdateEvent }

Idle SUE
do { Enqueue Idle

StatusUpdateEvent; set
FlagWhenIdle = false }

Retry
do { Resend requests in

the InProgressQ }

OutputCompleteEvent
do { Enqueue

OutputCompleteEvent }

[RequestQ Empty && FlagWhenIdle == true]

[status change]

/ RequestQ: Print

[async request done]

[async request error]

/ RequestQ: Clear

[response == clear]

[response
== retry]

[(AsyncMode == false)
&& (done || error)]

[AsyncMode == true]

[AsyncMode == false]

[AsyncMode == true]

556
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
POS Printer State Diagram (Low Level):

Event Delivery Thread

[Started
by main
Service
Thread]

[Stopped before
Service terminates]

Idle

Events to Deliver

Fire DataEvent
do { Set DataEventEnabled =

false; Fire event }

Fire Other Event
do { Fire event }

Fire ErrorEvent
do { Fire event; Return response

to Request Thread }

[EventQ Not
Empty]

[EventQ
Empty]

[FreezeEvents
== false]

[FreezeEvents
== true]

[Input ErrorEvent &&
DataEventEnabled == true]

[Output ErrorEvent]

[OutputCompleteEvent ||
StatusUpdateEvent ||
DirectIOEvent]

Events to Deliver and
Events Not Frozen

[DataEvent &&
DataEventEnabled == true]

557 POS Printer State Diagrams (Low Level)
Non-Slip Printing (Receipt and/or Journal)

POS Printer Slip Handling State Diagram

beginInsertion (Timeout)

endInsertion

Insertion
Mode

Slip Inserted: Perform Slip Printing (printNormal, etc…)

beginRemoval (Timeout)

endRemoval

Removal
Mode

[Form in before
Timeout
(SUCCESS)]
/ endInsertion

/ beginRemoval

/ endInsertion

[Form in
(SUCCESS)]

/ beginInsertion

[(no form in before Timeout (E_TIMEOUT)) ||
(Other failure (E_ILLEGAL, E_BUSY, E_FAILURE, etc.))]

/ beginInsertion

[Failure (EPTR_SLP_EMPTY, E_FAILURE, etc.)]

[Form out before
Timeout
(SUCCESS)]
/ endRemoval

/ endRemoval

[(Form not out before Timeout (E_TIMEOUT)) ||
(Other failure (E_ILLEGAL, E_BUSY, E_FAILURE, etc.))]

/ beginRemoval

[Form out
(SUCCESS)]

[Failure (EPTR_SLP_FORM, E_FAILURE, etc.)]

558
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Properties (UML attributes)
AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, then the print methods cutPaper, markFeed, printBarCode,
printBitmap, printNormal, printTwoNormal, rotatePrint, and
transactionPrint will be performed asynchronously.
If false, they will be printed synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapCharacterSet Property Updated in Release 1.5

Syntax CapCharacterSet: int32 { read-only, access after open }

Remarks Holds the default character set capability. It has one of the following values:

Value Meaning

PTR_CCS_ALPHA The default character set supports uppercase alphabetic
plus numeric, space, minus, and period.

PTR_CCS_ASCII The default character set supports all ASCII characters
0x20 through 0x7F.

PTR_CCS_KANA The default character set supports partial code page 932,
including ASCII characters 0x20 through 0x7F and the
Japanese Kana characters 0xA1 through 0xDF, but
excluding the Japanese Kanji characters.

PTR_CCS_KANJI The default character set supports code page 932,
including the Shift-JIS Kanji characters, Levels 1 and 2.

PTR_CCS_UNICODE The default character set supports UNICODE.

The default character set may contain a superset of these ranges. The initial
CharacterSet property may be examined for additional information.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CharacterSet Property.

559 Properties (UML attributes)
CapConcurrentJrnRec Property

Syntax CapConcurrentJrnRec: boolean { read-only, access after open }

Remarks If true, then the Journal and Receipt stations can print at the same time.
The printTwoNormal method may be used with the
PTR_TWO_RECEIPT_JOURNAL and PTR_S_JOURNAL_RECEIPT station
parameter. If false, the application should print to only one of the stations at a time,
and minimize transitions between the stations. Non-concurrent printing may be
required for reasons such as:

• Higher likelihood of error, such as greater chance of paper jams when moving
between the stations.

• Higher performance when each station is printed separately.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapConcurrentJrnSlp Property

Syntax CapConcurrentJrnSlp: boolean { read-only, access after open }

Remarks If true, then the Journal and Slip stations can print at the same time. The
printTwoNormal method may be used with the
PTR_TWO_RECEIPT_JOURNAL and PTR_S_JOURNAL_SLIP station
parameter. If false, the application must use the sequence beginInsertion/
endInsertion followed by print requests to the Slip followed by beginRemoval/
endRemoval before printing on the Journal. Non-concurrent printing may be
required for reasons such as:

• Physical constraints, such as the Slip form being placed in front of the Journal
station.

• Higher likelihood of error, such as greater chance of paper jams when moving
between the stations.

• Higher performance when each station is printed separately.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

560
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
CapConcurrentRecSlp Property

Syntax CapConcurrentRecSlp: boolean { read-only, access after open }

Remarks If true, then the Receipt and Slip stations can print at the same time. The
printTwoNormal method may be used with the
PTR_TWO_RECEIPT_JOURNAL and PTR_S_RECEIPT_SLIP station
parameter. If false, the application must use the sequence beginInsertion/
endInsertion followed by print requests to the Slip followed by beginRemoval/
endRemoval before printing on the Receipt. Non-concurrent printing may be
required for reasons such as:

• Physical constraints, such as the Slip form being placed in front of the Receipt
station.

• Higher likelihood of error, such as greater chance of paper jams when moving
between the stations.

• Higher performance when each station is printed separately.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapCoverSensor Property

Syntax CapCoverSensor: boolean { read-only, access after open }

Remarks If true, then the printer has a “cover open” sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapJrn2Color Property

Syntax CapJrn2Color: boolean { read-only, access after open }

Remarks If true, then the journal can print dark plus an alternate color.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

561 Properties (UML attributes)
CapJrnBold Property

Syntax CapJrnBold: boolean { read-only, access after open }

Remarks If true, then the journal can print bold characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapJrnCartridgeSensor Property Added in Release 1.5

Syntax CapJrnCartridgeSensor: int32 { read-only, access after open}

Remarks This bit mapped parameter is used to indicate the presence of Journal Cartridge
monitoring sensors.

If CapJrnPresent is false, this property is “0”. Otherwise it is a logical OR
combination of any of the following values:

Value Meaning

PTR_CART_REMOVED There is a function to indicate that the Cartridge
has been removed.

PTR_CART_EMPTY There is a function to indicate that the Cartridge
is empty.

PTR_CART_CLEANING There is a function to indicate that the head is
being cleaned.

PTR_CART_NEAREND There is a function to indicate that the color
Cartridge is near end.

Note that the above mentioned values are arranged according to their priority level.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also JrnCartridgeState Property, JrnCurrentCartridge Property,
CartridgeNotify Property.

562
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
CapJrnColor Property Added in Release 1.5

Syntax CapJrnColor: int32 { read-only, access after open}

Remarks This capability indicates the availability of Journal color cartridges.

If CapJrnPresent is false, this property is “0”. Otherwise, this property indicates
the supported color cartridges.

CapJrnColor is a logical OR combination of any of the following values:

Value Meaning

PTR_COLOR_PRIMARY Supports Primary Color (Usually Black)

PTR_COLOR_CUSTOM1 Supports 1st Custom Color (Secondary Color,
usually Red)

PTR_COLOR_CUSTOM2 Supports 2nd Custom Color

PTR_COLOR_CUSTOM3 Supports 3rd Custom Color

PTR_COLOR_CUSTOM4 Supports 4th Custom Color

PTR_COLOR_CUSTOM5 Supports 5th Custom Color

PTR_COLOR_CUSTOM6 Supports 6th Custom Color

PTR_COLOR_CYAN Supports Cyan Color for full color printing

PTR_COLOR_MAGENTA Supports Magenta Color for full color printing

PTR_COLOR_YELLOW Supports Yellow Color for full color printing

PTR_COLOR_FULL Supports Full Color.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

563 Properties (UML attributes)
CapJrnDhigh Property

Syntax CapJrnDhigh: boolean { read-only, access after open }

Remarks If true, then the journal can print double high characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapJrnDwide Property

Syntax CapJrnDwide: boolean { read-only, access after open }

Remarks If true, then the journal can print double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapJrnDwideDhigh Property

Syntax CapJrnDwideDhigh: boolean { read-only, access after open }

Remarks If true, then the journal can print double high / double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

564
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
CapJrnEmptySensor Property

Syntax CapJrnEmptySensor: boolean { read-only, access after open }

Remarks If true, then the journal has an out-of-paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapJrnItalic Property

Syntax CapJrnItalic: boolean { read-only, access after open }

Remarks If true, then the journal can print italic characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapJrnNearEndSensor Property

Syntax CapJrnNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the journal has a low paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapJrnPresent Property

Syntax CapJrnPresent: boolean { read-only, access after open }

Remarks If true, then the journal print station is present.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapJrnUnderline Property

Syntax CapJrnUnderline: boolean { read-only, access after open }

Remarks If true, then the journal can underline characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

565 Properties (UML attributes)
CapRec2Color Property

Syntax CapRec2Color: boolean { read-only, access after open }

Remarks If true, then the receipt can print dark plus an alternate color.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapRecBarCode Property

Syntax CapRecBarCode: boolean { read-only, access after open }

Remarks If true, then the receipt has bar code printing capability.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapRecBitmap Property

Syntax CapRecBitmap: boolean { read-only, access after open }

Remarks If true, then the receipt can print bitmaps.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapRecBold Property

Syntax CapRecBold: boolean { read-only, access after open }

Remarks If true, then the receipt can print bold characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

566
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
CapRecCartridgeSensor Property Added in Release 1.5

Syntax CapRecCartridgeSensor: int32 { read-only, access after open}

Remarks This bit mapped parameter is used to indicate the presence of Receipt Cartridge
monitoring sensors.

If CapRecPresent is false, this property is “0”. Otherwise it is a logical OR
combination of any of the following values:

Value Meaning

PTR_CART_REMOVED There is a function to indicate that the Cartridge
has been removed.

PTR_CART_EMPTY There is a function to indicate that the Cartridge
is empty.

PTR_CART_CLEANING There is a function to indicate that the head is
being cleaned.

PTR_CART_NEAREND There is a function to indicate that the color
Cartridge is near end.

Note that the above mentioned values are arranged according to their priority level.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RecCartridgeState Property, RecCurrentCartridge Property,
CartridgeNotify Property.

567 Properties (UML attributes)
CapRecColor Property Added in Release 1.5

Syntax CapRecColor: int32 { read-only, access after open }

Remarks This capability indicates the availability of Receipt color cartridges.

If CapRecPresent is false, this property is “0”. Otherwise, this property indicates
the supported color cartridges.

CapRecColor is a logical OR combination of any of the following values:

Value Meaning

PTR_COLOR_PRIMARY Supports Primary Color (Usually Black)

PTR_COLOR_CUSTOM1 Supports 1st Custom Color (Secondary Color,
usually Red)

PTR_COLOR_CUSTOM2 Supports 2nd Custom Color

PTR_COLOR_CUSTOM3 Supports 3rd Custom Color

PTR_COLOR_CUSTOM4 Supports 4th Custom Color

PTR_COLOR_CUSTOM5 Supports 5th Custom Color

PTR_COLOR_CUSTOM6 Supports 6th Custom Color

PTR_COLOR_CYAN Supports Cyan Color for full color printing

PTR_COLOR_MAGENTA Supports Magenta Color for full color printing

PTR_COLOR_YELLOW Supports Yellow Color for full color printing

PTR_COLOR_FULL Supports Full Color.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapRecDhigh Property

Syntax CapRecDhigh: boolean { read-only, access after open }

Remarks If true, then the receipt can print double high characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

568
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
CapRecDwide Property

Syntax CapRecDwide: boolean { read-only, access after open }

Remarks If true, then the receipt can print double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapRecDwideDhigh Property

Syntax CapRecDwideDhigh: boolean { read-only, access after open }

Remarks If true, then the receipt can print double high /double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapRecEmptySensor Property

Syntax CapRecEmptySensor: boolean { read-only, access after open }

Remarks If true, then the receipt has an out-of-paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapRecItalic Property

Syntax CapRecItalic: boolean { read-only, access after open }

Remarks If true, then the receipt can print italic characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapRecLeft90 Property

Syntax CapRecLeft90: boolean { read-only, access after open }

Remarks If true, then the receipt can print in a rotated 90° left mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

569 Properties (UML attributes)
CapRecMarkFeed Property Added in Release 1.5

Syntax CapRecMarkFeed: int32 { read-only, access after open }

Remarks This parameter indicates the type of mark sensed paper handling available.

CapRecMarkFeed is a logical OR combination of the following values. (The
values are identical to those used with the markFeed method.)

Value Meaning

PTR_MF_TO_TAKEUP Feed the Mark Sensed paper to the paper take-
up position.

PTR_MF_TO_CUTTER Feed the Mark Sensed paper to the autocutter
cutting position.

PTR_MF_TO_CURRENT_TOF Feed the Mark Sensed paper to the present
paper’s top of form. (Reverse feed if required)

PTR_MF_TO_NEXT_TOF Feed the Mark Sensed paper to the paper’s next
top of form.

If CapRecMarkFeed equals “0”, mark sensed paper handling is not supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also markFeed Method.

CapRecNearEndSensor Property

Syntax CapRecNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the receipt has a low paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

570
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
CapRecPapercut Property

Syntax CapRecPapercut: boolean { read-only, access after open }

Remarks If true, then the receipt can perform paper cuts.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapRecPresent Property

Syntax CapRecPresent: boolean { read-only, access after open }

Remarks If true, then the receipt print station is present.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapRecRight90 Property

Syntax CapRecRight90: boolean { read-only, access after open }

Remarks If true, then the receipt can print in a rotated 90° right mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapRecRotate180 Property

Syntax CapRecRotate180: boolean { read-only, access after open }

Remarks If true, then the receipt can print in a rotated upside down mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

571 Properties (UML attributes)
CapRecStamp Property

Syntax CapRecStamp: boolean { read-only, access after open }

Remarks If true, then the receipt has a stamp capability.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapRecUnderline Property

Syntax CapRecUnderline: boolean { read-only, access after open }

Remarks If true, then the receipt can underline characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSlp2Color Property

Syntax CapSlp2Color: boolean { read-only, access after open }

Remarks If true, then the slip can print dark plus an alternate color.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSlpBarCode Property

Syntax CapSlpBarCode: boolean { read-only, access after open }

Remarks If true, then the slip has bar code printing capability.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSlpBitmap Property

Syntax CapSlpBitmap: boolean { read-only, access after open }

Remarks If true, then the slip can print bitmaps.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

572
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
CapSlpBold Property

Syntax CapSlpBold: boolean { read-only, access after open }

Remarks If true, then the slip can print bold characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSlpBothSidesPrint Property Added in Release 1.5

Syntax CapSlpBothSidesPrint: boolean { read-only, access after open }

Remarks If true, then the slip station can automatically print on both sides of a check, either
by flipping the check or through the use of dual print heads.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSlpCartridgeSensor Property Added in Release 1.5

Syntax CapSlpCartridgeSensor: int32 { read-only, access after open }

Remarks This bit mapped parameter is used to indicate the presence of Slip Cartridge
monitoring sensors.

If CapSlpPresent is false, this property is “0”. Otherwise it is a logical OR
combination of any of the following values:

Value Meaning

PTR_CART_REMOVED There is a function to indicate the Cartridge has
been removed.

PTR_CART_EMPTY There is a function to indicate the Cartridge is
empty.

PTR_CART_CLEANING There is a function to indicate head is being
cleaned.

PTR_CART_NEAREND There is a function to indicate the color
Cartridge is near end.

Note that the above mentioned values are arranged according to their priority level.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also SlpCartridgeState Property, SlpCurrentCartridge Property,
CartridgeNotify Property.

573 Properties (UML attributes)
CapSlpColor Property Added in Release 1.5

Syntax CapSlpColor: int32 { read-only, access after open }

Remarks This capability indicates the availability of Slip printing color cartridges.

If CapSlpPresent is false, this property is “0”. Otherwise, this property indicates
the supported color cartridges.

CapSlpColor is a logical OR combination of any of the following values:

Value Meaning

PTR_COLOR_PRIMARY Supports Primary Color (Usually Black)

PTR_COLOR_CUSTOM1 Supports 1st Custom Color (Secondary Color,
usually Red)

PTR_COLOR_CUSTOM2 Supports 2nd Custom Color

PTR_COLOR_CUSTOM3 Supports 3rd Custom Color

PTR_COLOR_CUSTOM4 Supports 4th Custom Color

PTR_COLOR_CUSTOM5 Supports 5th Custom Color

PTR_COLOR_CUSTOM6 Supports 6th Custom Color

PTR_COLOR_CYAN Supports Cyan Color for full color printing

PTR_COLOR_MAGENTA Supports Magenta Color for full color printing

PTR_COLOR_YELLOW Supports Yellow Color for full color printing

PTR_COLOR_FULL Supports Full Color.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapSlpDhigh Property

Syntax CapSlpDhigh: boolean { read-only, access after open }

Remarks If true, then the slip can print double high characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

574
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
CapSlpDwide Property

Syntax CapSlpDwide: boolean { read-only, access after open }

Remarks If true, then the slip can print double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSlpDwideDhigh Property

Syntax CapSlpDwideDhigh: boolean { read-only, access after open }

Remarks If true, then the slip can print double high / double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSlpEmptySensor Property

Syntax CapSlpEmptySensor: boolean { read-only, access after open }

Remarks If true, then the slip has a “slip in” sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSlpFullslip Property

Syntax CapSlpFullslip: boolean { read-only, access after open }

Remarks If true, then the slip is a full slip station. It can print full-length forms. If false, then
the slip is a “validation” type station. This usually limits the number of print lines,
and disables access to the receipt and/or journal stations while the validation slip
is being used.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSlpItalic Property

Syntax CapSlpItalic: boolean { read-only, access after open }

Remarks If true, then the slip can print italic characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

575 Properties (UML attributes)
CapSlpLeft90 Property

Syntax CapSlpLeft90: boolean { read-only, access after open }

Remarks If true, then the slip can print in a rotated 90° left mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSlpNearEndSensor Property

Syntax CapSlpNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the slip has a “slip near end” sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSlpPresent Property

Syntax CapSlpPresent: boolean { read-only, access after open }

Remarks If true, then the slip print station is present.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSlpRight90 Property

Syntax CapSlpRight90: boolean { read-only, access after open }

Remarks If true, then the slip can print in a rotated 90° right mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapSlpRotate180 Property

Syntax CapSlpRotate180: boolean { read-only, access after open }

Remarks If true, then the slip can print in a rotated upside down mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

576
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
CapSlpUnderline Property

Syntax CapSlpUnderline: boolean { read-only, access after open }

Remarks If true, then the slip can underline characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapTransaction Property

Syntax CapTransaction: boolean { read-only, access after open }

Remarks If true, then printer transactions are supported by each station.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CartridgeNotify Property Added in Release 1.5

Syntax CartridgeNotify: int32 { read-write, access after open }

Remarks Contains the type of cartridge state notification selected by the application.

The CartridgeNotify values are:

Value Meaning

PTR_CN_DISABLED The Control will not provide any cartridge state
notifications to the application or set any cartridge
related ErrorCodeExtended values. No cartridge state
notification StatusUpdateEvents will be fired, and
JrnCartridgeState, RecCartridgeState, and
SlpCartridgeState may not be set.

PTR_CN_ENABLED The Control will fire cartridge state notification
StatusUpdateEvents and update JrnCartridgeState,
RecCartridgeState and SlpCartridgeState, beginning
when DeviceEnabled is set true. The level of
functionality depends upon CapJrnCartridgeSensor,
CapRecCartridgeSensor and
CapSlpCartridgeSensor.

CartridgeNotify may only be set while the device is disabled, that is, while
DeviceEnabled is false.

This property is initialized to PTR_CN_DISABLED by the open method. This
value provides compatibility with earlier releases.

577 Properties (UML attributes)
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:
The device is already enabled.
CapJrnCartridgeSensor, CapRecCartridgeSensor,
and CapSlpCartridgeSensor = “0”.

See Also CapJrnCartridgeSensor Property, CapRecCartridgeSensor Property,
CapSlpCartridgeSensor Property, JrnCartridgeState Property,
RecCartridgeState Property, SlpCartridgeState Property.

CharacterSet Property Updated in Release 1.5

Syntax CharacterSet: int32 { read-write, access after open-claim-enable }

Remarks Holds the character set for printing characters. It has one of the following values:

Value Meaning

Range 101 - 199 Device-specific character sets that do not match a code
page or the ASCII or ANSI character sets.

Range 400 - 990 Code page; matches one of the standard values.

PTR_CS_UNICODE The character set supports UNICODE. The value of this
constant is 997.

PTR_CS_ASCII The ASCII character set, supporting the ASCII
characters 0x20 through 0x7F. The value of this
constant is 998.

PTR_CS_ANSI The ANSI character set. The value of this constant is
999.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CharacterSetList Property.

578
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
CharacterSetList Property

Syntax CharacterSetList: string { read-only, access after open }

Remarks Holds the character set numbers. It consists of ASCII numeric set numbers
separated by commas.

For example, if the string is “101,850,999”, then the device supports a device-
specific character set, code page 850, and the ANSI character set.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CharacterSet Property.

CoverOpen Property

Syntax CoverOpen: boolean { read-only, access after open-claim-enable }

Remarks If true, then the printer’s cover is open.

If CapCoverSensor is false, then the printer does not have a cover open sensor,
and this property always returns false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

ErrorLevel Property

Syntax ErrorLevel: int32 { read-only, access after open }

Remarks Holds the severity of the error condition. It has one of the following values:

Value Meaning

PTR_EL_NONE No error condition is present.

PTR_EL_RECOVERABLE
A recoverable error has occurred.
(Example: Out of paper.)

PTR_EL_FATAL A non-recoverable error has occurred.
(Example: Internal printer failure.)

This property is set just before delivering an ErrorEvent. When the error is
cleared, then the property is changed to PTR_EL_NONE.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

579 Properties (UML attributes)
ErrorStation Property

Syntax ErrorStation: int32 { read-only, access after open }

Remarks Holds the station or stations that were printing when an error was detected.

This property will be set to one of the following values:
PTR_S_JOURNAL PTR_S_RECEIPT
PTR_S_SLIP PTR_S_JOURNAL_RECEIPT
PTR_S_JOURNAL_SLIP PTR_S_RECEIPT_SLIP
PTR_TWO_RECEIPT_JOURNAL PTR_TWO_SLIP_JOURNAL
PTR_TWO_SLIP_RECEIPT

This property is only valid if the ErrorLevel is not equal to PTR_EL_NONE. It is
set just before delivering an ErrorEvent.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

ErrorString Property

Syntax ErrorString: string { read-only, access after open }

Remarks Holds a vendor-supplied description of the current error.

This property is set just before delivering an ErrorEvent. If no description is
available, the property is set to an empty string. When the error is cleared, then the
property is changed to an empty string.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

FlagWhenIdle Property

Syntax FlagWhenIdle: boolean { read-write, access after open }

Remarks If true, a StatusUpdateEvent will be enqueued when the device is in the idle state.

This property is automatically reset to false when the status event is delivered.

The main use of idle status event that is controlled by this property is to give the
application control when all outstanding asynchronous outputs have been
processed. The event will be enqueued if the outputs were completed successfully
or if they were cleared by the clearOutput method or by an ErrorEvent handler.

If the State is already set to S_IDLE when this property is set to true, then a
StatusUpdateEvent is enqueued immediately. The application can therefore
depend upon the event, with no race condition between the starting of its last
asynchronous output and the setting of this flag.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

580
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
FontTypefaceList Property

Syntax FontTypefaceList: string { read-only, access after open }

Remarks Holds the fonts and/or typefaces that are supported by the printer. The string
consists of font or typeface names separated by commas. The application selects a
font or typeface for a printer station by using the font typeface selection escape
sequence (ESC |#fT). The “#” character is replaced by the number of the font or
typeface within the list: 1, 2, and so on.

In Japan, this property will frequently include the fonts “Mincho” and “Gothic.”
Other fonts or typefaces may be commonly supported in other countries.

An empty string indicates that only the default typeface is supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also “Data Characters and Escape Sequences” on page 550.

JrnCartridgeState Property Added in Release 1.5

Syntax JrnCartridgeState: int32 { read-only, access after open-claim-enable }

Remarks This property contains the status of the currently selected Journal cartridge (ink,
ribbon or toner).

It contains one of the following values:

Value Meaning

PTR_CART_UNKNOWN Cannot determine the cartridge state, for one of
the following reasons:
CapJrnCartridgeSensor = “0”.
Device does not support cartridge state
reporting.
CartridgeNotify = PTR_CN_DISABLED.
Cartridge state notifications are disabled.
DeviceEnabled = FALSE.
Cartridge state monitoring does not occur until
the device is enabled.

PTR_CART_REMOVED The cartridge selected by JrnCurrentCartridge
has been removed.

PTR_CART_EMPTY The cartridge selected by JrnCurrentCartridge
is empty.

PTR_CART_CLEANING The head selected by JrnCurrentCartridge is
being cleaned.

581 Properties (UML attributes)
PTR_CART_NEAREND The cartridge selected by JrnCurrentCartridge
is near end.

PTR_CART_OK The cartridge selected by JrnCurrentCartridge
is in normal condition.

Note that the above mentioned values are arranged according to their priority level.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also JrnCurrentCartridge Property, CapJrnCartridgeSensor Property,
CartridgeNotify Property.

JrnCurrentCartridge Property Added in Release 1.5

Syntax JrnCurrentCartridge: int32 { read-write, access after open-claim-enable }

Remarks This property specifies the currently selected Journal cartridge.

This property is initialized when the device is first enabled following the open
method call.

This value is guaranteed to be one of the color cartridges specified by the
CapJrnColor property. (PTR_COLOR_FULL can not be set.)

Setting JrnCurrentCartridge may also update JrnCartridgeState.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid property value was specified.

See Also JrnCartridgeState Property.

JrnEmpty Property

Syntax JrnEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, the journal is out of paper. If false, journal paper is present.

If CapJrnEmptySensor is false, then the value of this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also JrnNearEnd Property.

582
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
JrnLetterQuality Property

Syntax JrnLetterQuality: boolean { read-write, access after open-claim-enable }

Remarks If true, prints in high quality mode. If false, prints in high speed mode.

This property advises the Service that either high quality or high speed printing is
desired. For example, printers with bi-directional print capability may be placed in
unidirectional mode for high quality, so that column alignment is more precise.

Setting this property may also update JrnLineWidth, JrnLineHeight, and
JrnLineSpacing if MapMode is PTR_MM_DOTS. (See the footnote at
MapMode.)

This property is initialized to false when the device is first enabled following the
open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

JrnLineChars Property

Syntax JrnLineChars: int32 { read-write, access after open-claim-enable }

Remarks Holds the number of characters that may be printed on a journal line.

If changed to a line character width that is less than or equal to the maximum value
allowed for the printer, then the width is set to the specified value. If the exact
width cannot be supported, then subsequent lines will be printed with a character
size that most closely supports the specified characters per line. (For example, if
set to 36 and the printer can print either 30 or 40 characters per line, then the
Service should select the 40 characters per line size and print only up to 36
characters per line.)

If the character width is greater than the maximum value allowed for the printer,
then an exception is thrown. (For example, if set to 42 and the printer can print
either 30 or 40 characters per line, then the Service cannot support the request.)

Setting this property may also update JrnLineWidth, JrnLineHeight, and
JrnLineSpacing, since the character pitch or font may be changed.

This property is initialized to the printer’s default line character width when the
device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also JrnLineCharsList Property.

583 Properties (UML attributes)
JrnLineCharsList Property

Syntax JrnLineCharsList: string { read-only, access after open }

Remarks Holds the line character widths supported by the journal station. The string
consists of ASCII numeric set numbers separated by commas.

For example, if the string is “32,36,40”, then the station supports line widths of 32,
36, and 40 characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also JrnLineChars Property.

JrnLineHeight Property

Syntax JrnLineHeight: int32 { read-write, access after open-claim-enable }

Remarks Holds the journal print line height. Expressed in the unit of measure given by
MapMode.

If changed to a height that can be supported with the current character width, then
the line height is set to this value. If the exact height cannot be supported, then the
height is set to the closest supported value.

When JrnLineChars is changed, this property is updated to the default line height
for the selected width.

This property is initialized to the printer’s default line height when the device is
first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

584
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
JrnLineSpacing Property

Syntax JrnLineSpacing: int32 { read-write, access after open-claim-enable }

Remarks Holds the spacing of each single-high print line, including both the printed line
height plus the whitespace between each pair of lines. Depending upon the printer
and the current line spacing, a multi-high print line might exceed this value. Line
spacing is expressed in the unit of measure given by MapMode.

If changed to a spacing that can be supported by the printer, then the line spacing
is set to this value. If the spacing cannot be supported, then the spacing is set to the
closest supported value.

When JrnLineChars or JrnLineHeight is changed, this property is updated to
the default line spacing for the selected width or height.

This property is initialized to the printer’s default line spacing when the device is
first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

JrnLineWidth Property

Syntax JrnLineWidth: int32 { read-only, access after open-claim-enable }

Remarks Holds the width of a line of JrnLineChars characters. Expressed in the unit of
measure given by MapMode.

Setting JrnLineChars may also update this property.

This property is initialized to the printer’s default line width when the device is
first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

JrnNearEnd Property

Syntax JrnNearEnd: boolean { read-only, access after open-claim-enable }

Remarks If true, the journal paper is low. If false, journal paper is not low.

If CapJrnNearEndSensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also JrnEmpty Property.

585 Properties (UML attributes)
MapMode Property

Syntax MapMode: int32 { read-write, access after open }

Remarks Holds the mapping mode of the printer. The mapping mode defines the unit of
measure used for other properties, such as line heights and line spacings. It has one
of the following values:

Value Meaning

PTR_MM_DOTS The printer’s dot width. This width may be different for
each printer station.1

PTR_MM_TWIPS 1/1440 of an inch.

PTR_MM_ENGLISH 0.001 inch.

PTR_MM_METRIC 0.01 millimeter.

Setting this property may also change JrnLineHeight, JrnLineSpacing,
JrnLineWidth, RecLineHeight, RecLineSpacing, RecLineWidth,
SlpLineHeight, SlpLineSpacing, and SlpLineWidth.

This property is initialized to PTR_MM_DOTS when the device is first enabled
following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

1. From the POS Printer perspective, the exact definition of a “dot” is not significant. It is a
Printer/Service unit used to express various metrics. For example, some printers define a
“half-dot” that is used in high-density graphics printing, and perhaps in text printing. A
POS Printer Service may handle this case in one of these ways:

(a)Consistently define a “dot” as the printer’s smallest physical size, that is, a half-dot.

(b)If the Service changes bitmap graphics printing density based on the
XxxLetterQuality setting, then alter the size of a dot to match the bitmap density
(that is, a physical printer dot when false and a half-dot when true). Note that this
choice should not be used if the printer’s text metrics are based on half-dot sizes,
since accurate values for the metrics may not then be possible.

586
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
RecBarCodeRotationList Property

Syntax RecBarCodeRotationList: string { read-only, access after open }

Remarks Holds the directions in which a receipt barcode may be rotated. The string consists
of rotation strings separated by commas. An empty string indicates that bar code
printing is not supported. The legal rotation strings are:

Value Meaning

0 Bar code may be printed in the normal orientation.

R90 Bar code may be rotated 90° to the right.

L90 Bar code may be rotated 90° to the left.

180 Bar code may be rotated 180° - upside down.

For example, if the string is “0,180”, then the printer can print normal bar codes
and upside down bar codes.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RotateSpecial Property, printBarCode Method.

RecCartridgeState Property Added in Release 1.5

Syntax RecCartridgeState: int32 { read-only, access after open-claim-enable }

Remarks This property contains the status of the currently selected Receipt cartridge (ink,
ribbon or toner).

It contains one of the following values:

Value Meaning

PTR_CART_UNKNOWN Cannot determine the cartridge state, for one of
the following reasons:
CapRecCartridgeSensor = “0”.
Device does not support cartridge state
reporting.
CartridgeNotify = PTR_CN_DISABLED.
Cartridge state notifications are disabled.
DeviceEnabled = FALSE.
Cartridge state monitoring does not occur until
the device is enabled.

PTR_CART_REMOVED The cartridge selected by
RecCurrentCartridge has been removed.

PTR_CART_EMPTY The cartridge selected by
RecCurrentCartridge is empty.

587 Properties (UML attributes)
PTR_CART_CLEANING The head selected by RecCurrentCartridge is
being cleaned.

PTR_CART_NEAREND The cartridge selected by
RecCurrentCartridge is near end.

PTR_CART_OK The cartridge selected by
RecCurrentCartridge is in normal condition.

Note that the above mentioned values are arranged according to their priority level.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also RecCurrentCartridge Property, CapRecCartridgeSensor Property,
CartridgeNotify Property.

RecCurrentCartridge Property Added in Release 1.5

Syntax RecCurrentCartridge: int32 { read-write, access after open-claim-enable }

Remarks This property specifies the currently selected Receipt cartridge.

This property is initialized when the device is first enabled following the open
method call.

This value is guaranteed to be one of the color cartridges specified by the
CapRecColor property. (PTR_COLOR_FULL can not be set.)

Setting RecCurrentCartridge may also update RecCartridgeState.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid property value was specified.

See Also RecCartridgeState Property.

RecEmpty Property

Syntax RecEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, the receipt is out of paper. If false, receipt paper is present.

If CapRecEmptySensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RecNearEnd Property.

588
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
RecLetterQuality Property

Syntax RecLetterQuality: boolean { read-write, access after open-claim-enable }

Remarks If true, prints in high quality mode. If false, prints in high speed mode.

This property advises the Service that either high quality or high speed printing is
desired. For example:

• Printers with bi-directional print capability may be placed in unidirectional
mode for high quality, so that column alignment is more precise.

• Bitmaps may be printed in a high-density graphics mode for high-quality, and
in a low-density mode for high speed.

Setting this property may also update RecLineWidth, RecLineHeight, and
RecLineSpacing if MapMode is PTR_MM_DOTS. (See the footnote at
MapMode.)

This property is initialized to false when the device is first enabled following the
open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

RecLineChars Property

Syntax RecLineChars: int32 { read-write, access after open-claim-enable }

Remarks Holds the number of characters that may be printed on a receipt line.

If changed to a line character width that is less than or equal to the maximum value
allowed for the printer, then the width is set to the specified value. If the exact
width cannot be supported, then subsequent lines will be printed with a character
size that most closely supports the specified characters per line. (For example, if
set to 36 and the printer can print either 30 or 40 characters per line, then the
Service should select the 40 characters per line size and print only up to 36
characters per line.)

If the character width is greater than the maximum value allowed for the printer,
then an exception is thrown. (For example, if set to 42 and the printer can print
either 30 or 40 characters per line, then the Service cannot support the request.)

Setting this property may also update RecLineWidth, RecLineHeight, and
RecLineSpacing, since the character pitch or font may be changed.

This property is initialized to the printer’s default line character width when the
device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RecLineCharsList Property.

589 Properties (UML attributes)
RecLineCharsList Property

Syntax RecLineCharsList: string { read-only, access after open }

Remarks Holds the line character widths supported by the receipt station. The string consists
of ASCII numeric set numbers, separated by commas.

For example, if the string is “32,36,40”, then the station supports line widths of 32,
36, and 40 characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RecLineChars Property.

RecLineHeight Property

Syntax RecLineHeight: int32 { read-write, access after open-claim-enable }

Remarks Holds the receipt print line height, expressed in the unit of measure given by
MapMode.

If changed to a height that can be supported with the current character width, then
the line height is set to this value. If the exact height cannot be supported, then the
height is set to the closest supported value.

When RecLineChars is changed, this property is updated to the default line height
for the selected width.

This property is initialized to the printer’s default line height when the device is
first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RecLineChars Property.

590
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
RecLineSpacing Property

Syntax RecLineSpacing: int32 { read-write, access after open-claim-enable }

Remarks Holds the spacing of each single-high print line, including both the printed line
height plus the whitespace between each pair of lines. Depending upon the printer
and the current line spacing, a multi-high print line might exceed this value. Line
spacing is expressed in the unit of measure given by MapMode.

If changed to a spacing that can be supported by the printer, then the line spacing
is set to this value. If the spacing cannot be supported, then the spacing is set to the
closest supported value.

When RecLineChars or RecLineHeight are changed, this property is updated to
the default line spacing for the selected width or height.

This property is initialized to the printer’s default line spacing when the device is
first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

RecLinesToPaperCut Property

Syntax RecLinesToPaperCut: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of lines that must be advanced before the receipt paper is cut.

If CapRecPapercut is true, then this is the line count before reaching the paper
cut mechanism. Otherwise, this is the line count before the manual tear-off bar.

Changing the properties RecLineChars, RecLineHeight, and RecLineSpacing
may cause this property to change.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

RecLineWidth Property

Syntax RecLineWidth: int32 { read-only, access after open-claim-enable }

Remarks Holds the width of a line of RecLineChars characters, expressed in the unit of
measure given by MapMode.

Setting RecLineChars may also update this property.

This property is initialized to the printer’s default line width when the device is
first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

591 Properties (UML attributes)
RecNearEnd Property

Syntax RecNearEnd: boolean { read-only, access after open-claim-enable }

Remarks If true, the receipt paper is low. If false, receipt paper is not low.

If CapRecNearEndSensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RecEmpty Property.

RecSidewaysMaxChars Property

Syntax RecSidewaysMaxChars: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of characters that may be printed on each line in
sideways mode.

If CapRecLeft90 and CapRecRight90 are both false, then this property is zero.

Changing the properties RecLineHeight, RecLineSpacing, and RecLineChars
may cause this property to change.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RecSidewaysMaxLines Property.

RecSidewaysMaxLines Property

Syntax RecSidewaysMaxLines: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of lines that may be printed in sideways mode.

If CapRecLeft90 and CapRecRight90 are both false, then this property is zero.

Changing the properties RecLineHeight, RecLineSpacing, and RecLineChars
may cause this property to change.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RecSidewaysMaxChars Property.

592
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
RotateSpecial Property

Syntax RotateSpecial: int32 { read-write, access after open }

Remarks Holds the rotation orientation for bar codes. It has one of the following values:

Value Meaning

PTR_RP_NORMAL Print subsequent bar codes in normal orientation.

PTR_RP_RIGHT90 Rotate printing 90° to the right (clockwise)

PTR_RP_LEFT90 Rotate printing 90° to the left (counter-clockwise)

PTR_RP_ROTATE180 Rotate printing 180°,that is, print upside-down

This property is initialized to PTR_RP_NORMAL by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also printBarCode Method.

SlpBarCodeRotationList Property

Syntax SlpBarCodeRotationList: string { read-only, access after open }

Remarks Holds the directions in which a slip barcode may be rotated. The string consists of
rotation strings separated by commas. An empty string indicates that bar code
printing is not supported. The legal rotation strings are:

Value Meaning

0 Bar code may be printed in the normal orientation.

R90 Bar code may be rotated 90° to the right.

L90 Bar code may be rotated 90° to the left.

180 Bar code may be rotated 180° - upside down.

For example, if the string is “0,180”, then the printer can print normal bar codes
and upside down bar codes.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RotateSpecial Property, printBarCode Method.

593 Properties (UML attributes)
SlpCartridgeState Property Added in Release 1.5

Syntax SlpCartridgeState: int32 { read-only, access after open-claim-enable }

Remarks This property contains the status of the currently selected Slip cartridge (ink,
ribbon or toner).

It contains one of the following values:

Value Meaning

PTR_CART_UNKNOWN Cannot determine the cartridge state, for one of
the following reasons:
CapSlpCartridgeSensor = “0”.
Device does not support cartridge state
reporting.
CartridgeNotify = PTR_CN_DISABLED.
Cartridge state notifications are disabled.
DeviceEnabled = FALSE.
Cartridge state monitoring does not occur until
the device is enabled.

PTR_CART_REMOVED The cartridge selected by
SlpCurrentCartridge has been removed.

PTR_CART_EMPTY The cartridge selected by
SlpCurrentCartridge is empty.

PTR_CART_CLEANING The head selected by SlpCurrentCartridge is
being cleaned.

PTR_CART_NEAREND The cartridge selected by
SlpCurrentCartridge is near end.

PTR_CART_OK The cartridge selected by
SlpCurrentCartridge is in normal condition.

Note that the above mentioned values are arranged according to their priority level.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also SlpCurrentCartridge Property, CapSlpCartridgeSensor Property,
CartridgeNotify Property.

594
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
SlpCurrentCartridge Property Added in Release 1.5

Syntax SlpCurrentCartridge: int32 { read-write, access after open-claim-enable }

Remarks This property specifies the currently selected slip cartridge.

This property is initialized when the device is first enabled following the open
method call.

This value is guaranteed to be one of the color cartridges specified by the
CapSlpColor property. (PTR_COLOR_FULL can not be set.)

Setting SlpCurrentCartridge may also update SlpCartridgeState.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid property value was specified.

See Also RecCartridgeState Property.

SlpEmpty Property

Syntax SlpEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, a slip form is not present. If false, a slip form is present.

If CapSlpEmptySensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Note
The “slip empty” sensor should be used primarily to determine whether a form has been
inserted before printing, and can be monitored to determine whether a form is still in place.
This sensor is usually placed one or more print lines above the slip print head.

However, the “slip near end” sensor (when present) should be used to determine when
nearing the end of the slip. This sensor is usually placed one or more print lines below the
slip print head.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also SlpNearEnd Property.

595 Properties (UML attributes)
SlpLetterQuality Property

Syntax SlpLetterQuality: boolean { read-write, access after open-claim-enable }

Remarks If true, prints in high quality mode. If false, prints in high speed mode.

This property advises that either high quality or high speed printing is desired.

For example:

• Printers with bi-directional print capability may be placed in unidirectional
mode for high quality, so that column alignment is more precise.

• Bitmaps may be printed in a high-density graphics mode for high-quality, and
in a low-density mode for high speed.

Setting this property may also update SlpLineWidth, SlpLineHeight, and
SlpLineSpacing if MapMode is PTR_MM_DOTS. (See the footnote at
MapMode.)

This property is initialized to false when the device is first enabled following the
open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

SlpLineChars Property

Syntax SlpLineChars: int32 { read-write, access after open-claim-enable }

Remarks Holds the number of characters that may be printed on a slip line.

If changed to a line character width that is less than or equal to the maximum value
allowed for the printer, then the width is set to the specified value. If the exact
width cannot be supported, then subsequent lines will be printed with a character
size that most closely supports the specified characters per line. (The Service
should print the requested characters in the column positions closest to the side of
the slip table at which the slip is aligned. (For example, if the operator inserts the
slip with the right edge against the table side and if SlpLineChars is set to 36 and
the printer prints 60 characters per line, then the Service should add 24 spaces at
the left margin and print the characters in columns 25 through 60.)

If the character width is greater than the maximum value allowed for the printer,
then an exception is thrown. (For example, if set to 65 and the printer can only print
60 characters per line, then the Service cannot support the request.)

Setting this property may also update SlpLineWidth, SlpLineHeight, and
SlpLineSpacing, since the character pitch or font may be changed.

This property is initialized to the printer’s default line character width when the
device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also SlpLineCharsList Property.

596
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
SlpLineCharsList Property

Syntax SlpLineCharsList: string { read-only, access after open }

Remarks Holds the line character widths supported by the slip station. The string consists of
ASCII numeric set numbers, separated by commas.

For example, if the string is “32,36,40”, then the station supports line widths of 32,
36, and 40 characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also SlpLineChars Property.

SlpLineHeight Property

Syntax SlpLineHeight: int32 { read-write, access after open-claim-enable }

Remarks Holds the slip print-line height, expressed in the unit of measure given by
MapMode.

If changed to a height that can be supported with the current character width, then
the line height is set to this value. If the exact height cannot be supported, then the
height is set to the closest supported value.

When SlpLineChars is changed, this property is updated to the default line height
for the selected width.

This property is initialized to the printer’s default line height when the device is
first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also SlpLineChars Property.

SlpLinesNearEndToEnd Property.

Syntax SlpLinesNearEndToEnd: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of lines that may be printed after the “slip near end” sensor is
true but before the printer reaches the end of the slip.

This property may be used to optimize the use of the slip, so that the maximum
number of lines may be printed.

Changing the SlpLineHeight, SlpLineSpacing, or SlpLineChars properties may
cause this property to change.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also SlpEmpty Property, SlpNearEnd Property.

597 Properties (UML attributes)
SlpLineSpacing Property

Syntax SlpLineSpacing: int32 { read-write, access after open-claim-enable }

Remarks Holds the spacing of each single-high print line, including both the printed line
height plus the whitespace between each pair of lines. Depending upon the printer
and the current line spacing, a multi-high print line might exceed this value. Line
spacing is expressed in the unit of measure given by MapMode.

If changed to a spacing that can be supported by the printer, then the line spacing
is set to this value. If the spacing cannot be supported, then the spacing is set to the
closest supported value.

When SlpLineChars or SlpLineHeight are changed, this property is updated to
the default line spacing for the selected width or height.

The value of this property is initialized to the printer’s default line spacing when
the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

SlpLineWidth Property

Syntax SlpLineWidth: int32 { read-only, access after open-claim-enable }

Remarks Holds the width of a line of SlpLineChars characters, expressed in the unit of
measure given by MapMode.

Setting SlpLineChars may also update this property.

This property is initialized to the printer’s default line width when the device is
first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

SlpMaxLines Property

Syntax SlpMaxLines: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of lines that can be printed on a form.

When CapSlpFullslip is true, then this property will be zero, indicating an
unlimited maximum slip length. When CapSlpFullslip is false, then this value
will be non-zero.

Changing the SlpLineHeight, SlpLineSpacing, or SlpLineChars properties may
cause this property to change.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

598
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
SlpNearEnd Property

Syntax SlpNearEnd: boolean { read-only, access after open-claim-enable }

Remarks If true, the slip form is near its end. If false, the slip form is not near its end.

The “near end” sensor is also sometimes called the “trailing edge” sensor, referring
to the bottom edge of the slip.

If CapSlpNearEndSensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Note
The “slip empty” sensor should be used primarily to determine whether a form has been
inserted before printing, and can be monitored to determine whether a form is still in place.
This sensor is usually placed one or more print lines above the slip print head.

However, the “slip near end” sensor (when present) should be used to determine when
nearing the end of the slip. This sensor is usually placed one or more print lines below the
slip print head.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also SlpEmpty Property, SlpLinesNearEndToEnd Property.

599 Properties (UML attributes)
SlpPrintSide Property Added in Release 1.5

Syntax SlpPrintSide: int32 { read-only, access after open-claim-enable }

Remarks This property holds the current side of the slip document on which printing will
occur.

If the Slip is not selected, the value of the property is PTR_PS_UNKNOWN.

If the printer has both side print capability, CapSlpBothSidesPrint is true, then
when a slip is inserted, the value stored here will be either PTR_PS_SIDE1 or
PTR_PS_SIDE2. This property value may be changed when the changePrintSide
method is executed.

If a printer does not have both side print capability, CapSlpBothSidesPrint is
false, then when a slip is inserted, the property is always set to PTR_PS_SIDE1.

If a printer has both side print capability, the value of SlpPrintSide property is
PTR_PS_SIDE1 after beginInsertion/endInsertion methods are executed.
However, after beginInsertion/endInsertion methods for MICR processing are
executed, the value of SlpPrintSide property is not limited to PTR_PS_SIDE1.
In this case, SlpPrintSide property indicates the side of the validation printing.

It contains one of the following values:

Value Meaning

PTR_PS_UNKNOWN Slip is not inserted.

PTR_PS_SIDE1 Default Print side. (After slip paper
insertion, printer can print this side
immediately.)

PTR_PS_SIDE2 The other side of the document to print
on. (Reverse side of default.)

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CapSlpBothSidesPrint Property, changePrintSide Method.

600
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
SlpSidewaysMaxChars Property

Syntax SlpSidewaysMaxChars: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of characters that may be printed on each line in
sideways mode.

If CapSlpLeft90 and CapSlpRight90 are both false, then this property is zero.

Changing the properties SlpLineHeight, SlpLineSpacing, and SlpLineChars
may cause this property to change.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also SlpSidewaysMaxLines Property.

SlpSidewaysMaxLines Property

Syntax SlpSidewaysMaxLines: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of lines that may be printed in sideways mode.

If CapSlpLeft90 and CapSlpRight90 are both false, then this property is zero.

Changing the properties SlpLineHeight, SlpLineSpacing, and SlpLineChars
may cause this property to change.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also SlpSidewaysMaxChars Property.

601 Methods (UML operations)
Methods (UML operations)
beginInsertion Method

Syntax beginInsertion (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

timeout The number of milliseconds before failing the method

If zero, the method initiates the begin insertion mode, then returns the appropriate
status immediately. If FOREVER (-1), the method initiates the begin insertion
mode, then waits as long as needed until either the form is inserted or an error
occurs.

Remarks Initiates slip processing.

When called, the slip station is made ready to receive a form by opening the form’s
handling “jaws” or activating a form insertion mode. This method is paired with
the endInsertion method for controlling form insertion.

If the printer device cannot be placed into insertion mode, an exception is raised.
Otherwise, form insertion is monitored until either:

• The form is successfully inserted.

• The form is not inserted before timeout milliseconds have elapsed, or an error
is reported by the printer device. In this case, an exception is raised with an
ErrorCode of E_TIMEOUT or another value. The printer device remains in
form insertion mode. This allows an application to perform some user
interaction and reissue the beginInsertion method without altering the form
handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform request while output is in progress.

E_ILLEGAL The slip station does not exist (see the CapSlpPresent
property) or an invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the form being
properly inserted.

See Also endInsertion Method, beginRemoval Method, endRemoval Method.

602
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
beginRemoval Method

Syntax beginRemoval (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

timeout The number of milliseconds before failing the method

If zero, the method initiates the begin removal mode, then returns the appropriate
status immediately. If FOREVER (-1), the method initiates the begin removal
mode, then waits as long as needed until either the form is removed or an error
occurs.

Remarks Initiates form removal processing.

When called, the printer is made ready to remove a form by opening the form
handling “jaws” or activating a form ejection mode. This method is paired with the
endRemoval method for controlling form removal.

If the printer device cannot be placed into removal or ejection mode, an exception
is raised. Otherwise, form removal is monitored until either:

• The form is successfully removed.

• The form is not removed before timeout milliseconds have elapsed, or an error
is reported by the printer device. In this case, an exception is raised with an
ErrorCode of E_TIMEOUT or another value. The printer device remains in
form removal mode. This allows an application to perform some user
interaction and reissue the beginRemoval method without altering the form
handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform request while output is in progress.

E_ILLEGAL The slip station does not exist (see the CapSlpPresent
property) or an invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the form being
properly removed.

See Also beginInsertion Method, endInsertion Method, endRemoval Method.

603 Methods (UML operations)
changePrintSide Method Added in Release 1.5

Syntax changePrintSide (side: int32):
void { raises-exception, use after open-claim-enable }

The side parameter indicates the side on which to print. Valid values are:

Value Description

PTR_PS_SIDE1 Indicates that the default print side of the document is
selected. (Default print side is the side where printing
will occur immediately after a document has been
inserted. Therefore, PTR_PS_SIDE1 is selected after
beginInsertion/endInsertion is executed.)

PTR_PS_SIDE2 Indicates that the opposite side of the document from the
one that the printer defaults to is to be selected. (Reverse
side of PTR_PS_SIDE1.)

PTR_PS_OPPOSITE Indicates that the current printing side is switched and
printing will now occur on the opposite side of the slip.
(e.g., if SlpPrintSide was PTR_PS_SIDE1, it is to be
changed to PTR_PS_SIDE2.)

Remarks Selects the side of the document where printing is to occur.

This allows a print operation to occur on both sides of a document. This may be
accomplished by mechanical paper handling of the document or by using multiple
print heads that are positioned to print on each side of the document.

If a document is not inserted, an error is returned.

If side is not SlpPrintSide or side is PTR_PS_OPPOSITE, the side of the
document is changed and the document is fed to TOF. If side is SlpPrintSide,
nothing occurs and method returns.

Executing the method may cause the SlpPrintSide property to change.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot be performed while output is in progress.
(Can only apply if AsyncMode is false.)

E_ILLEGAL One of the following errors occurred:
* The slip station does not exist (see the CapSlpPresent

property)
* the printer does not support both sides printing (see the

CapSlpBothSidesPrint property)
* an invalid side parameter was specified

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:

604
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
The printer cover is open.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)

See Also CapSlpBothSidesPrint Property, CapSlpPresent Property, SlpPrintSide
Property, cutPaper Method.

cutPaper Method

Syntax cutPaper (percentage: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

percentage The percentage of paper to cut.

The constant identifier PTR_CP_FULLCUT or the value 100 causes a full paper
cut. Other values request a partial cut percentage.

Remarks Cuts the receipt paper.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Many printers with paper cut capability can perform both full and partial cuts.
Some offer gradations of partial cuts, such as a perforated cut and an almost-full
cut. Although the exact type of cut will vary by printer capabilities, the following
general guidelines apply:

Value Meaning

100 Full cut.

90 Leave only a small portion of paper for very easy final
separation.

70 Perforate the paper for final separation that is somewhat
more difficult and unlikely to occur by accidental
handling.

50 Partial perforation of the paper.

The Service will select an appropriate type of cut based on the capabilities of its
device and these general guidelines.

An escape sequence embedded in a printNormal or printImmediate method call
may also be used to cause a paper cut.

605 Methods (UML operations)
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress. (Can only
apply if AsyncMode is false.)

E_ILLEGAL An invalid percentage was specified, the receipt station
does not exist (see the CapRecPresent property), or the
receipt printer does not have paper cutting ability (see
the CapRecPapercut property).

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station is out of paper.
(Can only apply if AsyncMode is false.)

See Also “Data Characters and Escape Sequences” on page 550.

606
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
endInsertion Method

Syntax endInsertion ():
void { raises-exception, use after open-claim-enable }

Remarks Ends form insertion processing.

When called, the printer is taken out of form insertion mode. If the slip device has
forms “jaws,” they are closed by this method. If no form is present, an exception
is raised with its ErrorCodeExtended property set to EPTR_SLP_EMPTY.

This method is paired with the beginInsertion method for controlling form
insertion. The application may choose to call this method immediately after a
successful beginInsertion if it wants to use the printer sensors to determine when
a form is positioned within the slip printer. Alternatively, the application may
prompt the user and wait for a key press before calling this method.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform request while output is in progress.

E_ILLEGAL The printer is not in slip insertion mode.

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The device was taken out of insertion mode while the
printer cover was open.

ErrorCodeExtended = EPTR_SLP_EMPTY:
The device was taken out of insertion mode without a
form being inserted.

See Also beginInsertion Method, beginRemoval Method, endRemoval Method.

607 Methods (UML operations)
endRemoval Method

Syntax endRemoval ():
void { raises-exception, use after open-claim-enable }

Remarks Ends form removal processing.

When called, the printer is taken out of form removal or ejection mode. If a form
is present, an exception is raised with its ErrorCodeExtended property set to
EPTR_SLP_FORM.

This method is paired with the beginRemoval method for controlling form
removal. The application may choose to call this method immediately after a
successful beginRemoval if it wants to use the printer sensors to determine when
the form has been removed. Alternatively, the application may prompt the user and
wait for a key press before calling this method.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform request while output is in progress.

E_ILLEGAL The printer is not in slip removal mode.

E_EXTENDED ErrorCodeExtended = EPTR_SLP_FORM:
The device was taken out of removal mode while a form
was still present.

See Also beginInsertion Method, endInsertion Method, beginRemoval Method.

608
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
markFeed Method Added in Release 1.5

Syntax markFeed (type: int32):
void { raises-exception, use after open-claim-enable }

The type parameter indicates the type of mark sensed paper handling. Valid values
are:

Value Description

PTR_MF_TO_TAKEUP Feed the Mark Sensed paper to the paper take-up
position.

PTR_MF_TO_CUTTER Feed the Mark Sensed paper to the auto cutter cutting
position.

PTR_MF_TO_CURRENT_TOF
Feed the Mark Sensed paper to the present paper’s top of
form. (Reverse feed.)

PTR_MF_TO_NEXT_TOF
Feed the Mark Sensed paper to the next paper’s top of
form.

Remarks This method is used to utilize the printer’s mark sensor for receipt paper.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

If type is PTR_MF_TO_TAKEUP, the printer will feed the mark sensed paper so
that the present form is moved so that it can be manually removed by the operator.

If type is PTR_MF_TO_CUTTER, the printer will feed the mark sensed paper so
that the present form is in position to be cut off by the auto cutter. This will usually
be followed by a call to the cutPaper method.

If type is PTR_MF_TO_CURRENT_TOF, the printer will feed the mark sensed
paper (backwards if necessary) so that the print head points to the top of the present
form.

If type is PTR_MF_TO_NEXT_TOF, the printer will feed the mark sensed paper
so that print head points to the top of the next form.

The following diagram provides a pictorial representation of the functions
performed by this method.

609 Methods (UML operations)
1

2

Print Head

Auto Cutter

Inside of the Printer

Outside of the Printer

PTR_MF_TO_CUTTER

1

2

1

2

Print Head

Auto Cutter

Inside of the Printer

Outside of the Printer

PTR_MF_TO_
CURRENT_TOF

1

2

PTR_MF_TO_CURRENT_TOFPTR_MF_TO_TAKEUP

Print Head

Auto Cutter

Inside of the Printer

Outside of the Printer

2

3

PTR_MF_TO_NEXT_TOF

610
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot be performed while output is in progress.
(Can only apply if AsyncMode is false.)

E_ILLEGAL The receipt print station does not support the given mark
sensed paper handling function. (Refer to the
CapRecMarkFeed property)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt paper is empty.
(Can only apply if AsyncMode is false.)

See Also CapRecMarkFeed Property.

611 Methods (UML operations)
printBarCode Method

Syntax printBarCode (station: int32, data: string, symbology: int32, height: int32,
width: int32, alignment: int32, textPosition: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

station The printer station to be used. May be either
PTR_S_RECEIPT or PTR_S_SLIP.

data Character string to be bar coded.

symbology Bar code symbol type to use. See values below.

height Bar code height. Expressed in the unit of measure given
by MapMode.

width Bar code width. Expressed in the unit of measure given
by MapMode.

alignment Placement of the bar code. See values below.

textPosition Placement of the readable character string. See values
below.

The alignment parameter has one of the following values:

Value Meaning

PTR_BC_LEFT Align with the left-most print column.

PTR_BC_CENTER Align in the center of the station.

PTR_BC_RIGHT Align with the right-most print column.

Other Values Distance from the left-most print column to the start of
the bar code. Expressed in the unit of measure given by
MapMode.

The textPosition parameter has one of the following values:

Value Meaning

PTR_BC_TEXT_NONE No text is printed. Only print the bar code.

PTR_BC_TEXT_ABOVE Print the text above the bar code.

PTR_BC_TEXT_BELOW Print the text below the bar code.

612
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
The symbology parameter has one of the following values:

Value Meaning

One Dimensional Symbologies

PTR_BCS_UPCA UPC-A

PTR_BCS_UPCA_S UPC-A with supplemental barcode

PTR_BCS_UPCE UPC-E

PTR_BCS_UPCE_S UPC-E with supplemental barcode

PTR_BCS_UPCD1 UPC-D1

PTR_BCS_UPCD2 UPC-D2

PTR_BCS_UPCD3 UPC-D3

PTR_BCS_UPCD4 UPC-D4

PTR_BCS_UPCD5 UPC-D5

PTR_BCS_EAN8 EAN 8 (= JAN 8)

PTR_BCS_JAN8 JAN 8 (= EAN 8)

PTR_BCS_EAN8_S EAN 8 with supplemental barcode

PTR_BCS_EAN13 EAN 13 (= JAN 13)

PTR_BCS_JAN13 JAN 13 (= EAN 13)

PTR_BCS_EAN13_S EAN 13 with supplemental barcode

PTR_BCS_EAN128 EAN-128

PTR_BCS_TF Standard (or discrete) 2 of 5

PTR_BCS_ITF Interleaved 2 of 5

PTR_BCS_Codabar Codabar

PTR_BCS_Code39 Code 39

PTR_BCS_Code93 Code 93

PTR_BCS_Code128 Code 128

PTR_BCS_OCRA OCR “A”

PTR_BCS_OCRB OCR “B”

Two Dimensional Symbologies

PTR_BCS_PDF417 PDF 417

PTR_BCS_MAXICODE MAXICODE

613 Methods (UML operations)
Special Cases

PTR_BCS_OTHER If a Service defines additional symbologies, they will be
greater or equal to this value.

Remarks Prints a bar code on the specified printer station.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

If RotateSpecial indicates that the bar code is to be rotated, then perform the
rotation. The height, width, and textPosition parameters are applied to the bar code
before the rotation. For example, if PTR_BC_TEXT_BELOW is specified and the
bar code is rotated left, then the text will appear on the paper to the right of the bar
code.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following parameter errors occurred:
* station does not exist
* station does not support bar code printing
* height or width are zero or too big
* symbology is not supported
* alignment is invalid or too big
* textPosition is invalid, or
The RotateSpecial rotation is not supported

E_BUSY Cannot perform while output is in progress.
(Can only apply if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

614
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

printBitmap Method

Syntax printBitmap (station: int32, fileName: string, width: int32, alignment: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

station The printer station to be used. May be either
PTR_S_RECEIPT or PTR_S_SLIP.

fileName File name or URL of bitmap file. Various file formats
may be supported, such as bmp (uncompressed format),
gif or jpeg files.

width Printed width of the bitmap to be performed. See values
below.

alignment Placement of the bitmap. See values below.

The width parameter has one of the following values:

Value Meaning

PTR_BM_ASIS Print the bitmap with one bitmap pixel per printer dot.

Other Values Bitmap width expressed in the unit of measure given by
MapMode.

615 Methods (UML operations)
The alignment parameter has one of the following values:

Value Meaning

PTR_BM_LEFT Align with the left-most print column.

PTR_BM_CENTER Align in the center of the station.

PTR_BM_RIGHT Align with the right-most print column.

Other Values Distance from the left-most print column to the start of
the bitmap. Expressed in the unit of measure given by
MapMode.

Remarks Prints a bitmap on the specified printer station.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

The width parameter controls transformation of the bitmap. If width is
PTR_BM_ASIS, then no transformation is performed. The bitmap is printed with
one bitmap pixel per printer dot. Advantages of this option are that it:

• Provides the highest performance bitmap printing.

• Works well for bitmaps tuned for a specific printer’s aspect ratio between
horizontal dots and vertical dots.

If width is non-zero, then the bitmap will be transformed by stretching or
compressing the bitmap such that its width is the specified width and the aspect
ratio is unchanged. Advantages of this option are:

• Sizes a bitmap to fit a variety of printers.

• Maintains the bitmap’s aspect ratio.

Disadvantages are:

• Lowers performance than untransformed data.

• Some lines and images that are “smooth” in the original bitmap may show
some “ratcheting.”

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress. (Can only
apply if AsyncMode is false.)

E_ILLEGAL One of the following parameter errors occurred:
* station does not exist
* station does not support bitmap printing
* width parameter is invalid or too big
* alignment is invalid or too big

616
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
E_NOEXIST fileName was not found.

E_EXTENDED ErrorCodeExtended = EPTR_TOOBIG:
The bitmap is either too wide to print without
transformation, or it is too big to transform.

ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_BADFORMAT:
The specified file is either not a bitmap file, or it is in an
unsupported format.

ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

617 Methods (UML operations)
printImmediate Method

Syntax printImmediate (station: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

station The printer station to be used. May be either
PTR_S_JOURNAL, PTR_S_RECEIPT or
PTR_S_SLIP.

data The characters to be printed. May consist of printable
characters, escape sequences, carriage returns (13
decimal), and line feeds (10 decimal).

Remarks Prints data on the printer station immediately.

This method tries to print its data immediately – that is, as the very next printer
operation. It may be called when asynchronous output is outstanding. This method
is primarily intended for use in exception conditions when asynchronous output is
outstanding, such as within an error event handler.

Special character values within data are:

Value Meaning

Line Feed (10) Print any data in the line buffer, and feed to the next print
line. (A Carriage Return is not required in order to cause
the line to be printed.)

Carriage Return (13) If a Carriage Return immediately precedes a Line Feed,
or if the line buffer is empty, then it is ignored.

Otherwise, the line buffer is printed and the printer does
not feed to the next print line. On some printers, print
without feed may be directly supported. On others, a
print may always feed to the next line, in which case the
Service will print the line buffer and perform a reverse
line feed if supported. If the printer does not support
either of these features, then Carriage Return acts like a
Line Feed.

The validateData method may be used to determine
whether a Carriage Return without Line Feed is
possible, and whether a reverse line feed is required to
support it.

618
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The specified station does not exist. (See the CapJrnPresent,
CapRecPresent, and CapSlpPresent properties.)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
ErrorCodeExtended = EPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_REMOVED:
A journal cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_EMPTY:
A journal cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_HEAD_CLEANING:
A journal cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended =EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also printNormal Method, printTwoNormal Method.

619 Methods (UML operations)
printNormal Method

Syntax printNormal (station: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

station The printer station to be used. May be either
PTR_S_JOURNAL, PTR_S_RECEIPT or
PTR_S_SLIP.

data The characters to be printed. May consist of printable
characters, escape sequences, carriage returns (13
decimal), and line feeds (10 decimal).

Remarks Prints data on the printer station.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Special character values within data are:

Value Meaning

Line Feed (10) Print any data in the line buffer, and feed to the next print
line. (A Carriage Return is not required in order to cause
the line to be printed.)

Carriage Return (13) If a Carriage Return immediately precedes a Line Feed,
or if the line buffer is empty, then it is ignored.

Otherwise, the line buffer is printed and the printer does
not feed to the next print line. On some printers, print
without feed may be directly supported. On others, a
print may always feed to the next line, in which case the
Service will print the line buffer and perform a reverse
line feed if supported. If the printer does not support
either of these features, then Carriage Return acts like a
Line Feed.

The validateData method may be used to determine
whether a Carriage Return without Line Feed is
possible, and whether a reverse line feed is required to
support it.

620
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The specified station does not exist. (See the CapJrnPresent,
CapRecPresent, and CapSlpPresent properties.)

E_BUSY Cannot perform while output is in progress.(Can only apply if
AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
ErrorCodeExtended = EPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_REMOVED:
A journal cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_EMPTY:
A journal cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_HEAD_CLEANING:
A journal cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended =EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also printImmediate Method, printTwoNormal Method.

621 Methods (UML operations)
printTwoNormal Method

Syntax printTwoNormal (stations: int32, data1: string, data2: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

stations Release 1.2
The printer stations to be used may be:
PTR_S_JOURNAL_RECEIPT, PTR_S_JOURNAL_SLIP, or
PTR_S_RECEIPT_SLIP.
Release 1.3 and later:
Select one of the following:

data1 The characters to be printed on the first station. May consist of
printable characters and escape sequences as listed in the “Print
Line” table under “Data Characters and Escape Sequences” on
page 550. The characters must all fit on one printed line, so that
the printer may attempt to print on both stations simultaneously.

data2 The characters to be printed on the second station. (Restrictions
are the same as for data1.) If this string is the empty string (“”),
then print the same data as data1. On some printers, using this
format may give additional increased print performance.

Remarks Prints two strings on two print stations simultaneously. When supported, this may
give increased print performance.
This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Release 1.2
Documentation release 1.2 was not sufficiently clear as to the meaning of “first”
and “second” station so Service implementations varied between the following:
• Assign stations based on order within the constants. For example,

PTR_S_JOURNAL_RECEIPT prints Data1 on the journal and Data2 on the
receipt.

• Assign stations based upon physical device characteristics or internal print
order.

Due to this inconsistency, the application should use the new constants if the
Control and Service versions indicate Release 1.3 or later.

Release 1.3 and later
Service for Release 1.3 or later should support both sets of constants. The vendor
should define and document the behavior of the obsolete constants.
The sequence of stations in the constants does not imply the physical printing

stations Parameter
First

Station
Second
Station

PTR_TWO_RECEIPT_JOURNAL Receipt Journal

PTR_TWO_SLIP_JOURNAL Slip Journal

PTR_TWO_SLIP_RECEIPT Slip Receipt

622
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
sequence on the stations. The physical sequence depends on the printer and may
be different based on the bi-directional printing multiple print heads and so on.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The specified stations do not support concurrent printing. (See
the CapConcurrentJrnRec, CapConcurrentJrnSlp, and
CapConcurrentRecSlp properties.)

E_BUSY Cannot perform while output is in progress. (Can only apply if
AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
ErrorCodeExtended = EPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_REMOVED:
A journal cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_EMPTY:
A journal cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_HEAD_CLEANING:
A journal cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended =EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also printNormal Method

623 Methods (UML operations)
rotatePrint Method

Syntax rotatePrint (station: int32, rotation: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

station The printer station to be used. May be
PTR_S_RECEIPT or PTR_S_SLIP.

rotation Direction of rotation. See values below.

Value Meaning

PTR_RP_RIGHT90 Rotate printing 90° to the right (clockwise)

PTR_RP_LEFT90 Rotate printing 90° to the left (counter-clockwise)

PTR_RP_ROTATE180 Rotate printing 180°, that is, print upside-down

PTR_RP_NORMAL End rotated printing.

Remarks Enters or exits rotated print mode.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

If rotation is PTR_RP_ROTATE180, then upside-down print mode is entered.
Subsequent calls to printNormal or printImmediate will print the data upside-
down until rotatePrint is called with rotation set to PTR_RP_NORMAL. Each
print line is rotated by 180°. Lines are printed in the order that they are sent, with
the start of each line justified at the right margin of the printer station. Only the
print methods printNormal and printImmediate may be used while in upside-
down print mode.

If rotation is PTR_RP_RIGHT90 or PTR_RP_LEFT90, then sideways print mode
is entered. Subsequent calls to printNormal will buffer the print data (either at the
printer or the Service, depending on the printer capabilities) until rotatePrint is
called with rotation set to PTR_RP_NORMAL. (In this case, printNormal only
buffers the data – it does not initiate printing. Also, the value of the AsyncMode
property does not affect its operation: No OutputID will be assigned to the
request, nor will an OutputCompleteEvent be enqueued.) Each print line is
rotated by 90°. If the lines are not all the same length, then they are justified at the
start of each line. Only printNormal may be used while in sideways print mode.

If rotation is PTR_RP_NORMAL, then rotated print mode is exited. If sideways-
rotated print mode was in effect and some data was buffered by calls to the
printNormal method, then the buffered data is printed. The entire rotated block of
lines are treated as one message.

Changing the rotation mode may also change the station’s line height, line spacing,
line width, and other metrics.

Calling the clearOutput method cancels rotated print mode. Any buffered
sideways rotated print lines are also cleared.

624
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The specified station does not exist (see the CapJrnPresent,
CapRecPresent, and CapSlpPresent properties), or the station
does not support the specified rotation (see the station’s rotation
capability properties).

E_BUSY Cannot perform while output is in progress. (Can only apply if
AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended =EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also “Data Characters and Escape Sequences” on page 550.

625 Methods (UML operations)
setBitmap Method

Syntax setBitmap (bitmapNumber: int32, station: int32, fileName: string, width:
int32, alignment: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

bitmapNumber The number to be assigned to this bitmap. Two bitmaps,
numbered 1 and 2, may be set.

station The printer station to be used. May be either
PTR_S_RECEIPT or PTR_S_SLIP.

fileName File name or URL of bitmap file. Various file formats
may be supported, such as bmp, gif or jpeg files. The file
must be in uncompressed format.
If set to an empty string (“”), then the bitmap is unset.

width Printed width of the bitmap to be performed. See
printBitmap for values.

alignment Placement of the bitmap. See printBitmap for values.

Remarks Saves information about a bitmap for later printing.

The bitmap may then be printed by calling the printNormal or printImmediate
method with the print bitmap escape sequence in the print data. The print bitmap
escape sequence will typically be included in a string for printing top and bottom
transaction headers.

A Service may choose to cache the bitmap for later use to provide better
performance. Regardless, the bitmap file and parameters are validated for
correctness by this method.

The application must ensure that the printer station metrics, such as character
width, line height, and line spacing are set for the station before calling this
method. The Service may perform transformations on the bitmap in preparation
for later printing based upon the current values.

The application may set bitmaps numbered 1 and 2 for each of the two valid
stations. If desired, the same bitmap fileName may be set to the same
bitmapNumber for each station, so that the same print bitmap escape sequence may
be used for either station.

626
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:
* bitmapNumber is invalid
* station does not exist
* station does not support bitmap printing
* width is too big
* alignment is invalid or too big

E_NOEXIST fileName was not found.

E_EXTENDED ErrorCodeExtended = EPTR_TOOBIG:
The bitmap is either too wide to print without
transformation, or it is too big to transform.

ErrorCodeExtended = EPTR_BADFORMAT:
The specified file is either not a bitmap file, or it is in an
unsupported format.

See Also “Data Characters and Escape Sequences” on page 550, printBitmap Method.

setLogo Method

Syntax setLogo (location: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

location The logo to be set. May be PTR_L_TOP or
PTR_L_BOTTOM.

data The characters that produce the logo. May consist of
printable characters, escape sequences, carriage returns
(13 decimal), and line feeds (10 decimal).

Remarks Saves a data string as the top or bottom logo.

A logo may then be printed by calling the printNormal, printTwoNormal, or
printImmediate method with the print top logo or print bottom logo escape
sequence in the print data.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid location was specified.

See Also “Data Characters and Escape Sequences” on page 550.

627 Methods (UML operations)
transactionPrint Method

Syntax transactionPrint (station: int32, control: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

station The printer station to be used. May be
PTR_S_JOURNAL, PTR_S_RECEIPT, or
PTR_S_SLIP.

control Transaction control. See values below:

Value Meaning

PTR_TP_TRANSACTION Begin a transaction.

PTR_TP_NORMAL End a transaction by printing the buffered data.

Remarks Enters or exits transaction mode.

If control is PTR_TP_TRANSACTION, then transaction mode is entered.
Subsequent calls to printNormal, cutPaper, rotatePrint, printBarCode, and
printBitmap will buffer the print data (either at the printer or the Service,
depending on the printer capabilities) until transactionPrint is called with the
control parameter set to PTR_TP_NORMAL. (In this case, the print methods only
validate the method parameters and buffer the data – they do not initiate printing.
Also, the value of the AsyncMode property does not affect their operation: No
OutputID will be assigned to the request, nor will an OutputCompleteEvent be
enqueued.)

If control is PTR_TP_NORMAL, then transaction mode is exited. If some data
was buffered by calls to the methods printNormal, cutPaper, rotatePrint,
printBarCode, and printBitmap, then the buffered data is printed. The entire
transaction is treated as one message. This method is performed synchronously if
AsyncMode is false, and asynchronously if AsyncMode is true.

Calling the clearOutput method cancels transaction mode. Any buffered print
lines are also cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The specified station does not exist (see the CapJrnPresent,
CapRecPresent, and CapSlpPresent properties), or
CapTransaction is false.

E_BUSY Cannot perform while output is in progress. (Can only apply if
AsyncMode is false and control is PTR_TP_NORMAL.)

628
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false and control is
PTR_TP_NORMAL.)
ErrorCodeExtended = EPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_REMOVED:
A journal cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_EMPTY:
A journal cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_HEAD_CLEANING:
A journal cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended =EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

629 Methods (UML operations)
validateData Method

Syntax validateData (station: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

station The printer station to be used. May be either
PTR_S_JOURNAL, PTR_S_RECEIPT or
PTR_S_SLIP.

data The data to be validated. May include printable data and
escape sequences.

Remarks Determines whether a data sequence, possibly including one or more escape
sequences, is valid for the specified station, before calling the printImmediate,
printNormal, or printTwoNormal methods.

This method does not cause any printing, but is used to determine the capabilities
of the station.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL Some of the data is not precisely supported by the printer
station, but the Service can select valid alternatives.

E_FAILURE Some of the data is not supported. No alternatives can be
selected.

Cases which cause ErrorCode of E_ILLEGAL:

Escape Sequence Condition

Paper cut The percentage ‘#’ is not precisely supported: Service
will select the closest supported value.

Feed and Paper cut The percentage ‘#’ is not precisely supported: Service
will select the closest supported value.

Feed, Paper cut, and Stamp
The percentage ‘#’ is not precisely supported: Service
will select the closest supported value.

Feed units The unit count ‘#’ is not precisely supported: Service
will select the closest supported value.

Feed reverse The line count ‘#’ is too large: Service will select the
maximum supported value.

Underline The thickness ‘#’ is not precisely supported: Service will
select the closest supported value.

Shading The percentage ‘#’ is not precisely supported: Service
will select the closest supported value.

Scale horizontally The scaling factor ‘#’ is not supported: Service will
select the closest supported value.

Scale vertically The scaling factor ‘#’ is not supported: Service will
select the closest supported value.

630
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Alternate Color The color ‘#’ is not supported: Service will select the
closest supported value.

RGB Color The color ‘#’ is not supported: Service will select the
closest supported value.

Data Condition

data1CRdata2LF (Where CR is a Carriage Return and LF is a Line Feed)
In order to print data data1 and remain on the same line,
the Service will print with a line advance, then perform
a reverse line feed. The data data2 will then overprint
data1.

Cases which will cause ErrorCode of E_FAILURE:

Escape Sequence Condition

(General) The escape sequence format is not valid.
Paper cut Not supported.
Feed and Paper cut Not supported.
Feed, Paper cut, and Stamp

Not supported.
Fire stamp Not supported.
Print bitmap Bitmap printing is not supported, or the bitmap number

‘#’ is out of range.
Feed reverse Not supported.
Font typeface The typeface ‘#’ is not supported.
Bold Not supported.
Underline Not supported.
Italic Not supported.
Alternate color Not supported.
RGB color Not supported.
Reverse video Not supported.
SubScript Not supported.
SuperScript Not supported.
Shading Not supported.
Single high & wide Not supported.
Double wide Not supported.
Double high Not supported.
Double high & wide Not supported.

Data Condition

data1CRdata2LF (Where CR is a Carriage Return and LF is a Line Feed)
Not able to print data and remain on the same line. The
data data1 will print on one line, and the data data2 will
print on the next line.

See Also “Data Characters and Escape Sequences” on page 550.

631 Events (UML interfaces)
Events (UML interfaces)

DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific POS Printer Service to provide events to the
application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s POS Printer devices which may not have any
knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.

632
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a POS Printer error has been detected and that a
suitable response by the application is necessary to process the error condition.

Attributes This event contains the following properties:

Attributes Type Description

ErrorCode int32 Result code causing the error event. See a list of Error
Codes on page 16.

ErrorCodeExtended
int32 Extended Error code causing the error event. If

ErrorCode is E_EXTENDED, then see values below.
Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error, and is set to EL_OUTPUT
indicating that the error occurred while processing
asynchronous output.

ErrorResponse int32 Error response, whose default value may be overridden
by the application (i.e., this property is settable). See
values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the
following values:

Value Meaning

EPTR_COVER_OPEN The printer cover is open.

EPTR_JRN_EMPTY The journal station is out of paper.

EPTR_REC_EMPTY The receipt station is out of paper.

EPTR_SLP_EMPTY A form is not inserted in the slip station.

EPTR_JRN_CARTRIDGE_REMOVED:
A journal cartridge has been removed.

EPTR_JRN_CARTRIDGE_EMPTY:
A journal cartridge is empty.

EPTR_JRN_HEAD_CLEANING:
A journal cartridge head is being cleaned.

EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.

EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.

EPTR_REC_HEAD_CLEANING:

633 Events (UML interfaces)
A receipt cartridge head is being cleaned.

EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.

EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.

EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER_CLEAR Clear the asynchronous output or buffered output data.
The error state is exited.

ER_RETRY Retry the asynchronous output. The error state is exited.
The default.

Remarks Enqueued when an error is detected and the Service’s State transitions into the
error state. This event is not delivered until DataEventEnabled is true, so that
proper application sequencing occurs.

See Also “Device Output Models” on page 21, “Device States” on page 26

OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the
OutputID attribute has completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description

OutputID int32 The ID number of the asynchronous output request that
is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service
has confirmation that is was processed by the device successfully.

See Also “Device Output Models” on page 21.

634
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that a printer has had an operation status change.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates the status change, and has one of the
following values:

Value Meaning

PTR_SUE_COVER_OPEN Printer cover is open.

PTR_SUE_COVER_OK Printer cover is closed.

PTR_SUE_JRN_EMPTY No journal paper.

PTR_SUE_JRN_NEAREMPTY Journal paper is low.

PTR_SUE_JRN_PAPEROK Journal paper is ready.

PTR_SUE_REC_EMPTY No receipt paper.

PTR_SUE_REC_NEAREMPTY Receipt paper is low.

PTR_SUE_REC_PAPEROK Receipt paper is ready.

PTR_SUE_SLP_EMPTY No slip form.

PTR_SUE_SLP_NEAREMPTY Almost at the bottom of the slip form.

PTR_SUE_SLP_PAPEROK Slip form is inserted.

PTR_SUE_IDLE All asynchronous output has finished, either
successfully or because output has been
cleared. The printer State is now S_IDLE. The
FlagWhenIdle property must be true for this
event to be delivered, and the property is
automatically reset to false just before the event
is delivered.

Note that Release 1.3 added Power State
Reporting with additional Power reporting
StatusUpdateEvent values. See
“StatusUpdateEvent” on page 56.

635 Events (UML interfaces)
Release 1.5 and later – Cartridge State Reporting

If CartridgeNotify = PTR_CN_ENABLED, StatusUpdateEvents with the
following status parameter values may be fired.

Value Meaning

PTR_SUE_JRN_CARTRIDGE_EMPTY
A journal cartridge needs to be replaced. Cartridge is
empty or not present.

PTR_SUE_JRN_HEAD_CLEANING
A journal cartridge has begun cleaning.

PTR_SUE_JRN_CARTRIDGE_NEAREMPTY
A journal cartridge is near end.

PTR_SUE_JRN_CARTRIDGE_OK
All journal cartridges are ready. It gives no indication of
the amount of media in the cartridge.

PTR_SUE_REC_CARTRIDGE_EMPTY
A receipt cartridge needs to be replaced. Cartridge is
empty or not present.

PTR_SUE_REC_HEAD_CLEANING
A receipt cartridge has begun cleaning.

PTR_SUE_REC_CARTRIDGE_NEAREMPTY
A receipt cartridge is near end.

PTR_SUE_REC_CARTRIDGE_OK
All receipt cartridges are ready. It gives no indication of
the amount of media in the cartridge.

PTR_SUE_SLP_CARTRIDGE_EMPTY
A slip cartridge needs to be replaced. Cartridge is empty
or not present.

PTR_SUE_SLP_HEAD_CLEANING
A slip cartridge has begun cleaning.

PTR_SUE_SLP_CARTRIDGE_NEAREMPTY
A slip cartridge is near end.

PTR_SUE_SLP_CARTRIDGE_OK
All slip cartridges are ready. It gives no indication of the
amount of media in the cartridge.

Remarks Enqueued when a significant status event has occurred.

See Also “Events” on page 15.

636
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer

C H A P T E R 1 8

Remote Order Display

This Chapter defines the Remote Order Display device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.3 Not Supported

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.3 open

Claimed: boolean { read-only } 1.3 open

DataCount: int32 { read-only } 1.3 open

DataEventEnabled: boolean { read-write } 1.3 open

DeviceEnabled: boolean { read-write } 1.3 open & claim

FreezeEvents: boolean { read-write } 1.3 open

OutputID: int32 { read-only } 1.3 open

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.3 --

DeviceControlDescription: string { read-only } 1.3 --

DeviceControlVersion: int32 { read-only } 1.3 --

DeviceServiceDescription: string { read-only } 1.3 open

DeviceServiceVersion: int32 { read-only } 1.3 open

PhysicalDeviceDescription: string { read-only } 1.3 open

PhysicalDeviceName: string { read-only } 1.3 open

638
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
Properties (Continued)

Specific Type Mutability Version May Use After

CapSelectCharacterSet: boolean { read-only } 1.3 open, claim, & enable

CapTone: boolean { read-only } 1.3 open, claim, & enable

CapTouch: boolean { read-only } 1.3 open, claim, & enable

CapTransaction: boolean { read-only } 1.3 open

AsyncMode: boolean { read-write } 1.3 open, claim, & enable

AutoToneDuration: int32 { read-write } 1.3 open, claim, & enable

AutoToneFrequency: int32 { read-write } 1.3 open, claim, & enable

CharacterSet: int32 { read-only } 1.3 open, claim, & enable

CharacterSetList: string { read-only } 1.3 open, claim, & enable

Clocks: int32 { read-only } 1.3 open, claim, & enable

CurrentUnitID: int32 { read-write } 1.3 open, claim, & enable

ErrorString: string { read-only } 1.3 open

ErrorUnits: int32 { read-only } 1.3 open

EventString: string { read-only } 1.3 open & claim

EventType: int32 { read-write } 1.3 open

EventUnitID: int32 { read-only } 1.3 open & claim

EventUnits: int32 { read-only } 1.3 open & claim

SystemClocks: int32 { read-only } 1.3 open, claim, & enable

SystemVideoSaveBuffers: int32 { read-only } 1.3 open, claim, & enable

Timeout: int32 { read-write } 1.3 open

UnitsOnline: int32 { read-only } 1.3 open, claim, & enable

VideoDataCount: int32 { read-only } 1.3 open, claim, & enable

VideoMode: int32 { read-write } 1.3 open, claim, & enable

VideoModesList: string { read-only } 1.3 open, claim, & enable

VideoSaveBuffers: int32 { read-only } 1.3 open, claim, & enable

639 Summary
Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.3

close ():
void { raises-exception, use after open }

1.3

claim (timeout: int32):
void { raises-exception, use after open }

1.3

release ():
void { raises-exception, use after open, claim }

1.3

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.3

clearInput ():
void { raises-exception, use after open, claim }

1.3

clearOutput ():
void { raises-exception, use after open, claim }

1.3

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.3

Specific

Name

clearVideo (units: int32, attribute: int32):
void { raises exception, use after open, claim, enable }

1.3

clearVideoRegion (units: int32, row: int32, column: int32, height: int32,
width: int32, attribute: int32):
void { raises exception, use after open, claim, enable }

1.3

controlClock (units: int32, function: int32, clockId: int32, hour: int32,
min: int32, sec: int32, row: int32, column: int32, attribute:
int32, mode: int32):
void { raises exception, use after open, claim, enable }

1.3

controlCursor (units: int32, function: int32):
void { raises exception, use after open, claim, enable }

1.3

copyVideoRegion (units: int32, row: int32, column: int32, height: int32,
width: int32, targetRow: int32, targetColumn: int32):
void { raises exception, use after open, claim, enable }

1.3

displayData (units: int32, row: int32, column: int32, attribute: int32,
data: string):
void { raises exception, use after open, claim, enable }

1.3

drawBox (units: int32, row: int32, column: int32, height: int32, width:
int32, attribute: int32, bordertype: int32):
void { raises exception, use after open, claim, enable }

1.3

freeVideoRegion (units: int32, bufferId: int32):
void { raises exception, use after open, claim, enable }

1.3

resetVideo (units: int32):
void { raises exception, use after open, claim, enable }

1.3

640
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
Methods (Continued)
restoreVideoRegion (units: int32, targetRow: int32, targetColumn:

int32, bufferId: int32):
void { raises exception, use after open, claim, enable }

1.3

saveVideoRegion (units: int32, row: int32, column: int32, height: int32,
width: int32, bufferId: int32):
void { raises exception, use after open, claim, enable }

1.3

selectCharacterSet (units: int32, characterSet: int32):
void { raises exception, use after open, claim, enable }

1.3

setCursor (units: int32, row: int32, column: int32):
void { raises exception, use after open, claim, enable }

1.3

transactionDisplay (units: int32, function: int32):
void { raises exception, use after open, claim, enable }

1.3

updateVideoRegionAttribute (units: int32, function: int32, row: int32,
column: int32, height: int32, width: int32, attribute: int32):
void { raises exception, use after open, claim, enable }

1.3

videoSound (units: int32, frequency: int32, duration: int32, numberOf-
Cycles: int32, interSoundWait: int32):
void { raises exception, use after open, claim, enable }

1.3

Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.3

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.3

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.3

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent 1.3

 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }

641 General Information
General Information

The Remote Order Display programmatic name is “RemoteOrderDisplay”.

Capabilities

The Remote Order Display has the following minimal set of capabilities:

• Supports color or monochrome text character displays.

• Supports 8 foreground colors (or gray scale on monochrome display) with the
option of using the intensity attribute.

• Supports 8 background colors (or gray scale on monochrome display) with the
option of using only a blinking attribute.

• The individual event types support disabling such that the application only
receives a subset of data events if requested.

• Supports video region buffering.

• Supports cursor functions.

• Supports clock functions.

• Supports resetting a video unit to power on state.

The Remote Order Display may also have the following additional capabilities:

• Supports multiple video displays each with possibly different video modes.

• Supports touch video input for a touch screen display unit.

• Supports video enunciator output with frequency and duration.

• Supports tactile feedback via an automatic tone when a video display unit is
touched (for touch screen only).

• Supports downloading alternate character sets to one or many video units.

• Supports transaction mode display output to one or many video units.

The following capability is not supported:

• Support for graphical displays, where the video display is addressable by
individual pixels or dots. The addition of this support is under investigation for
future revisions.

642
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
Remote Order Display Class Diagram

The following diagram shows the relationships between the Remote Order Display
classes.

UposException
from upos)

<<exception>>

RemoteOrderDisplayConst
(from upos)

<<utility>>

UposConst
(from upos)

<<utility>>

DataEvent

<<prop>> Status : int32

(from events)

<<event>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

rrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

OutputCompleteEvent

<<prop>> OutputID : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

RemoteOrderDisplayControl

<<capability>> CapSelectCharacterSet : boolean
<<capability>> CapTone : boolean
<<capability>> CapTouch : boolean
<<capability>> CapTransaction : boolean
<<prop>> AsyncMode : boolean
<<prop>> AutoToneDuration : int32
<<prop>> AutoToneFrequency : int32
<<prop>> CharacterSet : int32
<<prop>> CharacterSetList : string
<<prop>> Clocks : int32
<<prop>> CurrentUnitID : int32
<<prop>> ErrorString : string
<<prop>> ErrorUnits : int32
<<prop>> EventString : string
<<prop>> EventType : int32
<<prop>> EventUnitID : int32
<<prop>> EventUnits : int32
<<prop>> SystemClocks : int32
<<prop>> SystemVideoSaveBuffers : in32
<<prop>> Timeout : int32
<<prop>> UnitsOnline : int32
<<prop>> VideoDataCount : int32
<<prop>> VideoMode : in32
<<prop>> VideoModesList : string
<<prop>> VideoSaveBuffers : int32

clearVideo()
clearVideoRegion()
controlClock()
controlCursor()
copyVideoRegion()
displayData()
drawBox()
freeVideoRegion()
resetVideo()
restoreVideoRegion()
saveVideoRegion()
selectCharacterSet()
setCursor()
transactionDisplay()
updateVideoRegionAttribute()
videoSound()

(from upos)

<<Interface>>

<<sends>>

<<uses>>

fires

fires

fires

fires

fires

BaseControl
(from upos)

<<Interface>>
<<uses>>

<<sends>>

643 General Information
Model

The general model of a Remote Order Display:

The Remote Order Display device class is a subsystem of video units. The initial
targeted environment is food service, to display order preparation and fulfillment
information. Remote Order Displays are often used in conjunction with Bump
Bars.

The general model of a Remote Order Display bar is an output device but may also
be an input device when, in some implementations, the device can report
additional status or user input data back to the application program.

• The subsystem can support up to 32 video units.

Typically, one application on one workstation (or POS Terminal) would
manage and control the entire subsystem of Remote Order Displays.
However, if applications on the same or other workstations (or POS
Terminals) would need to access the subsystem, then one of the applications
must act as a subsystem server and expose the necessary interfaces to other
applications.

• All specific methods are broadcast methods. This means that the method can
apply to one unit, a selection of units or all online units. The units parameter
is an int32, with each bit identifying an individual video unit. The Service will
attempt to satisfy the method for all units indicated in the units parameter. If
an error is received from one or more units, the ErrorUnits property is
updated with the appropriate units in error. The ErrorString property is
updated with a description of the error or errors received. The method will
then raise a UposException. In the case where two or more units encounter
different errors, the exception’s ErrorCode will indicate the more severe
error.

• The common methods checkHealth, clearInput, and clearOutput are not
broadcast methods and use the unit ID indicated in the CurrentUnitID
property. See the description of these common methods to understand how the
CurrentUnitID property is used.

• When the CurrentUnitID property is set by the application, all the
corresponding properties are updated to reflect the settings for that unit.

If the CurrentUnitID property is set to a unit ID that is not online, the
dependent properties will contain non-initialized values.

The CurrentUnitID uniquely represent a single video unit. The definitions
range from ROD_UID_1 to ROD_UID_32. These definitions are also used to
create the bitwise parameter, units, used in the broadcast methods.

644
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
• The rows and columns are numbered beginning with (0,0) at the top-left
corner of the video display. The dimensions are defined by the height and
width parameters. The region depicted below would have the parameters
 row = 1, column = 2, height = 3, and width = 4.

All position parameters are expressed in text characters.

• The VGA-like attribute parameter, that is used in various methods, is an
int32. Bits 7-0 define the text attribute and bits 31-8 are reserved and must be
0, otherwise an E_ILLEGAL exception is raised. The following table defines
bits 7-0:

If a foreground or background color is requested, but the Service does not
support that color, it chooses the best fit from the colors supported.

The following constants may be used, with up to one constant selected from
each category:

• Blinking: ROD_ATTR_BLINK

• Background Color: ROD_ATTR_BG_color, where color is replaced by
BLACK, BLUE, GREEN, CYAN, RED, MAGENTA, BROWN, or
GRAY

• Intensity: ROD_ATTR_INTENSITY

• Foreground Color: ROD_ATTR_FG_color, where color is replaced by
BLACK, BLUE, GREEN, CYAN, RED, MAGENTA, BROWN, or
GRAY

0 1 2 3 4 5 6

0

1

2

3

4

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Blinking Background and Color Intensity Foreground Color

645 General Information
For touch video input, the Remote Order Display Control follows the general “In-
put Model” for event-driven input with some differences:

• When input is received a DataEvent is enqueued.

• This device does not support the AutoDisable property, so will not
automatically disable itself when a DataEvent is enqueued.

• An enqueued DataEvent is delivered to the application when the
DataEventEnabled property is true and other event delivery requirements are
met. Just before delivering this event, data is copied into the properties, and
further data events are disabled by setting the DataEventEnabled property to
false. This causes subsequent input data to be enqueued while the application
processes the current input and associated properties. When the application
has finished the current input and is ready for more data, it reenables events
by setting DataEventEnabled to true.

• An ErrorEvent is enqueued if an error occurs while gathering or processing
input, and is delivered to the application when the DataEventEnabled
property is true and other event delivery requirements are met.

• The VideoDataCount property may be read to obtain the number of video
DataEvents for a specific unit ID enqueued. The DataCount property can be
read to obtain the total number of data events enqueued.

• Input enqueued may be deleted by calling the clearInput method. See
clearInput method description for more details.

For video and tone output, the Remote Order Display follows the general Output
Model, with some enhancements:

• The following methods are always performed synchronously: controlClock,
controlCursor, selectCharacterSet, resetVideo, and setCursor. These
methods will fail if asynchronous output is outstanding. The following method
is also always performed synchronously but without regard to outstanding
asynchronous output: freeVideoRegion.

• The following methods are performed either synchronously or
asynchronously, depending on the value of the AsyncMode property:
clearVideo, clearVideoRegion, copyVideoRegion, displayData, drawBox,
restoreVideoRegion, saveVideoRegion, transactionDisplay,
updateVideoRegionAttribute, and videoSound. When AsyncMode is false,
then these methods operate synchronously.

When AsyncMode is true, then these methods operate as follows:
• The request is buffered, the OutputID property is set to an identifier for

this request, and returns as soon as possible. When the device completes
the request successfully, then the EventUnits property is updated and an
OutputCompleteEvent is enqueued. A property of this event contains
the output ID of the completed request.

Asynchronous methods will not raise a UposException due to a display
problem, such as communications failure. These errors will only be
reported by an ErrorEvent. A UposException is raised only if the display
is not claimed and enabled, a parameter is invalid, or the request cannot
be enqueued. The first two error cases are due to an application error,
while the last is a serious system resource exception.

646
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
• If an error occurs while performing an asynchronous request, an
ErrorEvent is enqueued. The EventUnits property is set to the unit or
units in error. The EventString property is also set.
Note: ErrorEvent updates EventUnits and EventString. If an error is
reported by a synchronous broadcast method, then ErrorUnits and
ErrorString are set instead.

The event handler may call synchronous display methods (but not
asynchronous methods), then can either retry the outstanding output or
clear it.

• Asynchronous output is performed on a first-in first-out basis.

• All unit output buffered may be deleted by setting the CurrentUnitID
property and calling the clearOutput method. OutputCompleteEvents
will not be delivered for cleared output. This method also stops any output
that may be in progress (when possible).

When AsyncMode is false, then these methods operate synchronously
and the Service returns to the application after completion. When
operating synchronously, a UposException is raised if the method could
not complete successfully.

• The Remote Order Display device may support transaction mode. A
transaction is a sequence of display operations that are sent to a video unit as
a single unit. Display operations which may be included in a transaction are
clearVideo, clearVideoRegion, copyVideoRegion, displayData, drawBox,
restoreVideoRegion, saveVideoRegion, and
updateVideoRegionAttribute. During a transaction, the display operations
are first validated. If valid, they are added to the transaction but not displayed
yet. Once the application has added as many operations as required, then the
transaction display method is called.

If the transaction is displayed synchronously, then any exception raised
indicates that an error occurred during the display. If the transaction is
displayed asynchronously, then the asynchronous display rules listed above
are followed. If an error occurs and the ErrorEvent handler causes a retry, the
entire transaction is retried.

647 General Information
Device Sharing

The Remote Order Display is an exclusive-use device. Its device sharing rules are:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many
Remote Order Display specific properties.

• The application must claim and enable the device before calling methods that
manipulate the device.

• When a claim method is called again, settable device characteristics are
restored to their condition at release. Examples of restored characteristics are
character set, video mode, and tone frequency. Region memory buffers, clock
and cursor settings are considered state characteristics and are not restored.

• See the “Summary” table for precise usage prerequisites.

648
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
Properties (UML attributes)

AsyncMode Property

Syntax AsyncMode: int32 { read-write, access after open-claim-enable }

Remarks If true, then the clearVideo, clearVideoRegion, copyVideoRegion,
displayData, drawBox, restoreVideoRegion, saveVideoRegion,
transactionDisplay, updateVideoRegionAttribute, and videoSound methods
will be performed asynchronously.
If false, they will be performed synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

AutoToneDuration Property

Syntax AsyncMode: int32 { read-write, access after open-claim-enable }

Remarks Holds the duration (in milliseconds) of the automatic tone for the video unit
indicated in the CurrentUnitID property.

This property is initialized to the default value for each online video unit when the
device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An illegal value was specified. The ErrorString
property is updated.

See Also CurrentUnitID Property.

AutoToneFrequency Property

Syntax AutoToneFrequency: int32 { read-write, access after open-claim-enable }

Remarks Holds the frequency (in Hertz) of the automatic tone for the video unit indicated
in the CurrentUnitID property.

This property is initialized to the default value for each online video unit when the
device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An illegal value was specified. The ErrorString
property is updated.

See Also CurrentUnitID Property.

649 Properties (UML attributes)
CapSelectCharacterSet Property

Syntax CapSelectCharacterSet: boolean {read-only, access after open-claim-enable}

Remarks If true, the video unit indicated in the CurrentUnitID property may be loaded
with an alternate, user supplied character set.

This property is initialized for each video unit online when the device is first
enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrentUnitID Property.

CapTone Property

Syntax CapTone: boolean { read-only, access after open-claim-enable }

Remarks If true, the video unit indicated in the CurrentUnitID property supports an
enunciator.

This property is initialized for each video unit online when the device is first
enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrentUnitID Property.

CapTouch Property

Syntax CapTouch: boolean { read-only, access after open-claim-enable }

Remarks If true, the video unit indicated in the CurrentUnitID property supports the
ROD_DE_TOUCH_UP, ROD_DE_TOUCH_DOWN, and
ROD_DE_TOUCH_MOVE event types.

This property is initialized for each video unit online when the device is first
enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrentUnitID Property, DataEvent.

650
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
CapTransaction Property

Syntax CapTransaction: boolean { read-only, access after open }

Remarks If true, then transactions are supported by each video unit.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CharacterSet Property Updated in Release 1.5

Syntax CharacterSet: int32 { read-only, access after open-claim-enable }

Remarks Holds the character set for displaying characters for the video unit indicated by
CurrentUnitID. When CapSelectCharacterSet is true, this property can be set
to one of the following values:

Value Meaning

Range 101 - 199 Device-specific character sets that do not match a code
page or the ASCII or ANSI character sets.

Range 400 - 990 Code page; matches one of the standard values.

ROD_CS_UNICODE The character set supports UNICODE. The value of this
constant is 997.

ROD_CS_ASCII The ASCII character set, supporting the ASCII
characters 0x20 through 0x7F. The value of this
constant is 998.

ROD_CS_ANSI The ANSI character set. The value of this constant is
999.

This property is initialized to the default video character set used by each video
unit online when the device is first enabled following the open method.

This is updated during the selectCharacterSet method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrentUnitID Property, CharacterSetList Property, CapSelectCharacterSet
Property, selectCharacterSet method.

651 Properties (UML attributes)
CharacterSetList Property

Syntax CharacterSetList: string { read-only, access after open-claim-enable }

Remarks Holds a string of character set numbers for the video unit indicated in the
CurrentUnitID property.

If CapSelectCharacterSet is true, this property is initialized for each video unit
online when the device is first enabled following the open method.

The character set number string consists of an ASCII numeric set of numbers,
separated by commas.

For example, if the string is “101, 850, 999”, the video unit supports a device-
specific character set, code page 850, and the ANSI character set.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrentUnitID Property, CharacterSet Property, CapSelectCharacterSet
Property, selectCharacterSet Method.

Clocks Property

Syntax Clocks: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of clocks the video unit, indicated in the CurrentUnitID
property, can support.

This property is initialized for each online video unit when the device is first
enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrentUnitID Property

652
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
CurrentUnitID Property

Syntax CurrentUnitID: int32 { read-write, access after open-claim-enable }

Remarks Holds the current video unit ID. Up to 32 units are allowed on one Remote Order
Display device. The unit ID definitions range from ROD_UID_1 to
ROD_UID_32.

The following properties and methods apply only to the selected video unit ID:

• Properties: AutoToneDuration, AutoToneFrequency,
CapSelectCharacterSet, CapTone, CapTouch, CharacterSet,
CharacterSetList, Clocks, VideoDataCount, VideoMode,
VideoModesList, VideoSaveBuffers.

Setting CurrentUnitID will update these properties to the current values for
the specified unit.

Methods: checkHealth, clearInput, clearOutput.

This property is initialized to ROD_UID_1 when the device is first enabled
following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An illegal unit id was specified. The ErrorString
property is updated.

DataCount Property (Common)

Syntax DataCount: int32 { read-only, access after open }

Remarks Holds the total number of DataEvents enqueued. All units online are included in
this value. The number of enqueued events for a specific unit ID is stored in the
VideoDataCount property.

The application may read this property to determine whether additional input is
enqueued from a device, but has not yet been delivered because of other
application processing, freezing of events, or other causes.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also “Device Input Model” on page 18, VideoDataCount Property, DataEvent.

653 Properties (UML attributes)
ErrorString Property

Syntax ErrorString: string { read-only, access after open }

Remarks Holds a description of the error which occurred to the unit(s) specified by the
ErrorUnits property, when an error occurs for any method that acts on a bitwise
set of video units.

If an error occurs during processing of an asynchronous request, the ErrorEvent
updates the property EventString instead.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also ErrorUnits Property.

ErrorUnits Property

Syntax ErrorUnits: int32 { read-only, access after open }

Remarks Holds a bitwise mask of the unit(s) that encountered an error, when an error occurs
for any method that acts on a bitwise set of video units.

If an error occurs during processing of an asynchronous request, the ErrorEvent
updates the property EventUnits instead.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also ErrorString Property.

EventString Property

Syntax EventString: string { read-only, access after open-claim }

Remarks Holds a description of the error which occurred to the unit(s) specified by the
EventUnits property, when an ErrorEvent is delivered.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also EventUnits Property, ErrorEvent.

654
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
EventType Property

Syntax EventType: int32 { read-write, access after open }

Remarks Holds a bitwise mask that is used to selectively indicate which event types are to
be delivered by the DataEvent, for all video units online. See the DataEvent
description for event type definitions.

This property is initialized to all defined event types by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An illegal unit id was specified. The ErrorString
property is updated.

See Also DataEvent.

EventUnitID Property

Syntax EventUnitID: int32 { read-only, access after open-claim }

Remarks Holds the video unit ID of the last delivered DataEvent. The unit ID definitions
range from BB_UID_1 to BB_UID_32.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also DataEvent.

EventUnits Property

Syntax EventUnits: int32 { read-only, access after open-claim }

Remarks Holds a bitwise mask of the unit(s) when an OutputCompleteEvent, output
ErrorEvent, or StatusUpdateEvent is delivered.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also OutputCompleteEvent, ErrorEvent, StatusUpdateEvent.

655 Properties (UML attributes)
SystemClocks Property

Syntax SystemClocks: int32 { read-only, access after open-claim-enable }

Remarks Holds the total number of clocks the Remote Order Display device can support at
one time.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also Clocks Property.

SystemVideoSaveBuffers Property

Syntax SystemVideoSaveBuffers: int32 { read-only, access after open-claim-enable }

Remarks Holds the total number of video save buffers the Remote Order Display device can
support at one time.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also VideoSaveBuffers Property.

Timeout Property

Syntax Timeout: int32 { read-write, access after open }

Remarks Holds the timeout value in milliseconds used by the Remote Order Display device
to complete all output methods supported. If the device cannot successfully
complete an output method within the timeout value, then the method throws a
UposException if AsyncMode is false, or enqueues an ErrorEvent if
AsyncMode is true.

This property is initialized to a Service dependent default timeout following the
open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An illegal unit id was specified. The ErrorString
property is updated.

See Also AsyncMode Property.

656
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
UnitsOnline Property

Syntax UnitsOnline: int32 { read-only, access after open-claim-enable }

Remarks Holds a bitwise mask indicating the video units online. Bit 0 is ROD_UID_1. 32
video units are supported. See “Model” on page 643.

This property is initialized when the device is first enabled following the open
method. This property is updated as changes are detected, such as before a
StatusUpdateEvent is enqueued and during the checkHealth method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also “Model” on page 643, checkHealth Method, StatusUpdateEvent.

VideoDataCount Property

Syntax VideoDataCount: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of DataEvents enqueued for the video unit indicated in the
CurrentUnitID property.

The application may read this property to determine whether additional input is
enqueued from a video unit, but has not yet been delivered because of other
application processing, freeing of events, or other causes.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrentUnitID Property, DataEvent.

VideoMode Property

Syntax VideoMode: int32 { read-write, access after open-claim-enable }

Remarks Holds the video ModeId selected for the video unit indicated by the
CurrentUnitID property. The ModeId represents one of the selections in the
VideoModesList property.

This property is initialized to the Service dependent default video ModeId used by
each video unit online when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An illegal unit id was specified. The ErrorString
property is updated.

E_FAILURE An error occurred while communicating with the video
unit indicated in the CurrentUnitID property. The
ErrorString property is updated.

See Also CurrentUnitID Property, VideoModesList Property.

657 Properties (UML attributes)
VideoModesList Property

Syntax VideoModesList: string { read-only, access after open-claim-enable }

Remarks Holds the video modes supported for the video unit indicated in the
CurrentUnitID property. The video modes are listed in a comma delineated string
with the following format:
<ModeId>:<Height>x<Width>x<NumberOfColors><M|C>.
The ModeId values are determined by the Remote Order Display system.
M = Monochrome (and gray scales) and C = Color.

For example, if the string is “1:40x25x16C,2:80x25x16C”, then the video unit
supports two video modes, ModeId 1 and ModeId 2. ModeId 1 has 40 rows, 25
columns, 16 colors, and is Color. ModeId 2 has 80 rows, 25 columns, 16 colors,
and is Color.

The ModeId is used to initialize the VideoMode property for each video unit
online.

This property is initialized to the video modes list supported by each video unit
online when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrentUnitID Property, VideoMode Property.

VideoSaveBuffers Property

Syntax VideoSaveBuffers: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of save buffers for the video unit indicated in the
CurrentUnitID property. This property should be consulted when using the
saveVideoRegion, restoreVideoRegion and freeVideoRegion methods. When
set to 0, this indicates that buffering for the selected unit is not supported. When
this property is greater than 0, the Remote Order Display device can save at
minimum one entire video screen for the selected video unit.

This property is initialized for each video unit online when the device is first
enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CurrentUnitID Property, saveVideoRegion Method, restoreVideoRegion
Method, freeVideoRegion Method.

658
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
Methods (UML operations)

checkHealth Method (Common)

Syntax checkHealth (level: int32):
void { raises exception, use after open-claim-enable }

The level parameter indicates the level of health check to be performed on the
device. The following values may be specified:

Value Meaning

CH_INTERNAL Perform a health check that does not physically change
the device. The device is tested by internal tests to the
extent possible.

CH_EXTERNAL Perform a more thorough test that may change the
device. For example, a pattern may be displayed on the
video.

CH_INTERACTIVE Perform an interactive test of the device. The Service
will typically display a modal dialog box to present test
options and results.

Remarks When CH_INTERNAL or CH_EXTERNAL level is requested, the method
checks the health of the unit indicated in the CurrentUnitID property. If the
current unit ID property is zero, an EROD_NOUNITS error is set. When the
current unit ID property is set to a unit that is not currently online, the device will
attempt to check the health of the video unit and report a communication error if
necessary. The CH_INTERACTIVE health check operation is up to the Service
designer.

A text description of the results of this method is placed in the CheckHealthText
property.

The UnitsOnline property will be updated with any changes before returning to
the application.

This method is always synchronous.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_EXTENDED ErrorCodeExtended = EROD_NOUNITS: The
CurrentUnitID property is zero.

E_FAILURE An error occurred while communicating with the video
unit indicated in CurrentUnitID property.

See Also CurrentUnitID Property, UnitsOnline Property.

659 Methods (UML operations)
clearInput Method (Common)

Syntax clearInput ():
void { raises exception, use after open-claim }

Remarks Clears the device input that has been buffered for the unit indicated in the
CurrentUnitID property. If the current unit ID property is zero, an
EROD_NOUNITS is set.

Any data events that are enqueued – usually waiting for DataEventEnabled to be
set to true and FreezeEvents to be set to false – are also cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_EXTENDED ErrorCodeExtended = EROD_NOUNITS: The
CurrentUnitID property is zero.

See Also CurrentUnitID Property, “Device Input Model” on page 18.

clearOutput Method (Common)

Syntax clearOutput ():
void { raises exception, use after open-claim }

Remarks Clears all outputs that have been buffered for the unit indicated in the
CurrentUnitID property, including video and tone outputs. If the current unit ID
property is zero, an EROD_NOUNITS is set.

Any output complete and output error events that are enqueued – usually waiting
for DataEventEnabled to be set to true and FreezeEvents to be set to false – are
also cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_EXTENDED ErrorCodeExtended = EROD_NOUNITS: The
CurrentUnitID property is set to zero.

See Also CurrentUnitID Property, “Device Output Models” on page 21.

660
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
clearVideo Method

Syntax clearVideo (units: int32, attribute: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which video unit(s) to operate on.

attribute See Model on page 643 in the General Information section.

Remarks Clears the entire display area for the video unit(s) indicated in the units parameter.
The display area will be cleared using the attribute placed in the attribute
parameter.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

See Also AsyncMode Property, “Model” on page 643

clearVideoRegion Method

Syntax clearVideoRegion (units: int32, row: int32, column: int32, height: int32,
width: int32, attribute: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which video unit(s) to operate on.

row The region’s start row.

column The region’s start column.

height The number of rows in the region.

width The number of columns in the region.

attribute See “Model” on page 643 in the General Information section.

Remarks Clears the specified video region for the video unit(s) indicated in the units
parameter. The display area will be cleared using the attribute placed in the
attribute parameter.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_FAILURE An error occurred while communicating with one of the video
units indicated in units. The ErrorUnits and ErrorString
properties are updated. (Can only occur if AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, “Model” on
page 643.

661 Methods (UML operations)
controlClock Method

Syntax controlClock (units: int32, function: int32, clockId: int32, hour: int32,
min: int32, sec: int32, row: int32, column: int32, attribute: int32,
mode: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which video unit(s) to operate on.

function The requested clock command. See values below.

clockId Clock identification number. The valid values can be from 1 -
Clocks. When the function parameter is
 ROD_CLK_PAUSE, ROD_CLK_RESUME,
 or ROD_CLK_STOP
then clockId can be ROD_CLK_ALL to specify all clocks started
on the specified video unit(s).

hour The initial hours for the clock display.

min The initial minutes for the clock display.

sec The initial seconds for the clock display.

row The clock’s row.

column The clock’s start column.

attribute See “Model” on page 643 in the General Information section.

mode The type of clock to display. See values below.

The function parameter values are:

Value Meaning

ROD_CLK_START Starts a clock display assigned to the given clockId.

ROD_CLK_PAUSE Temporarily stops a clock from updating the display
until a ROD_CLK_RESUME requested.

ROD_CLK_RESUME Resumes a clock that was previously paused, such that
display updates continue.

ROD_CLK_STOP Permanently stops the clock from updating the display
and the clockId becomes free.

ROD_CLK_MOVE Moves an instantiated clock to a new position.

The mode parameter values are:

Value Meaning

ROD_CLK_SHORT Displays a clock with “M:SS” format.

ROD_CLK_NORMAL Displays a clock with “MM:SS” format.

ROD_CLK_12_int Displays a 12 hour clock with “HH:MM:SS” format.

ROD_CLK_24_int Displays a 24 hour clock with “HH:MM:SS” format.

662
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
Remarks Performs the clock command requested in the function parameter on the video
unit(s) indicated in the units parameter. The clock will be displayed in the
requested mode format at the location found in the row and column parameters.

The clock will start at the specified hour, min, and sec, time values and will be
updated every second until a ROD_CLK_PAUSE or ROD_CLK_STOP is
requested for this clockId.

When a ROD_CLK_PAUSE, ROD_CLK_RESUME, or ROD_CLK_STOP
command is issued, the hour, min, sec, row, column, attribute, and mode
parameters are ignored. During a ROD_CLK_PAUSE command, the clock
display updates are suspended. During a ROD_CLK_RESUME command, the
clock updates continue.

If a ROD_CLK_PAUSE, ROD_CLK_RESUME, ROD_CLK_STOP or
ROD_CLK_MOVE command is requested on an uninitialized clockId for any of
the video units indicated in the units parameter, a EROD_BADCLK error is
thrown. If a ROD_CLK_RESUME command is requested without doing a
ROD_CLK_PAUSE, this has no effect and no exception is thrown.

When a ROD_CLK_MOVE command is issued, the clock is moved to the new
location found in the row and column parameters. The hour, min, sec, attribute and
mode parameters are ignored for this command function.

Generally a video unit can support the number of clocks indicated in the Clocks
property. However, the ROD_CLK_START command will raise an exception
containing EROD_NOCLOCKS if it exceeds the number of SystemClocks even
though the Clocks property may indicate the unit can support more clocks than
allocated for that unit.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_EXTENDED ErrorCodeExtended = EROD_BADCLK:
A ROD_CLK_PAUSE, ROD_CLK_RESUME,
ROD_CLK_START, ROD_CLK_MOVE command was
requested and the specified clockId has not been initialized by the
ROD_CLK_START command.

ErrorCodeExtended = EROD_NOCLOCKS: The
ROD_CLK_START failed because the number of
SystemClocks has been reached.

The ErrorUnits and ErrorString properties are updated.

E_FAILURE An error occurred while communicating with one of the video
units indicated in the units parameter. The ErrorUnits and
ErrorString properties are updated.

E_BUSY When a ROD_CLK_START command is requested but the
specified clockId is in use. The ErrorUnits and ErrorString
properties are updated.

See Also Clocks Property, ErrorString Property, ErrorUnits Property, “Model” on page
643.

663 Methods (UML operations)
controlCursor Method

Syntax controlCursor (units: int32, function: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which video unit(s) to operate on.

function The cursor command, indicating the type of cursor to display.
See values below.

Value Meaning

ROD_CRS_LINE enable a solid underscore line.

ROD_CRS_LINE_BLINK enable a blinking solid underscore cursor.

ROD_CRS_BLOCK enable a solid block cursor.

ROD_CRS_BLOCK_BLINK enable a blinking solid block cursor.

ROD_CRS_OFF Disable cursor.

Remarks Enables or disables the cursor depending on the function parameter, for the video
unit(s) indicated in the units parameter.

When the function is ROD_CRS_OFF, the cursor is disabled, otherwise the cursor
is enabled as the requested cursor type. If the video unit cannot support the
requested cursor type, the Service will use the next closest cursor type.

The cursor attribute is taken from the current cursor location.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_FAILURE An error occurred communicating with one of the video
units indicated in units. The ErrorUnits and
ErrorString properties are updated.

See Also ErrorString Property, ErrorUnits Property.

664
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
copyVideoRegion Method

Syntax copyVideoRegion (units: int32, row: int32, column: int32, height: int32,
width: int32, targetRow: int32, targetColumn: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which video unit(s) to operate on.

row The region’s start row.

column The region’s start column.

height The number of rows in the region.

width The number of columns in the region.

targetRow The start row of the target location.

targetColumn The start column of the target location.

Remarks Copies a region of the display area to a new location on the display area for the
video unit(s) indicated in the units parameter. The source area is defined by the
row, column, height, and width parameters. The top-left corner of the target
location is defined by the targetRow and targetColumn parameters. If the ranges
overlap the copy is done such that all original data is preserved.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_FAILURE An error occurred while communicating with one of the
video units indicated in units. The ErrorUnits and
ErrorString properties are updated. (Can only occur if
AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, “Model” on
page 643.

665 Methods (UML operations)
displayData Method

Syntax displayData (units: int32, row: int32, column: int32, attribute: int32,
data: string):
void { raises exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which video unit(s) to operate on.

row The start row for the text.

column The start column for the text.

attribute The video attribute. See Model on page 643 in the General
Information section.

data The string of characters to display.

Remarks Displays the characters in data beginning at the location specified by row and
column, and continues in succeeding columns on the video unit(s) indicated in the
units parameter. Any characters that extend beyond the last column will be
discarded.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_FAILURE An error occurred while communicating with one of the
video units indicated in units. The ErrorUnits and
ErrorString properties are updated. (Can only occur if
AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, “Model” on
page 643.

666
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
drawBox Method

Syntax drawBox (units: int32, row: int32, column: int32, height: int32, width: int32,
attribute: int32, bordertype: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which video unit(s) to operate on.

row The box’s start row.

column The box’s start column.

height The number of rows in the box.

width The number of columns in the box.

attribute The video attribute. See “Model” on page 643 in the General
Information section.

bordertype The border type to be drawn. Can be any printable character
or a defined border type. See values below.

Value Meaning

ROD_BDR_SINGLE A single line border.

ROD_BDR_DOUBLE A double line border.

ROD_BDR_SOLID A solid block border.

Remarks Draws a box on the video unit(s) indicated in the units parameter.

The Remote Order Display will attempt to draw a box with the border type
specified. If the character set does not support the chosen border type, the Service
will choose the best fit from the given character set.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_FAILURE An error occurred while communicating with one of the
video units indicated in units. The ErrorUnits and
ErrorString properties are updated.

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, “Model” on
page 643.

667 Methods (UML operations)
freeVideoRegion Method

Syntax freeVideoRegion (units: int32, bufferId: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which video unit(s) to operate on.

bufferId Number identifying the video buffer to free. Valid values
range from 1 to the VideoSaveBuffers property for a
selected unit(s).

Remarks Frees any buffer memory allocated for the video unit(s) indicated in the units
parameter. The number of video buffers supported is stored in the
VideoSaveBuffers property for each video unit online. If the bufferId was never
used in a previous saveVideoRegion method, no action is taken.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_FAILURE An error occurred while communicating with one of the
video units indicated in units. The ErrorUnits and
ErrorString properties are updated.

See Also ErrorString Property, ErrorUnits Property, VideoSaveBuffers Property,
saveVideoRegion Method.

resetVideo Method

Syntax resetVideo (units: int32):
void { raises exception, use after open-claim-enable }

units is a bitwise mask indicating which video unit(s) to operate on.

Remarks Sets the video unit(s) indicated in the units parameter to a power on state. All
Service buffers and clocks associated with the unit(s) are released. All settable
characteristics are set to default values.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_FAILURE An error occurred while communicating with one of the
video units indicated in units. The ErrorUnits and
ErrorString properties are updated.

See Also ErrorString Property, ErrorUnits Property.

668
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
restoreVideoRegion Method

Syntax restoreVideoRegion (units: int32, targetRow: int32, targetColumn: int32,
bufferId: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which video unit(s) to operate on.

targetRow The start row of the target location.

targetColumn The start column of the target location.

bufferId Number identifying the source video buffer to use. Valid
values range from 1 to the VideoSaveBuffers property for
the selected unit(s).

Remarks Restores a previously saved video region of the display area from the requested
bufferId for the video unit(s) indicated in the units parameter. A region can be
saved using the saveVideoRegion method. The number of video buffers supported
is stored in the VideoSaveBuffers property for each video unit online. The target
location is defined by the targetRow and targetColumn parameters. This method
doesn’t free the memory after restoring, therefore, this method can be used to copy
a video region to multiple locations on the display. Use the freeVideoRegion
method to free any memory allocated for a video buffer.

If the bufferId does not contain a previously saved video region for the units
selected, a EROD_NOREGION exception is raised.

Video regions cannot be restored between video units. For example, the
saveVideoRegion method is called with units = 0000 1000 and bufferId = 1. This
will save a video region for the Unit Id 4, in to Buffer 1 for that unit. If this method
is called with units = 0000 0100 and bufferId = 1 with the intention of restoring the
previously saved buffer to Unit Id 3, then either a UposException with ErrorCode
of EROD_NOREGION would be thrown, or an unwanted region would be
restored.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_EXTENDED ErrorCodeExtended = EROD_NOREGION: The
bufferId does not contain a previously saved video
region.

E_FAILURE An error occurred while communicating with one of the
video units indicated in units. The ErrorUnits and
ErrorString properties are updated. (Can only occur if
AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property,
VideoSaveBuffers Property, saveVideoRegion Method.

669 Methods (UML operations)
saveVideoRegion Method

Syntax saveVideoRegion (units: int32, row: int32, column: int32, height: int32,
width: int32, bufferId: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which video unit(s) to operate on.

row The start row of the region to save.

column The start column of the region to save.

height The number of rows in the region to save.

width The number of columns in the region to save.

bufferId Number identifying the video buffer to use. Valid values
range from 1 to the VideoSaveBuffers property for a
selected unit(s).

Remarks Saves the specified video region of the display area to one of the provided video
buffers for the video unit(s) indicated in the units parameter. The number of video
buffers supported is stored in the VideoSaveBuffers property for each video unit
online. However, a UposException will be raised if the requested buffer exceeds
the number of SystemVideoSaveBuffers even though the VideoSaveBuffers
property may indicated the unit can support more save buffers than currently
allocated for that unit.

If VideoSaveBuffers is greater than 0, the Service will be able to support at
minimum one entire video screen. This does not guarantee that the Service can
save an entire video screen in each supported buffer for a single unit. A
UposException is raised when all the buffer memory has been allocated for a
specific unit.

The source area is defined by the row, column, height, and width parameters. The
video region can be restored to the screen by calling the restoreVideoRegion
method. If saveVideoRegion is called twice with the same bufferId, the previous
video data is lost, and any allocated memory is returned to the system.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL bufferId, row, column, height, or width is out of range.
The ErrorUnits and ErrorString properties are
updated.

E_EXTENDED ErrorCodeExtended = EROD_NOBUFFERS:
Requested buffer exceeds the number of
SystemVideoSaveBuffers.

670
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
ErrorCodeExtended = EROD_NOROOM:
All the buffer memory has been allocated for a specific
unit. The ErrorUnits and ErrorString properties are
updated.

E_FAILURE An error occurred while communicating with one of the
video units indicated in units. The ErrorUnits and
ErrorString properties are updated. (Can only occur if
AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property,
SystemVideoSaveBuffers Property, VideoSaveBuffers Property,
restoreVideoRegion Method.

selectCharacterSet Method

Syntax selectCharacterSet (units: int32, characterSet: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which video unit(s) to operate on.

characterSet Contain the character set for displaying characters. Values
are:

Value Meaning

Range 101 - 199 A device-specific character set that does not match a
code page, nor the ASCII or ANSI character sets.

Range 400 - 990 Code page; matches one of the standard values.

ROD_CS_UNICODE The character set supports UNICODE. The value of this
constant is 997.

ROD_CS_ASCII The ASCII character set, supporting the ASCII
characters between 20-hex and 7F-hex. The value of this
constant is 998.

ROD_CS_ANSI The ANSI character set. The value of this constant is
999.

Remarks Selects a compatible character set for the video unit(s) indicated in the units
parameter.

The CharacterSet property is updated for each video unit id that is successfully
assigned a new character set.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_FAILURE An error occurred while communicating with one of the
video units indicated in units. The ErrorUnits and
ErrorString properties are updated.

See Also ErrorString Property, ErrorUnits Property, CapSelectCharacterSet Property,
CharacterSet Property.

671 Methods (UML operations)
setCursor Method

Syntax setCursor (units: int32, row: int32, column: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which video unit(s) to operate on.

row Row to place the cursor on.

column Column to place the cursor on.

Remarks Updates the cursor position on the video unit(s) indicated in the units parameter.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_FAILURE An error occurred while communicating with one of the
video units indicated in units. The ErrorUnits and
ErrorString properties are updated.

See Also ErrorString Property, ErrorUnits Property.

transactionDisplay Method

Syntax transactionDisplay (units: int32, function: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which video unit(s) to operate on.

function Transaction control function. Valid values are:

Value Meaning

ROD_TD_TRANSACTION
Begin a transaction.

ROD_TD_NORMAL End a transaction by displaying the buffered data.

Remarks Enters or exits transaction mode for the video unit(s) indicated in the units
parameter.

If function is ROD_TD_TRANSACTION, then transaction mode is entered.
Subsequent calls to clearVideo, clearVideoRegion, copyVideoRegion,
displayData, drawBox, restoreVideoRegion, saveVideoRegion, and
updateVideoRegionAttribute will buffer the display data (either at the video unit
or the Service, depending on the display capabilities) until transactionDisplay is
called with the function parameter set to ROD_TD_NORMAL. (In this case, the
display methods only validate the method parameters and buffer the data – they do
not initiate displaying. Also, the value of the AsyncMode property does not affect
their operation: No OutputID will be assigned to the request, nor will an
OutputCompleteEvent be enqueued.)

672
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
If function is ROD_TD_NORMAL, then transaction mode is exited. If some data
was buffered by calls to the methods clearVideo, clearVideoRegion,
copyVideoRegion, displayData, drawBox, restoreVideoRegion,
saveVideoRegion, and updateVideoRegionAttribute, then the buffered data is
displayed. The entire transaction is treated as one message. This method is
performed synchronously if AsyncMode is false, and asynchronously if
AsyncMode is true.

Calling the clearOutput method cancels transaction mode for the unit indicated in
the CurrentUnitID property. Any buffered print lines are also cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress for one of the
video units indicated in units. The ErrorUnits and
ErrorString properties are updated. (Can only occur if
AsyncMode is false and function is
ROD_TD_NORMAL.)

E_FAILURE An error occurred while communicating with one of the
video units indicated in units. The ErrorUnits and
ErrorString properties are updated. (Can only occur if
AsyncMode is false and function is
ROD_TD_NORMAL.)

updateVideoRegionAttribute Method

Syntax updateVideoRegionAttribute (units: int32, function: int32, row: int32,
column: int32, height: int32, width: int32, attribute: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which video unit(s) to operate on.

function The attribute command. See values below.

row The region’s start row.

column The region’s start column.

height The number of rows in the region.

width The number of columns in the region.

attribute See Model on page 643 in the General Information section.

The function parameter values are:

Value Meaning

ROD_UA_SET Set the region with the new attribute.

ROD_UA_INTENSITY_ON Turn on foreground intensity in the region.

673 Methods (UML operations)
Value Meaning

ROD_UA_INTENSITY_OFF Turn off foreground intensity in the region.

ROD_UA_REVERSE_ON Reverse video the region.

ROD_UA_REVERSE_OFF Remove reverse video from the region.

ROD_UA_BLINK_ON Turn on blinking in the region.

ROD_UA_BLINK_OFF Turn off blinking in the region.

Remarks Modifies the attribute on the video unit(s) indicated in the units parameter in the
region defined by the row, column, height, and width parameters. When the
function parameter is ROD_UA_SET, the region’s attributes will be replaced with
the new value in the attribute parameter; otherwise the attribute parameter is
ignored and the region’s attributes will be modified.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_FAILURE An error occurred while communicating with one of the
video units indicated in units. The ErrorUnits and
ErrorString properties are updated. (Can only occur if
AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, “Model” on
page 643.

674
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
videoSound Method

Syntax videoSound (units: int32, frequency: int32, duration: int32,
numberOfCycles: int32, interSoundWait: int32):
void { raises exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which video unit(s) to operate on.

frequency Tone frequency in Hertz.

duration Tone duration in milliseconds.

numberOfCycles If UPOS_FOREVER, then start tone sounding and, repeat
continuously. Else perform the specified number of cycles.

interSoundWait When numberOfCycles is not one, then pause for
interSoundWait milliseconds before repeating the tone cycle
(before playing the tone again).

Remarks Sounds the video enunciator for the video(s) indicated in the units parameter.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

The duration of a video tone cycle is:

duration parameter + interSoundWait parameter (except on the last tone cycle)

After the video has started an asynchronous sound, then the clearOutput method
will stop the sound. (When an interSoundWait value of UPOS_FOREVER was
used to start the sound, then the application must use clearOutput to stop the
continuous sounding of tones.)

If CapTone is false for the selected unit(s), a UposException is raised.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_FAILURE An error occurred while communicating with one of the
video units indicated in units. The ErrorUnits and
ErrorString properties are updated. (Can only occur if
AsyncMode is false.)

See Also AsyncMode Property, ErrorString Property, ErrorUnits Property, CapTone
Property, clearOutput Method.

675 Events (UML interfaces)
Events (UML interfaces)

DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when input data from a video touch unit is available.

Attributes This event contains the following attribute:

Attribute Type Description

Status int32 As described below

The Status attribute is divided into four bytes as indicated below:

The low word contains the Event type. The high word contains additional data
depending on the Event type. When the Event type is ROD_DE_TOUCH_UP,
ROD_DE_TOUCH_DOWN, or ROD_DE_TOUCH_MOVE, the high word
indicates where the touch occurred. The low byte contains the Column position
and the high byte contains the Row position, with valid values ranging from 0-255.

Remarks This event can be filtered at the Remote Order Display device by setting the
EventType property.

The EventUnitID property is updated before the event is delivered.

See Also “Device Input Model” on page 18, EventUnitID Property, DataEventEnabled
Property, FreezeEvents Property.

High Word Low Word (Event Type)

High Byte Low Byte

Row Column ROD_DE_TOUCH_UP
 ROD_DE_TOUCH_DOWN
 ROD_DE_TOUCH_MOVE

676
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific Remote Order Display Service to provide events to the
application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Remote Order Display devices which may
not have any knowledge of the Device Service’s need for this event.

See Also “Events” on page 15, directIO Method.

ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a Remote Order Display error has been detected and
a suitable response by the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attribute Type Description

ErrorCode int32 Error code causing the error event. See list of
ErrorCodes on page 16.

ErrorCodeExtended
int32 Extended error code causing the error event. If

ErrorCode is E_EXTENDED, then see values below.
Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

677 Events (UML interfaces)
ErrorResponse int32 Error response, whose default value may be overridden
by the application (i.e., this property is settable). See
values below.

The ErrorLocus property may be one of the following:

Value Meaning

EL_OUTPUT Error occurred while processing asynchronous output.

EL_INPUT Error occurred while gathering or processing event-
driven input. No input data is available.

EL_INPUT_DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER_RETRY Use only when locus is EL_OUTPUT.
Retry the asynchronous output. The error state is exited.
Default when locus is EL_OUTPUT.

ER_CLEAR Clear the buffered input data. The error state is exited.
Default when locus is EL_INPUT.

ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA.
Acknowledges the error and directs the Device to
continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and the DataEventEnabled property is
again set to true, then another ErrorEvent is delivered
with locus EL_INPUT.
Default when locus is EL_INPUT_DATA.

Remarks Input error events are not delivered until the DataEventEnabled property is true,
so that proper application sequencing occurs.

The EventUnits and EventString properties are updated before the event is
delivered.

See Also “Device Output Models” on page 21, “Device States” on page 26,
DataEventEnabled Property, EventUnits Property, EventString Property.

678
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the
OutputID property has completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description

OutputID int32 The ID number of the asynchronous output request that
is complete.

Remarks Enqueued when a previously started asynchronous output request completes
successfully. The EventUnits property is updated before the event is delivered.

See Also EventUnits Property, “Device Output Models” on page 21.

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a video unit.

Attributes This event contains the following attribute:

Attribute Type Description

Status int32 Reports a change in the power state of a display.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on page 56.

Remarks Enqueued when the Remote Order Display detects a power state change.

Deviation from the standard StatusUpdateEvent (see page 56):

• Before delivering the event, the EventUnits property is set to the units for
which the new power state applies.

• When the Remote Order Display is enabled, then a StatusUpdateEvent is
enqueued to specify the bitmask of online units.

• While the Remote Order Display is enabled, a StatusUpdateEvent is
enqueued when the power state of one or more units change. If more than one
unit changes state at the same time, the Service may choose to either enqueue
multiple events or to coalesce the information into a minimal number of events
applying to EventUnits.

See Also EventUnits Property.

C H A P T E R 1 9

Scale

This Chapter defines the Scale device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.3 open

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.3 open

DataEventEnabled: boolean { read-write } 1.3 open

DeviceEnabled: boolean { read-write } 1.0 open & claim

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 Not Supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open

680
UnifiedPOS Retail Peripheral Architecture Chapter 19

Scale
Properties (Continued)

Specific Type Mutability Version May Use After

CapDisplay: boolean { read-only } 1.2 open

CapDisplayText: boolean { read-only } 1.3 open

CapPriceCalculating: boolean { read-only } 1.3 open

CapTareWeight: boolean { read-only } 1.3 open

CapZeroScale: boolean { read-only } 1.3 open

AsyncMode: boolean { read-write } 1.3 open

MaxDisplayTextChars: int32 { read-only } 1.3 open

MaximumWeight: int32 { read-only } 1.0 open

SalesPrice: currency { read-only } 1.3 open, claim, & enable

TareWeight: int32 { read-write } 1.3 open, claim, & enable

UnitPrice: currency { read-write } 1.3 open, claim, & enable

WeightUnit: int32 { read-only } 1.0 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.3

close ():
void { raises-exception, use after open }

1.3

claim (timeout: int32):
void { raises-exception, use after open }

1.3

release ():
void { raises-exception, use after open, claim }

1.3

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.3

clearInput ():
void { raises-exception, use after open, claim }

1.3

clearOutput ():
void { }

Not
supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.3

Specific

Name

displayText (data: string):
void { raises exception, use after open, claim, enable }

1.3

readWeight (inout weightData: int32, timeout: int32):
void { raises exception, use after open, claim, enable }

1.3

zeroScale ():
void { raises exception, use after open, claim, enable }

1.3

681 Summary
Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.3

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.3

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not Supported

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }

682
UnifiedPOS Retail Peripheral Architecture Chapter 19

Scale
General Information

The Scale programmatic name is “Scale”.

Capabilities

The scale Device has the following capability:

• Provides item weight to the application. The measure of weight may be in
grams, kilograms, ounces, or pounds, depending upon the scale device.

The scale may have the following additional capabilities:

• Includes an integrated display with the current weight, or with the current
weight plus application-specified text.

• Performs price calculations (weight X unit price) and returns the sale price.
(This feature is mostly used in Europe at this time.)

• Supports application setting of tare weight.

• Supports application zeroing of the scale.

683 General Information
Scale Class Diagram

The following diagram shows the relationships between the Scale classes.

UposException
(from upos)

<<exception>>

ScaleConst
(from upos)

<<utility>>

UposConst
(from upos)

<<utility>>DataEvent

<<prop>> Status : int32

(from events)

<<event>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event >>

tatusUpdateEvent

<<prop>> Status : int32
(from events)

<<event>>

ScaleControl

<<capability>> CapDisplay : boolean
<<capability>> CapDisplayText : boolean
<<capability>> CapPriceCalculating : boolean
<<capability>> CapTareWeight : boolean
<<capability>> CapZeroScale : boolean
<<prop>> AsyncMode : boolean
<<prop>> MaxDisplayTextChars : int32
<<prop>> MaximumWeight : int32
<<prop>> SalesPrice : int32
<<prop>> TareWeight : int32
<<prop>> UnitPrice : int32
<<prop>> WeightUnit : int32

displayText(data : string) : void
readWeight(inout weightData : binary, timeout : int32) : void
zeroScale() : void

(from upos)

<<Interface>>

fires

fires

fires

<<sends>>

<<uses>>

f ires

BaseControl
(from upos)

<<Interface>> <<uses>>

<<sends>>

684
UnifiedPOS Retail Peripheral Architecture Chapter 19

Scale
Model

The general model of a scale is:

• A scale returns the weight of an item placed on its weighing surface.

• The primary scale method is readWeight. By default, it is performed
synchronously. It returns after reading data from the scale; the weight is
returned in the readWeight’s weightData parameter. If an error occurs or if
the timeout elapses, a UposException will be thrown.

• UnifiedPOS Release 1.3 and later - Asynchronous Input

If the AsyncMode property is true when readWeight is called, then the
method is performed asynchronously. It initiates event driven input and
returns immediately. The timeout parameter specifies the maximum time the
application wants to wait for a settled weight. Additional points are:

• If an error occurs while initiating event driven input (such as the device is
offline), then a UposException is thrown. Otherwise, readWeight returns
immediately to the application, and scale processing continues
asynchronously.

• If a settled weight is received, then a DataEvent is enqueued containing
the weight data in the Status property.

• If a scale error occurs (including a timeout with no settled weight), then
an ErrorEvent is enqueued. The application event handler may retry the
weighing process by setting the event’s ErrorResponse property to
ER_RETRY.

• Only one asynchronous call to readWeight can be in progress at a time.
An attempt to nest asynchronous scale operations will result in a
UposException being thrown.

• An asynchronous scale operation may be cancelled with the clearInput
method.

For price-calculating scales, the application should set the UnitPrice property
before calling readWeight. After a weight is read (and just before the DataEvent
is delivered to the application, for asynchronous mode), the SalesPrice property is
set to the calculated price of the item.

Device Sharing

The scale is an exclusive-use device, as follows:

• After opening the device, properties are readable.

• The application must claim the device before enabling it.

• The application must claim and enable the device before calling methods that
manipulate the device.

• See the “Summary” table for precise usage prerequisites.

685 Properties (UML attributes)
Properties (UML attributes)

AsyncMode Property Added in Release 1.3

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, then the readWeight method will be performed asynchronously. If false,
the readWeight method will be performed synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also readWeight Method.

CapDisplay Property

Syntax CapDisplay: boolean { read-only, access after open }

Remarks If true, the scale includes an integrated display that shows the current weight. If
false, the application may need to show the current weight on another display.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CapDisplayText Property, MaxDisplayTextChars Property.

CapDisplayText Property Added in Release 1.3

Syntax CapDisplayText: boolean { read-only, access after open }

Remarks If true, the scale includes an integrated display that shows the current weight and
can also show text that describes the item being weighed. If false, extra text cannot
be shown on the display.

If true, then CapDisplay must also be true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CapDisplay Property, MaxDisplayTextChars Property.

686
UnifiedPOS Retail Peripheral Architecture Chapter 19

Scale
CapPriceCalculating Property Added in Release 1.3

Syntax CapPriceCalculating: boolean { read-only, access after open }

Remarks If true, the scale can calculate prices. If false, the scale only returns a weight.

For price calculating scales the calculation unit is in the scale rather than in the
data-receiving terminal.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also readWeight Method, WeightUnit Property, UnitPrice Property, SalesPrice
Property.

CapTareWeight Property Added in Release 1.3

Syntax CapTareWeight: boolean { read-only, access after open }

Remarks If true, the scale includes setting a tare value. If false, the scale does not support
tare values.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also TareWeight Property.

CapZeroScale Property Added in Release 1.3

Syntax CapZeroScale: boolean { read-only, access after open }

Remarks If true, the application can set the scale weight to zero. If false, the scale does not
support programmatic zeroing.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also zeroScale Method.

687 Properties (UML attributes)
MaxDisplayTextChars Property Added in Release 1.3

Syntax MaxDisplayTextChars: int32 { read-only, access after open }

Remarks Holds the number of characters that may be displayed on an integrated display for
the text which describes an article.

If CapDisplayText is false, then the device does not support text displaying and
this property is always zero.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also CapDisplay Property, CapDisplayText Property.

MaximumWeight Property

Syntax MaximumWeight: int32 { read-only, access after open }

Remarks Holds the maximum weight measurement possible from the scale. The
measurement unit is available via the WeightUnit property.

This property has an assumed decimal place located after the “thousands” digit
position. For example, an actual value of 12345 represents 12.345, and an actual
value of 5 represents 0.005.

Changing the WeightUnit property will also cause this property to change.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also WeightUnit Property.

688
UnifiedPOS Retail Peripheral Architecture Chapter 19

Scale
SalesPrice Property Added in Release 1.3/Updated in Release 1.6

Syntax SalesPrice: currency { read-only, access after open }

Remarks Holds the sales price read from the scale for price calculating scales. For price
calculating scales the scale calculates this value during the process of weighing by
multiplying the UnitPrice property by the acquired weight. This property is a
monetary value stored using an implied four decimal places. For example, an
actual value of 12345 represents 1.2345.

This property is set before the readWeight method returns (in synchronous mode)
or the DataEvent is delivered (in asynchronous mode).

If CapPriceCalculating is false, then the device is not a price calculating scale
and SalesPrice is always zero.

This property is initialized to zero when the device is first enabled following the
open method. (In releases prior to 1.5, this description stated that initialization
took place by the open method. In Release 1.5, it was updated for consistency with
other devices.)

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also readWeight Method, WeightUnit Property, CapPriceCalculating Property,
UnitPrice Property.

TareWeight Property Added in Release 1.3/Updated in Release 1.6

Syntax TareWeight: int32 { read-write, access after open }

Remarks Holds the tare weight of scale data. This property has an assumed decimal place
located after the “thousands” digit position. For example, an actual value of 12345
represents 12.345, and an actual value of 5 represents 0.005. The measured unit is
specified in the WeightUnit property. If CapTareWeight is false, then the device
does not support setting of a tare value and this property is always zero.

Tare weight is not included in the item weight returned by the readWeight
method.

This property is initialized to the scale’s default tare weight (usually zero), when
the device is first enabled following the open method. (In releases prior to 1.5, this
description stated that initialization took place by the open method. In Release 1.5,
it was updated for consistency with other devices.)

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL CapTareWeight is false or an invalid tare value was
specified.

See Also readWeight Method, WeightUnit Property, CapTareWeight Property.

689 Properties (UML attributes)
UnitPrice Property Added in Release 1.3/Updated in Release 1.6

Syntax UnitPrice: currency { read-write, access after open }

Remarks Holds the unit price of the article to be weighed. For price calculating scales this
property is to be set before calling the readWeight method. During weighing, the
scale sets the SalesPrice property to the product of the item’s weight and this
property. This property is a monetary value stored using an implied four decimal
places. For example, an actual value of 12345 represents 1.2345.

If CapPriceCalculating is false, then setting of a unit price is not supported and
this property is always zero.

This property is initialized to zero when the device is first enabled following the
open method. (In releases prior to 1.5, this description stated that initialization
took place by the open method. In Release 1.5, it was updated for consistency with
other devices.)

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL CapPriceCalculating is false or an invalid price was
specified.

See Also readWeight Method, WeightUnit Property, CapPriceCalculating Property,
SalesPrice Property.

WeightUnit Property

Syntax WeightUnit: int32 { read-only, access after open }

Remarks Holds the unit of weight of scale data, and has one of the following values:

Value Meaning

SCAL_WU_GRAM Unit is a gram.

SCAL_WU_KILOGRAM Unit is a kilogram (= 1000 grams).

SCAL_WU_OUNCE Unit is an ounce.

SCAL_WU_POUND Unit is a pound (= 16 ounces).

This property is initialized to the scale’s weight unit by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

690
UnifiedPOS Retail Peripheral Architecture Chapter 19

Scale
Methods (UML operations)

displayText Method Added in Release 1.3

Syntax displayText (data: string):
 void { raises exception, use after open-claim-enable }

Parameter Description

data The string of characters to display.

Remarks If CapDisplayText is true, updates the text shown on the integrated display.
Calling this method with an empty string (“”) will clear the display.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid text was specified -- the text contains more
characters than MaxDisplayTextChars, or
CapDisplayText is false.

See Also CapDisplay Property, CapDisplayText Property, MaxDisplayTextChars
Property.

691 Methods (UML operations)
readWeight Method

Syntax readWeight (inout weightData: int32, timeout: int32):
 void { raises exception, use after open-claim-enable }

Parameter Description

weightData If AsyncMode is false, contains the returned value for
the weight measured by the scale, else zero.

timeout The number of milliseconds to wait for a settled weight
before failing the method. If zero, the method attempts
to read the scale weight, then returns the appropriate
status immediately. If UPOS_FOREVER (-1), the
method waits as long as needed until a weight is
successfully read or an error occurs.

Remarks Reads a weight from the scale.

The weight returned, weightData, has an assumed decimal place located after the
“thousands” digit position. For example, an actual value of 12345 represents
12.345, and an actual value of 5 represents 0.005.

Release 1.2
The weighing process is performed synchronously and the method will return after
finishing the weighing process. The weight is returned in the weightData
parameter.

Release 1.3 and later
If AsyncMode is false, then readWeight operates synchronously, as with earlier
releases.

If AsyncMode is true, the weighing process is performed asynchronously. The
method will initiate a read, then return immediately. Once the weighing process is
complete, a DataEvent is delivered with the item’s weight contained in the event’s
Status property.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid timeout parameter was specified.

E_TIMEOUT A stable non-zero weight was not available before
timeout milliseconds elapsed (only if AsyncMode is
false).

E_EXTENDED ErrorCodeExtended = ESCAL_OVERWEIGHT:
The weight was over MaximumWeight (can only be
returned if AsyncMode is false).

See Also UnitPrice Property, WeightUnit Property, CapPriceCalculating Property,
SalesPrice Property, TareWeight Property.

692
UnifiedPOS Retail Peripheral Architecture Chapter 19

Scale
zeroScale Method Added in Release 1.3

Syntax zeroScale ():
 void { raises exception, use after open-claim-enable }

Remarks If CapZeroScale is true, sets the current scale weight to zero. It may be used for
initial calibration, or to account for tare weight on the scale.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL CapZeroScale is false.

See Also CapZeroScale Property.

693 Events (UML interfaces)
Events (UML interfaces)

DataEvent Added in Release 1.3

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application that an asynchronous readWeight has completed.

Attributes This event contains the following attribute:

Attribute Type Description

Status int32 The weight of the item.

 Remarks If the scale is a price calculating scale, the unit price is placed in the UnitPrice
property and the calculated sales price is placed in the SalesPrice property before
this event is delivered.

See Also “Events” on page 15.

DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific Scale Service to provide events to the application that
are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Scale devices which may not have any
knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.

694
UnifiedPOS Retail Peripheral Architecture Chapter 19

Scale
ErrorEvent Added in Release 1.3

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a scale device error has been detected and a suitable
response by the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attribute Type Description

ErrorCode int32 Error code causing the error event. See list of
ErrorCodes on page 16.

ErrorCodeExtended
int32 Extended error code causing the error event. It may

contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application (i.e., this property is settable). See
values below.

The ErrorLocus property has one of the following values:

Value Meaning

EL_INPUT Error occurred while gathering or processing event-
driven input. No input data is available.

EL_INPUT_DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER_RETRY Retry the asynchronous input. The error state is exited.

ER_CLEAR Clear the buffered input data. The error state is exited.
Default when locus is EL_INPUT.

695 Events (UML interfaces)
ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA.
Acknowledges the error and directs the Device to
continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and DataEventEnabled is again set to
true, then another ErrorEvent is delivered with locus
EL_INPUT.
Default when locus is EL_INPUT_DATA.

Remarks Enqueued when an error is detected while trying to read scale data. This event is
not delivered until DataEventEnabled is true, so that proper application
sequencing occurs.

See Also “Events” on page 15.

StatusUpdateEvent Added in Release 1.3

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that a scale has had an operation status change.

Attributes This event contains the following attribute:

Attribute Type Description

Status int32 Indicates a status change.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on page 56.

Remarks Enqueued when a change in status of the scale device has occurred.

See Also “Events” on page 15.

696
UnifiedPOS Retail Peripheral Architecture Chapter 19

Scale

C H A P T E R 2 0

Scanner (Bar Code Reader)

This Chapter defines the Scanner device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 open

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.2 open

DataEventEnabled: boolean { read-write } 1.0 open

DeviceEnabled: boolean { read-write } 1.0 open & claim

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 Not Supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open

698
UnifiedPOS Retail Peripheral Architecture Chapter 20

Scanner (Bar Code Reader)
Properties (Continued)

Specific Type Mutability Version May Use After

DecodeData: boolean { read-write } 1.2 open

ScanData: binary { read-only } 1.0 open

ScanDataLabel: binary { read-only } 1.2 open

ScanDataType: int32 { read-only } 1.2 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { raises-exception, use after open, claim }

1.0

clearOutput ():
void { }

Not
supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

Specific

None

699 Summary
Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.0

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.0

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not Supported

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }

700
UnifiedPOS Retail Peripheral Architecture Chapter 20

Scanner (Bar Code Reader)
General Information

The Scanner programmatic name is “Scanner”.

Capabilities

The Scanner Device has the following capability:

• Reads encoded data from a label.

Scanner Class Diagram

The following diagram shows the relationships between the Scanner classes.

ScannerConst
(from upos)

<<utility>>

UposCons t
(from upos)

<<utility>>
UposException

(from upos)

<<exception>>
DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

DataEvent

<<prop>> Status : int32
(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

ScannerControl

<<prop>> DecodeData : boolean
<<prop>> ScanData : binary
<<prop>> ScanDataLabel : binary
<<prop>> ScanDataType : int32

(from upos)

<<Interface>>

<<sends>>

<<uses>>

fires

fires

f ires

fires

BaseControl
(from upos)

<<Interface>>

<<uses>><<sends>>

701 General Information
Model

The Scanner follows the general “Device Input Model” for event-driven input:

• When input is received from the scanner, a DataEvent is enqueued.

• If the AutoDisable property is true, then the device automatically disables
itself when a DataEvent is enqueued.

• An enqueued DataEvent can be delivered to the application when the
DataEventEnabled property is true and other event delivery requirements are
met. Just before delivering this event, data is copied into corresponding
properties, and further data events are disabled by setting DataEventEnabled
to false. This causes subsequent input data to be enqueued while the
application processes the current input and associated properties. When the
application has finished processing the current input and is ready for more
data, it reenables events by setting DataEventEnabled to true.

• An ErrorEvent (or events) is enqueued if an error occurs while gathering or
processing input, and is delivered to the application when DataEventEnabled
is true and other event delivery requirements are met.

• The DataCount property may be read to obtain the total number of enqueued
DataEvents.

• All enqueued input may be deleted by calling clearInput. See the clearInput
method description for more details.

Scanned data is placed into the property ScanData. If the application sets the
property DecodeData to true, then the data is decoded into the ScanDataLabel
and ScanDataType properties.

Device Sharing

The scanner is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins
reading input.

• See the “Summary” table for precise usage prerequisites.

702
UnifiedPOS Retail Peripheral Architecture Chapter 20

Scanner (Bar Code Reader)
Properties (UML attributes)

DecodeData Property

Syntax DecodeData: boolean { read-write, access after open }

Remarks If true, then ScanData will be decoded into the properties ScanDataLabel and
ScanDataType.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also “Device Input Model” on page 18

703 Properties (UML attributes)
ScanData Property

Syntax ScanData: binary { read-only, access after open }

Remarks Holds the data read from the scanner.

Scan data is, in general, in the format as delivered from the scanner. Message
header and trailer information are removed, however, since they do not contain
useful information for an application and are likely to be scanner-specific.

Common header information is a prefix character (such as an STX character).
Common trailer information is a terminator character (such as an ETX or CR
character) and a block check character if one is generated by the scanner.

This property should include a symbology character if one is returned by the
scanner (for example, an ‘A’ for UPC-A). It should also include check digits if
they are present in the label and returned by the scanner. (Note that both
symbology characters and check digits may or may not be present, depending upon
the scanner configuration. The scanner will return them if present, but will not
generate or calculate them if they are absent.)

Some merchandise may be marked with a supplemental barcode. This barcode is
typically placed to the right of the main barcode, and consists of an additional two
or five characters of information. If the scanner reads merchandise that contains
both main and supplemental barcodes, the supplemental characters are appended
to the main characters, and the result is delivered to the application as one label.
(Note that a scanner may support configuration that enables or disables the reading
of supplemental codes.)

Some merchandise may be marked with multiple labels, sometimes called multi-
symbol labels or tiered labels. These barcodes are typically arranged vertically,
and may be of the same or different symbology. If the scanner reads merchandise
that contains multiple labels, each barcode is delivered to the application as a
separate label. This is necessary due to the current lack of standardization of these
barcode types. One is not able to determine all variations based upon the individual
barcode data. Therefore, the application will need to determine when a multiple
label barcode has been read based upon the data returned. (Note that a scanner may
or may not support reading of multiple labels.)

Its value is set prior to a DataEvent being sent to the application.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also “Device Input Model” on page 18

704
UnifiedPOS Retail Peripheral Architecture Chapter 20

Scanner (Bar Code Reader)
ScanDataLabel Property

Syntax ScanDataLabel: binary { read-only, access after open }

Remarks Holds the decoded bar code label.

When DecodeData is false, this property will have zero length. When
DecodeData is true, then ScanData is decoded into this property as follows:

• Scanner-generated symbology characters are removed, if present.

• If the label type contains a readable check digit (such as with UPC-A and
EAN-13), then it must be present in this property. If the scanner does not
return the check digit to the Device Service, then it is to be calculated and
included.

• For variable length bar codes, the length identification is removed, if present.

For example, the EAN-13 barcode which appears printed as “5 018374 827715”
on a label may be received from the scanner and placed into ScanData as the
following:

Received from scanner ScanData Comment

5018374827715 5018374827715 Complete barcode only

501837482771<CR> 501837482771 Without check digit
with carriage return

F5018374827715<CR> F5018374827715 With scanner-
dependent symbology
character and carriage
return

<STX>F5018374827715<ETX> F5018374827715 With header,
symbology character,
and trailer

For each of these cases (and any other variations), this property must always be set
to the string “5018374827715”, and ScanDataType must be set to
SCAN_SDT_EAN13.

Its value is set prior to a DataEvent being sent to the application.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also “Device Input Model” on page 18

705 Properties (UML attributes)
ScanDataType Property

Syntax ScanDataType: int32 { read-only, access after open }

Remarks Holds the decoded bar code label type.

When DecodeData is false, this property is set to SCAN_SDT_UNKNOWN.
When DecodeData is true, the Device Service tries to determine the scan label
type. The following label types are defined:

Value Label Type

One Dimensional Symbologies

SCAN_SDT_UPCA UPC-A

SCAN_SDT_UPCA_S UPC-A with supplemental barcode

SCAN_SDT_UPCE UPC-E

SCAN_SDT_UPCE_S UPC-E with supplemental barcode

SCAN_SDT_UPCD1 UPC-D1

SCAN_SDT_UPCD2 UPC-D2

SCAN_SDT_UPCD3 UPC-D3

SCAN_SDT_UPCD4 UPC-D4

SCAN_SDT_UPCD5 UPC-D5

SCAN_SDT_EAN8 EAN 8 (= JAN 8)

SCAN_SDT_JAN8 JAN 8 (= EAN 8)

SCAN_SDT_EAN8_S EAN 8 with supplemental barcode

SCAN_SDT_EAN13 EAN 13 (= JAN 13)

SCAN_SDT_JAN13 JAN 13 (= EAN 13)

SCAN_SDT_EAN13_S EAN 13 with supplemental barcode

SCAN_SDT_EAN128 EAN-128

SCAN_SDT_TF Standard (or discrete) 2 of 5

SCAN_SDT_ITF Interleaved 2 of 5

SCAN_SDT_Codabar Codabar

SCAN_SDT_Code39 Code 39

SCAN_SDT_Code93 Code 93

SCAN_SDT_Code128 Code 128

SCAN_SDT_OCRA OCR “A”

706
UnifiedPOS Retail Peripheral Architecture Chapter 20

Scanner (Bar Code Reader)
Value Label Type

SCAN_SDT_OCRB OCR “B”

Two Dimensional Symbologies

SCAN_SDT_PDF417 PDF 417

SCAN_SDT_MAXICODE MAXICODE

Special Cases

SCAN_SDT_OTHER If greater or equal to this type, then the Device
Service has returned an undefined symbology.

SCAN_SDT_UNKNOWN The Device Service cannot determine the
barcode symbology. ScanDataLabel may not
be properly formatted for the actual barcode
type.

Its value is set prior to a DataEvent being sent to the application.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also “Device Input Model” on page 18

707 Events (UML interfaces)
Events (UML interfaces)

DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application that input data from the Scanner (Bar Code Reader) is
available.

Attributes This event contains the following attribute:

Attribute Type Description

Status int32 Always zero.

Remarks The scanner data is placed in the ScanData, ScanDataLabel, and ScanDataType
properties prior to a DataEvent being sent to the application.

See Also “Events” on page 15

DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific Scanner Service to provide events to the application
that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Device Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Device Service. This property is
settable.

Obj object Additional data whose usage varies by the EventNumber
and Device Service. This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Scanner devices which may not have any
knowledge of the Device Service’s need for this event.

See Also “Events” on page 15, directIO Method

708
UnifiedPOS Retail Peripheral Architecture Chapter 20

Scanner (Bar Code Reader)
ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a scanner device error has been detected and a suitable
response by the application is necessary to process the error condition.

Attributes This event contains the following attributes:

Attribute Type Description

ErrorCode int32 Error code causing the error event. See list of
ErrorCodes on page 16.

ErrorCodeExtended
int32 Extended error code causing the error event. It may

contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application (i.e., this property is settable). See
values below.

The ErrorLocus property has one of the following values:

Value Meaning

EL_INPUT Error occurred while gathering or processing event-
driven input. No input data is available.

EL_INPUT_DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

709 Events (UML interfaces)
The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER_CLEAR Clear the buffered input data. The error state is exited.
Default when locus is EL_INPUT.

ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA.
Acknowledges the error and directs the Device to
continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and DataEventEnabled is again set to
true, then another ErrorEvent is delivered with locus
EL_INPUT.
Default when locus is EL_INPUT_DATA.

Remarks Enqueued when an error is detected while trying to read scanner data. This event
is not delivered until DataEventEnabled is true, so that proper application
sequencing occurs.

See Also “Events” on page 15

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a Scanner
device.

Attributes This event contains the following attribute:

Attribute Type Description

Status int32 Reports a change in the power state of a Scanner device.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on page 56.

Remarks Enqueued when the Scanner device detects a power state change.

See Also “Events” on page 15

710
UnifiedPOS Retail Peripheral Architecture Chapter 20

Scanner (Bar Code Reader)

C H A P T E R 2 1

Signature Capture

This Chapter defines the Signature Capture device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 open

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.0 open

Claimed: boolean { read-only } 1.0 open

DataCount: int32 { read-only } 1.2 open

DataEventEnabled: boolean { read-write } 1.0 open

DeviceEnabled: boolean { read-write } 1.0 open & claim

FreezeEvents: boolean { read-write } 1.0 open

OutputID: int32 { read-only } 1.0 Not Supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.0 --

DeviceControlDescription: string { read-only } 1.0 --

DeviceControlVersion: int32 { read-only } 1.0 --

DeviceServiceDescription: string { read-only } 1.0 open

DeviceServiceVersion: int32 { read-only } 1.0 open

PhysicalDeviceDescription: string { read-only } 1.0 open

PhysicalDeviceName: string { read-only } 1.0 open

712
UnifiedPOS Retail Peripheral Architecture Chapter 21

Signature Capture
Properties (Continued)

Specific Type Mutability Version May Use After

CapDisplay: boolean { read-only } 1.0 open

CapRealTimeData: boolean { read-only } 1.2 open

CapUserTerminated: boolean { read-only } 1.0 open

MaximumX: int32 { read-only } 1.0 open

MaximumY: int32 { read-only } 1.0 open

PointArray:
array of
points

{ read-only } 1.0 open, claim, & enable

RawData: binary { read-only } 1.0 open, claim, & enable

RealTimeDataEnabled: boolean { read-write } 1.2 open

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.0

close ():
void { raises-exception, use after open }

1.0

claim (timeout: int32):
void { raises-exception, use after open }

1.0

release ():
void { raises-exception, use after open, claim }

1.0

checkHealth (level: int32):
void { raises-exception, use after open, claim, enable }

1.0

clearInput ():
void { raises-exception, use after open, claim }

1.0

clearOutput ():
void { }

Not
supported

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.0

Specific

Name

beginCapture (formName: string):
void { raises exception, use after open, claim, enable }

1.0

endCapture ():
void { raises exception, use after open, claim, enable }

1.0

713 Summary
Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent 1.0

 Status: int32 { read-only }

upos::events::DirectIOEvent 1.0

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.0

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent Not Supported

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }

714
UnifiedPOS Retail Peripheral Architecture Chapter 21

Signature Capture
General Information

The Signature Capture programmatic name is “SignatureCapture”.

Capabilities

The Signature Capture Device has the following capability:

• Obtains a signature captured by a signature capture device. The captured
signature data is in the form of lines consisting of a series of points. Each point
lies within the co-ordinate system defined by the resolution of the device,
where (0, 0) is the upper-left point of the device, and (MaximumX,
MaximumY) is the lower-right point. The signature line points are presented
to the application by a DataEvent with a single array of line points

The Signature Capture Device may have the following additional capabilities:

• Provides a way for the user to terminate signature capture – that is, to tell the
device that she or he has completed the signature.

• Displays form/data on the signature capture device.

• Returns the signature in “real time” as it is entered on the device. If this
capability is true and has been enabled by application by setting the
RealTimeDataEnabled property to true, then a series of DataEvents are
enqueued, each with an array of one or more line points representing a partial
signature.

715 General Information
Signature Capture Class Diagram

The following diagram shows the relationships between the Signature Capture
classes.

UposException
(from upos)

<<exception>>
UposConst
(from upos)

<<utility>>

SignatureCaptureConst
(from upos)

<<utility>>

DataEvent

<prop>> Status : int32

(from events)

<<event>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

rrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

tatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

SignatureCaptureControl

<<capability>> CapDisplay : boolean
<<capability>> CapRealTimeData : boolean
<<capability>> CapUserTerminated : boolean
<<prop>> MaximumX : int32
<<prop>> MaximumY : int32
<<prop>> PointArray : array of point
<<prop>> RawData : binary
<<prop>> RealTimeDataEnabled : boolean

beginCapture(formName : string) : void
endCapture() : void

(from upos)

<<Interface>>

<<sends>>

<<uses>>

fires

fires

fires

fires

716
UnifiedPOS Retail Peripheral Architecture Chapter 21

Signature Capture
Model

The signature capture device usage model is:

• Open and claim the device.

• Enable the device and set the property DataEventEnabled to true.

• Begin capturing a signature by calling beginCapture. This method displays a
form or data screen (if the device has a display) and enables the stylus.

• If the device is capable of supplying signature data in real time as the signature
is entered (CapRealTimeData is true), and if RealTimeDataEnabled is true,
the signature is presented to the application as a series of partial signature data
events until the signature capture is terminated.

• If the device provides a way for the user to terminate the signature, then when
the user terminates, a DataEvent is enqueued. Otherwise, the application
must call endCapture to terminate the signature.

• Disable the device. If the device has a display, this also clears the display.

The Signature Capture follows the general “Device Input Model” for event-driven
input:

• When input is received by the Device Service, it enqueues a DataEvent.

• If AutoDisable is true, then the Device automatically disables itself when a
DataEvent is enqueued. However, note that setting AutoDisable probably is
not very useful for the Signature Capture control. If RealTimeDataEnabled
is true, then AutoDisable does not make sense. If RealTimeDataEnabled is
false, then the pacing of signatures is controlled by the application via the
beginCapture method. It is probably in the best interests of the application
not to use the AutoDisable property for this device class.

• A queued DataEvent can be delivered to the application when the property
DataEventEnabled is true and other event delivery requirements are met.
Just before delivering this event, data is copied into properties, and further
data events are disabled by setting DataEventEnabled to false. This causes
subsequent input data to be enqueued while the application processes the
current input and associated properties. When the application has finished
processing the current input and is ready for more data, it re-enables events by
setting DataEventEnabled to true.

• An ErrorEvent (or events) is enqueued if the an error occurs while gathering
or processing input, and is delivered to the application when
DataEventEnabled is true and other event delivery requirements are met.

• The DataCount property may be read to obtain the number of queued
DataEvents.

• All enqueued input may be deleted by calling clearInput. See the clearInput
method description for more details.

Deviations from the general “Device Input Model” for event-driven input are:

• The capture of signature data begins when beginCapture is called.

• If signature capture is terminated by calling endCapture, then no DataEvent
will be enqueued.

717 General Information
Device Sharing

The Signature Capture is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before calling methods that
manipulate the device or before changing some writable properties.

• See the “Summary” table for precise usage prerequisites.

718
UnifiedPOS Retail Peripheral Architecture Chapter 21

Signature Capture
Properties (UML attributes)

CapDisplay Property

Syntax CapDisplay: boolean { read-only, access after open }

Remarks If true, the device is able to display a form or data entry screen.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapRealTimeData Property

Syntax CapRealTimeData: boolean { read-only, access after open }

Remarks If true, the device is able to supply signature data as the signature is being captured
(“real time”).

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapUserTerminated Property

Syntax CapUserTerminated: boolean { read-only, access after open }

Remarks If true, the user is able to terminate signature capture by checking a completion
box, pressing a completion button, or performing some other interaction with the
device. If false, the application must end signature capture by calling the
endCapture method.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

719 Properties (UML attributes)
DeviceEnabled Property (Common)

Syntax DeviceEnabled: boolean { read-write, access after open-claim }

Remarks If true, the signature capture device is enabled.

If CapDisplay is true, then the display screen of the device is cleared.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

MaximumX Property

Syntax MaximumX: int32 { read-only, access after open }

Remarks Holds the maximum horizontal coordinate of the signature capture device. It must
be less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

MaximumY Property

Syntax MaximumY: int32 { read-only, access after open }

Remarks Holds the maximum vertical coordinate of the signature capture device. It must be
less than 65,536.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

720
UnifiedPOS Retail Peripheral Architecture Chapter 21

Signature Capture
PointArray Property

Syntax PointArray: array-of-points { read-only, access after open-claim-enable }

Remarks Holds the signature captured from the device. It consists of an array of (x, y)
coordinate points. Each point is represented by four characters: x (low 8 bits), x
(high 8 bits), y (low 8 bits), y (high 8 bits).

A special point value is (0xFFFF, 0xFFFF) which indicates the end of a line (that
is, a pen lift). Almost all signatures are comprised of more than one line.

If RealTimeDataEnabled is false, then this property contains the entire captured
signature. If RealTimeDataEnabled is true, then this property contains at least
one point of the signature. The actual number of points delivered at one time is
implementation dependent. The points from multiple data events are logically
concatenated to form the entire signature, such that the last point from a data event
is followed immediately by the first point of the next data event.

The point representation definition is the same regardless of whether the signature
is presented as a single PointArray, or as a series of real time PointArrays.

Reconstruction of the signature using the points is accomplished by beginning a
line from the first point in the signature to the second point, then to the third, and
so on. When an end-of-line point is encountered, the drawing of the line ends, and
the next line is drawn beginning with the next point. An end-of-line point is
assumed (but need not be present in PointArray) at the end of the signature.

This property is set prior to a DataEvent being sent to the application or by the
endCapture method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also RawData Property.

RawData Property

Syntax RawData: binary { read-only, access after open-claim-enable }

Remarks Holds the signature captured from the device in a device-specific format.

This data is often in a compressed form to minimize signature storage
requirements. Reconstruction of the signature from this data requires device-
specific processing.

This property is set prior to a DataEvent being sent to the application or by the
endCapture method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

See Also PointArray Property.

721 Properties (UML attributes)
RealTimeDataEnabled Property

Syntax RealTimeDataEnabled: boolean { read-write, access after open }

Remarks If true and CapRealTimeData is true, a series of partial signature data events is
enqueued as the signature is captured until signature capture is terminated.
Otherwise, the captured signature is enqueued as a single DataEvent when
signature capture is terminated.

Setting RealTimeDataEnabled will not cause any change in system behavior
until a subsequent beginCapture method is performed. This prevents confusion
regarding what would happen if it were modified between a beginCapture -
endCapture pairing.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL Cannot set to true because CapRealTimeData is false.

See Also CapRealTimeData Property, beginCapture Method, endCapture Method.

722
UnifiedPOS Retail Peripheral Architecture Chapter 21

Signature Capture
Methods (UML operations)

beginCapture Method

Syntax beginCapture (formName: string):
 void { raises exception, use after open-claim-enable }

Parameter Description

formName The parameter contains the platform specific location
for obtaining form or data screen information for display
on the device screen.

Remarks Starts capturing a signature.

If CapDisplay is true, then formName is used to find information about the form
or data screen to be displayed. The format and features of each signature capture
device’s form/data screen varies widely and is often built with proprietary tools.
Therefore, this location’s data, and possibly additional values and data, contain
information that varies by Device Service. Typically, the contents of this data are
set to a form/data screen file name, and extra values and data are set as needed to
control its display.

After displaying the form or data screen, when applicable, the signature capture
stylus is enabled.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_NOEXIST formName was not found.

See Also CapDisplay Property, endCapture Method.

723 Methods (UML operations)
endCapture Method

Syntax endCapture ():
 void { raises exception, use after open-claim-enable }

Remarks Stops (terminates) capturing a signature.

If RealTimeDataEnabled is false and a signature was captured, then it is placed
in the properties PointArray and RawData. If no signature was captured, then
PointArray and RawData are set to a length of zero.

If RealTimeDataEnabled is true and there are signature points remaining which
have not been delivered to the application by a DataEvent, then the remaining
signature is placed into the properties PointArray and RawData. If no signature
was captured or all signature points have been delivered to the application, then
PointArray and RawData are set to a length of zero.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL Signature capture was not in progress.

See Also PointArray Property, RawData Property, RealTimeDataEnabled Property,
beginCapture Method, DataEvent.

724
UnifiedPOS Retail Peripheral Architecture Chapter 21

Signature Capture
Events (UML interfaces)

DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application that input data is available.

Attributes This event contains the following attribute:

Attribute Type Description

Status int32 Non-zero if the user has entered a signature before
terminating capture. Zero if the user terminated capture
with no signature.

Remarks This event can only be enqueued if the user can terminate signature capture – that
is, if CapUserTerminated is true or RealTimeDataEnabled is true.

The properties PointArray and RawData are set to appropriate values prior to a
DataEvent being sent to the application.

See Also endCapture Method, “Events” on page 15.

DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Device Service information directly to the application. This event
provides a means for a vendor-specific Signature Capture Device Service to
provide events to the application that are not otherwise supported by the Device
Control.

Attributes This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Device Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Device Service. This property is
settable.

Obj object Additional data whose usage varies by the EventNumber
and Device Service. This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Signature Capture devices which may not
have any knowledge of the Device Service’s need for this event.

See Also “Events” on page 15, directIO Method

725 Events (UML interfaces)
ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a Signature Capture device error has been detected
and a suitable response by the application is necessary to process the error
condition.

Attributes This event contains the following attributes:

Attribute Type Description

ErrorCode int32 Error Code causing the error event. See the list of
ErrorCodes on page 16.

ErrorCodeExtended
int32 Extended Error Code causing the error event. This may

contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application (i.e., this property is settable). See
values below.

The ErrorLocus property has one of the following values:

Value Meaning

EL_INPUT Error occurred while gathering or processing event-
driven input. No input data is available.

EL_INPUT_DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available. (Very unlikely – see Remarks.)

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER_CLEAR Clear the buffered input data. The error state is exited.
Default when locus is EL_INPUT.

726
UnifiedPOS Retail Peripheral Architecture Chapter 21

Signature Capture
ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA.
Acknowledges the error and directs the Device to
continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and DataEventEnabled is again set to
true, then another ErrorEvent is enqueued with locus
EL_INPUT.
Default when locus is EL_INPUT_DATA.

Remarks Enqueued when an error is detected while trying to read signature capture data.
This event is not delivered until DataEventEnabled is true and other event
delivery requirements are met, so that proper application sequencing occurs.

See Also “Device Input Model” on page 18, “Device States” on page 26, “Events” on page
15.

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a Signature
Capture device.

Attributes This event contains the following attribute:

Attribute Type Description

Status int32 Reports a change in the power state of a Signature
Capture device.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on page 56.

Remarks Enqueued when the Signature Capture device detects a power state change.

See Also “Events” on page 15

C H A P T E R 2 2

Tone Indicator

This Chapter defines the Tone Indicator device category.

Summary

Properties (UML attributes)

Common Type Mutability Version May Use After

AutoDisable: boolean { read-write } 1.2 Not Supported

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.2 open

Claimed: boolean { read-only } 1.2 open

DataCount: int32 { read-only } 1.2 Not Supported

DataEventEnabled: boolean { read-write } 1.2 Not Supported

DeviceEnabled: boolean { read-write } 1.2 open

FreezeEvents: boolean { read-write } 1.2 open

OutputID: int32 { read-only } 1.2 open

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.2 --

DeviceControlDescription: string { read-only } 1.2 --

DeviceControlVersion: int32 { read-only } 1.2 --

DeviceServiceDescription: string { read-only } 1.2 open

DeviceServiceVersion: int32 { read-only } 1.2 open

PhysicalDeviceDescription: string { read-only } 1.2 open

PhysicalDeviceName: string { read-only } 1.2 open

728
UnifiedPOS Retail Peripheral Architecture Chapter 22

Tone Indicator
Note: Also requires that no other application has claimed the tone indicator.

Properties (Continued)

Specific Type Mutability Version May Use After

AsyncMode: boolean { read-write } 1.2 open & enable

CapPitch: boolean { read-only } 1.2 open

CapVolume: boolean { read-only } 1.2 open

InterToneWait: int32 { read-write } 1.2 open & enable

Tone1Duration: int32 { read-write } 1.2 open & enable

Tone1Pitch: int32 { read-write } 1.2 open & enable

Tone1Volume: int32 { read-write } 1.2 open & enable

Tone2Duration: int32 { read-write } 1.2 open & enable

Tone2Pitch: int32 { read-write } 1.2 open & enable

Tone2Volume: int32 { read-write } 1.2 open & enable

Methods (UML operations)

Common

Name Version

open (logicalDeviceName: string):
void { raises-exception }

1.2

close ():
void { raises-exception, use after open }

1.2

claim (timeout: int32):
void { raises-exception, use after open }

1.2

release ():
void { raises-exception, use after open, claim }

1.2

checkHealth (level: int32):
void { raises-exception, use after open, enable } Note

1.2

clearInput ():
void { }

Not
supported

clearOutput ():
void { raises-exception, use after open, enable }

1.2

directIO (command: int32, inout data: int32, inout obj: object):
void { raises-exception, use after open }

1.2

Specific

Name

sound (numberOfCycles: int32, interSoundWait: int32):
void { raises exception, use after open, enable } Note

1.2

soundImmediate ():
void { raises exception, use after open, enable } Note

1.2

729 Summary
Events (UML interfaces)

Name Type Mutability Version

upos::events::DataEvent Not Supported

upos::events::DirectIOEvent 1.2

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent 1.2

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent 1.2

 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent 1.3

 Status: int32 { read-only }

730
UnifiedPOS Retail Peripheral Architecture Chapter 22

Tone Indicator
General Information

The Tone Indicator programmatic name is “ToneIndicator”.

Capabilities

The Tone Indicator has the following capabilities:

• Sound a tone device, which may be the PC or NC system speaker or another
hardware device. In many cases the PC or NC speaker will not be available or
will be in a position that is inaudible to the operator.

• Sound a two-tone indicator, providing simple pitch and volume control.

• Provide a synchronous one-shot indicator, similar to an Operating System’s
Beep function.

731 General Information
Tone Indicator Class Diagram

The following diagram shows the relationships between the Tone Indicator
classes.

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

OutputCompleteEvent

<<prop>> OutputID : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<event>>

ToneIndicatorControl

<<capabi lity>> CapVolume : boolean
<<capabi lity>> CapPitch : boolean
<<prop>> AsyncMode : boolean
<<prop>> InterToneWait : boolean
<<prop>> Tone1Pitch : int32
<<prop>> Tone2Pitch : int32
<<prop>> Tone1Volume : int32
<<prop>> Tone2Volume : int32
<<prop>> Tone1Durat ion : int32
<<prop>> Tone2Durat ion : int32

sound(numOfCyles : int32, interSoundWait : int32) : void
soundImmediate() : void

(from upos)

<<Interface>>

fires

fires

f ires

f ires

UposConst
(from upos)

<<utility>>

oneIndicatorConst
(from upos)

<uti lity>>

UposExcept ion
from upos)

<<exception>>

<<uses>>

<<sends>>

BaseControl
(from upos)

<<Interface>>
<<uses>>

<<sends>>

732
UnifiedPOS Retail Peripheral Architecture Chapter 22

Tone Indicator
Model

The Tone Indicator device is for use when the POS hardware platform provides
such capabilities external to the PC or NC standard speaker. Many POS systems
have such devices, embedded, for example, in a keyboard, so that an indicator is
always present at the point of sale.

This device supports a two-tone sound so that “siren” tones can be produced. The
indicator is in general also started asynchronously so applications may perform
other functions while waiting for the user to acknowledge the tone. There are also
options to start the tone asynchronously with no count, so it runs forever, and be
stopped by the application at a later time.

When the tone is started asynchronously, an OutputCompleteEvent is enqueued
when all the tones have been played. This allows the application to know that the
tone has stopped. For example, when the cash drawer is opened the tone could be
started, quietly for a given number of cycles. If the cash drawer is closed then the
tone is stopped explicitly by the application, if not then the notification by the
OutputCompleteEvent allows the application to alter the prompt to the operator
and possibly restart the tone a little louder.

The Tone Indicator follows the general device behavior model for output devices.
Asynchronous output is handled as follows:

• The Device buffers the request, sets OutputID to an identifier for this request,
and returns as soon as possible. When the request completes successfully, an
OutputCompleteEvent is enqueued. A parameter of this event contains the
OutputID of the completed request.

The sound method will not raise an exception due to a hardware problem.
These errors will only be reported by an ErrorEvent. An exception will only
be raised if the control is not claimed and enabled, a parameter is invalid, or
the request cannot be enqueued. The first two error cases are due to an
application error, while the last is a serious system resource exception.

• If an error occurs while performing an asynchronous request, an ErrorEvent
is enqueued.

• Asynchronous output is performed on a first-in first-out basis.

• All output buffered may be deleted by calling clearOutput.
OutputCompleteEvents will not be delivered for cleared output. This
method also stops any output that may be in progress (when possible).

733 General Information
Device Sharing

The Tone Indicator is a sharable device. Its device sharing rules are:

• After opening and enabling the device, the application may access all
properties, methods, and enqueued StatusUpdateEvents.

• If more than one application has opened and enabled the device, each of these
applications may access its properties and methods. StatusUpdateEvents will
be delivered to all applications that are using the device and have registered to
receive the event.

• If one application claims the tone indicator, then only that application may call
sound and soundImmediate. Use of this feature will effectively restrict the
tone indicator to the main application if that application claims the device at
startup.

• The application that initiates asynchronous sounds is the only one that
receives the corresponding OutputCompleteEvents and ErrorEvents.

• If a scenario exists such that an application is playing a sound and a separate
application legally claims the device and plays a sound, then the sound being
played from the first application will be interrupted. If the first application is
in the midst of a synchronous sound method, an exception will be raised with
the ErrorCode property set to E_CLAIMED from the method call. If the
application has issued an asynchronous sound method, then no consistent
reporting mechanism is possible and the first sound is simply terminated.

• See the “Summary” table for precise usage prerequisites.

734
UnifiedPOS Retail Peripheral Architecture Chapter 22

Tone Indicator
Properties (UML attributes)

AsyncMode Property Updated in Release 1.6

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, the sound method will be performed asynchronously. If false, tones are
generated synchronously.

This property is initialized to false when the device is first enabled following the
open method. (In releases prior to 1.5, this description stated that initialization
took place by the open method. In Release 1.5, it was updated for consistency with
other devices.)

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapPitch Property
Syntax CapPitch: boolean { read-only, access after open }

Remarks If true, the hardware tone generator has the ability to vary the pitch of the tone.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

CapVolume Property
Syntax CapVolume: boolean { read-only, access after open }

Remarks If true, the hardware tone generator has the ability to vary the volume of the tone.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

InterToneWait Property Updated in Release 1.6
Syntax InterToneWait: int32 { read-write, access after open }

Remarks Holds the number of milliseconds of silence between tone-1 and tone-2. If a gap
is required after tone-2 but before a repeat of tone-1, then set the sound parameter
interSoundWait.

This property is initialized to zero when the device is first enabled following the
open method. (In releases prior to 1.5, this description stated that initialization
took place by the open method. In Release 1.5, it was updated for consistency with
other devices.)

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL A negative value was specified.

735 Properties (UML attributes)
Tone1Duration Property Updated in Release 1.6

Syntax Tone1Duration: int32 { read-write, access after open }

Remarks Holds the duration of the first tone in milliseconds. A value of zero or less will
cause this tone not to sound.

This property is initialized to zero when the device is first enabled following the
open method. (In releases prior to 1.5, this description stated that initialization
took place by the open method. In Release 1.5, it was updated for consistency with
other devices.)

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Tone1Pitch Property Updated in Release 1.6

Syntax Tone1Pitch: int32 { read-write, access after open }

Remarks Holds the pitch or frequency of the first tone in hertz. A value of zero or less will
cause this tone not to sound.

If the device does not support user-defined pitch (CapPitch is false), then any
value greater than zero indicates that the tone indicator uses its default value.

This property is initialized to zero when the device is first enabled following the
open method. (In releases prior to 1.5, this description stated that initialization
took place by the open method. In Release 1.5, it was updated for consistency with
other devices.)

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Tone1Volume Property Updated in Release 1.6

Syntax Tone1Volume: int32 { read-write, access after open }

Remarks Holds the volume of the first tone in percent of the device's capability, where 0 (or
less) is silent and 100 (or more) is maximum.

If the device does not support user-defined volume (CapVolume is false), then
any value greater than zero indicates that the tone indicator uses its default value.

This property is initialized to 100 when the device is first enabled following the
open method. (In releases prior to 1.5, this description stated that initialization
took place by the open method. In Release 1.5, it was updated for consistency with
other devices.)

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

736
UnifiedPOS Retail Peripheral Architecture Chapter 22

Tone Indicator
Tone2Duration Property Updated in Release 1.6

Syntax Tone2Duration: int32 { read-write, access after open }

Remarks Holds the duration of the second tone in milliseconds. A value of zero or less will
cause this tone not to sound.

This property is initialized to zero when the device is first enabled following the
open method. (In releases prior to 1.5, this description stated that initialization
took place by the open method. In Release 1.5, it was updated for consistency with
other devices.)

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Tone2Pitch Property Updated in Release 1.6

Syntax Tone2Pitch: int32 { read-write, access after open }

Remarks Holds the pitch or frequency of the second tone in hertz. A value of zero or less
will cause this tone not to sound.

If the device does not support user-defined pitch (CapPitch is false), then any
value greater than zero indicates that the tone indicator uses its default value.

This property is initialized to zero when the device is first enabled following the
open method. (In releases prior to 1.5, this description stated that initialization
took place by the open method. In Release 1.5, it was updated for consistency with
other devices.)

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

Tone2Volume Property Updated in Release 1.6

Syntax Tone2Volume: int32 { read-write, access after open }

Remarks Holds the volume of the second tone in percent of the device's capability, where 0
(or less) is silent and 100 (or more) is maximum.

If the device does not support user-defined volume (CapVolume is false), then
any value greater than zero indicates that the tone indicator uses its default value.

This property is initialized to 100 when the device is first enabled following the
open method. (In releases prior to 1.5, this description stated that initialization
took place by the open method. In Release 1.5, it was updated for consistency with
other devices.)

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 16.

737 Methods (UML operations)
Methods (UML operations)

sound Method Updated in Release 1.6

Syntax sound (numberOfCycles: int32, interSoundWait: int32):
void { raises exception, use after open-enable }

Parameter Description

numberOfCycles The number of cycles to sound the indicator device. If
UPOS_FOREVER, then start the indicator sounding
and repeat continuously, else perform the sound for the
specified number of cycles.

interSoundWait When numberOfCycles is not one, then pause for
interSoundWait milliseconds before repeating the tone
cycle (before playing tone-1 again).

Remarks Sounds the indicator device, or start it sounding asynchronously.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

The duration of an indicator cycle is:

Tone1Duration property +
InterToneWait property +
Tone2Duration property +
interSoundWait parameter (except on the last tone cycle)

After the tone indicator has started an asynchronous sound, then the sound may be
stopped by using one of the following methods. (When a numberOfCycles value
of UPOS_FOREVER was used to start the sound, then the application must use
one of these to stop the continuous sounding of the tones.)

• clearOutput

• soundImmediate

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_CLAIMED Indicates that another application has claimed the device
and has taken over the tone device causing the sound
from this method to be interrupted (can only be returned
if AsyncMode is false.)

E_ILLEGAL One of the following errors occurred:
• numberOfCycles is neither a positive, non-zero value
 nor UPOS_FOREVER.
• numberOfCycles is UPOS_FOREVER when
 AsyncMode is false.
• A negative interSoundWait was specified
• A negative InterToneWait was specified

738
UnifiedPOS Retail Peripheral Architecture Chapter 22

Tone Indicator
soundImmediate Method

Syntax soundImmediate ():
void { raises exception, use after open-enable }

Remarks Sounds the hardware tone generator once, synchronously. Both tone-1 and tone-2
are sounded using InterToneWait.

If asynchronous output is outstanding, then it is terminated before playing the
immediate sound (as if clearOutput were called). This method is primarily
intended for use in exception conditions when asynchronous output is outstanding,
such as within an error event handler.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 16.

739 Events (UML interfaces)
Events (UML interfaces)

DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific Tone Indicator Service to provide events to the
application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

 Remarks This event to be used only for those types of vendor specific functions that are not
otherwise described. Use of this event may restrict the application program from
being used with other vendor’s Tone Indicator devices which may not have any
knowledge of the Service’s need for this event.

See Also “Events” on page 15, directIO Method.

740
UnifiedPOS Retail Peripheral Architecture Chapter 22

Tone Indicator
ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected at the device and a suitable
response is necessary to process the error condition.

Attributes This event contains the following properties:

Attributes Type Description

ErrorCode int32 Result code causing the error event. See a list of Error
Codes on page 16.

ErrorCodeExtended
int32 Extended Error code causing the error event. These

values are device category specific.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application (i.e., this property is settable). See
values below.

The ErrorLocus property has one of the following values:

Value Meaning

EL_OUTPUT Error occurred while processing asynchronous output.

The application’s error processing may change ErrorResponse to one of the
following values:

Value Meaning

ER_RETRY Retry the asynchronous output. The error state is exited.
This is the default value.

ER_CLEAR Clear the asynchronous output data. The error state is
exited.

Remarks This event is enqueued when an error is detected and the Device’s State transitions
into the error state. This event is not delivered until DataEventEnabled is true, so
that proper application sequencing occurs.

See Also “Device Output Models” on page 21, “Device States” on page 26, “Error Codes”
on page 16

741 Events (UML interfaces)
OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the
OutputID property has completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description

OutputID int32 The ID number of the asynchronous output request that
is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Device
Service has confirmation that is was processed by the device successfully.

See Also “Device Output Models” on page 21

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a Tone
Indicator device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Reports a change in the power state of a Tone Indicator
device.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” on page 56.

Remarks Enqueued when the Tone Indicator device detects a power state change.

See Also “Events” on page 15

742
UnifiedPOS Retail Peripheral Architecture Chapter 22

Tone Indicator

A P P E N D I X A

OLE for Retail POS — OPOS Implementation Reference

What Is “OLE for Retail POS?”
OLE for Retail POS provides an open device driver architecture that allows

Point-of-Sale (“POS”)1 hardware to be easily integrated into POS systems based
on Microsoft Windows 95/98/ME, Microsoft Windows NT, Microsoft Windows

2000, and Microsoft Windows CE2. It is an implementation of the UnifiedPOS
Standard based upon the Microsoft Operating System Software and the OLE 2.x
architecture.

The goals of OLE for Retail POS (or “OPOS”) include:

• Defining an architecture for Win32-based POS device access.

• Defining a set of POS device interfaces sufficient to support a range of POS
solutions.

Deliverables available for OPOS are:

• UnifiedPOS Programmer’s Guide – this document: For application
developers and hardware providers.

• OPOS Control Programmer’s Guide: For hardware providers.

• Header files with OPOS constants.

• No complete software components: Hardware providers or third-party
providers develop and distribute these components.

• Reference Control Objects are available which incorporate the required
(minimum) functionality. These Control Objects, along with other helpful
information may be found at the http://www.nrf-arts.org web site.

1. POS may also refer to Point-of-Service – a somewhat broader category than Point-of-
Sale.

2. Other future operating systems that support OLE Controls may also support OLE for
Retail POS, depending upon software support by the hardware manufacturers or third-
party developers.

http://www.nrf-arts.org
http://www.nrf-arts.org

A-2
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
Who Should Read This Section
This Section is targeted at an application developer who requires access to POS-
specific peripheral devices and wishes to implement the UnifiedPOS Standard on
a Microsoft Windows operating system platform. It is also targeted for the system
developer who will write an OPOS Control, a vendor who wishes to write a
OPOS Service Object, or an application developer who desires a better
understanding of how to interface with OPOS under UnifiedPOS.

This guide assumes that the reader is familiar with the following:

• The UnifiedPOS Device chapters in this document.
• General characteristics of POS peripheral devices.
• ActiveX and Automation terminology and architecture.
• Familiarity with an ActiveX Control Container development environment,

such as Microsoft Visual Basic or Microsoft Visual C++, will be useful.

General OLE for Retail POS Control Model
OLE for Retail POS Controls adhere to the ActiveX Control specifications. They
expose properties, methods, and events to a containing Application. The controls
are invisible at run time, and rely exclusively upon the containing application for
requests through methods and sometimes properties. Responses are given to the
application through method return values and parameters, properties, and events.

The OLE for Retail POS software is implemented using the
layers shown in the following diagram:

A-3 OPOS Definitions
OPOS Definitions
Device Class
A device class is a category of POS devices that share a consistent set of
properties, methods, and events. Examples are Cash Drawer and POS Printer.

Some devices support more than one device class. For example, some POS
Printers include a Cash Drawer kickout. Also, some Bar Code Scanners include
an integrated Scale.

Control Object or CO
A Control Object exposes a set of properties, methods, and events to an
application for its device class. This guide describes these APIs.

A CO is a standard ActiveX (that is, OLE 32-bit) Control that is invisible at
runtime. The CO interfaces have been designed so that all implementations of a
class’ Control Object will be compatible. This allows the CO to be developed
independently of the SO's for the same class – including development by different
companies.

Service Object or SO
A Service Object is called by a Control Object to implement the OPOS-
prescribed functionality for a specific device.

An SO is implemented as an Automation server. It exposes a set of methods that
are called by a CO. It can also call special methods exposed by the CO to cause
events to be delivered to the application.

A Service Object may include multiple sets of methods in order to support
devices with multiple device classes.

A Service Object is typically implemented as a local in-proc server (in a DLL). In
theory, it may also be implemented as a local out-proc server (in a separate
executable process). However, we have found that, in practice, out-proc servers
do not work well for OPOS Service Objects, and do not recommend their use.

OPOS Control or Control
An OPOS Control consists of a Control Object for a device class – which
provides the application interface, plus a Service Object – which implements the
APIs. The Service Object must support a device of the Control Object's class.

Usually, this guide will refer to “Control.” On occasion, we must distinguish
between the actions performed by the Control Object and Service Object. Then
the explicit layer is specified.

A-4
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
How an Application Uses an OPOS Control
The first action the application must take on the Control is to call its Open
method. The parameter of this method selects a device name to associate with the
Control. The Open method performs the following steps:

• Establishes a link to the device name.
• Initializes the properties OpenResult, Claimed, DeviceEnabled,

DataEventEnabled, FreezeEvents, AutoDisable, DataCount, and
BinaryConversion, as well as descriptions and version numbers of the OPOS
Control layers. Additional class-specific properties may also be initialized.

Several applications may have an OPOS Control open at the same time.
Therefore, after the device is opened, the application will often need to call the
ClaimDevice method to gain exclusive access to the device. Many devices must
be claimed before the Control allows access to its methods and properties.
Claiming the device ensures that other applications do not interfere with the use
of the device. The application may call the ReleaseDevice method when the
device can be shared by other applications – for instance, at the end of a
transaction.

Before using the device, the application must set the DeviceEnabled property to
TRUE. This value brings the device to an operational state, while FALSE disables
the device. For example, if a scanner Control is disabled, then the device will be
physically disabled (when possible). Whether physically disabled or not, any
input from the device will be discarded until the device is enabled.

After the application has finished using the device, the Close method should be
called to release the device and associated resources. If the DeviceEnabled
property is TRUE, then Close disables the device. If the Claimed property is
TRUE, then Close releases the lock. Before exiting, an application should close
all open OPOS Controls.

In summary, the application follows this general sequence:

• Open method: Call to link the Control Object to the Service Object.
• ClaimDevice method: Call to gain exclusive access to the device. Required

for exclusive-use devices; optional for some sharable devices. (See “Device
Sharing Model”, page A-11 for more information).

• DeviceEnabled property: Set to TRUE to make the device operational. (For
sharable devices, the device may be enabled without first claiming it.)

• Use the device.
• DeviceEnabled property: Set to FALSE to disable the device.
• ReleaseDevice method: Call to release exclusive access to the device.
• Close method: Call to release the Service Object from the Control Object.

A-5 When Methods and Properties May Be Accessed
When Methods and Properties May Be Accessed
Methods
Before a successful Open, no other methods may be invoked. Doing so will do
nothing but return a status of OPOS_E_CLOSED.

Exclusive-use devices require the application to call the ClaimDevice method
and to set the DeviceEnabled property to TRUE before most other methods may
be called.

Sharable devices require the application to set the DeviceEnabled property to
TRUE before most other methods may be called.

The “Summary” section of each device class’ chapter should be consulted for the
specific prerequisites for each method.

Properties
Before a successful Open, the values of most properties are not initialized. An
attempt to set writable properties will be ignored.

The following properties are always initialized:

Capability properties are initialized after the Open is successfully called.

Exclusive use devices require the application to call the ClaimDevice method
and to set the DeviceEnabled property to TRUE before some other properties are
initialized or may be written.

Sharable devices require the application to set the DeviceEnabled property to
TRUE before some other properties are initialized or may be written.

To determine when a property is initialized or writable, refer to the Summary
section of each device class plus the property’s Remarks section.

Setting writable properties before the prerequisites are met will cause the write to
be ignored, and will set the ResultCode property to either
OPOS_E_NOTCLAIMED or OPOS_E_DISABLED.

Property Value
State OPOS_S_CLOSED
ResultCode OPOS_E_CLOSED
ControlObjectDescription Control Object dependent string.
ControlObjectVersion Control Object dependent number.

A-6
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
Reading an uninitialized property returns the following values, unless otherwise
specified in the device class documentation:

After properties have been initialized, subsequent claims and enables do not re-
initialize the properties. They remain initialized until the Close method is called.

Property Type Value
Boolean FALSE
Long 0
String “[Error]” – include the brackets.

A-7 Status, Result Code, and State Model
Status, Result Code, and State Model
The status, result code, and state models are built around several common
properties, events, and methods, described in the following table, and are
supported by additional class-specific components.

Name Meaning

State A property containing the current state of the Control:
OPOS_S_CLOSED
OPOS_S_IDLE
OPOS_S_BUSY
OPOS_S_ERROR

ResultCode A property containing the status of the most recent
method or the most recently changed writable property:
OPOS_SUCCESS
OPOS_E_CLOSED
OPOS_E_CLAIMED
OPOS_E_NOTCLAIMED
OPOS_E_NOSERVICE
OPOS_E_DISABLED
OPOS_E_ILLEGAL
OPOS_E_NOHARDWARE
OPOS_E_OFFLINE
OPOS_E_NOEXIST
OPOS_E_EXISTS
OPOS_E_FAILURE
OPOS_E_TIMEOUT
OPOS_E_BUSY
OPOS_E_EXTENDED

ResultCodeExtended A property containing the extended status of the most
recent method or the most recently changed writable
property. Value varies by ResultCode and by device
class.

StatusUpdateEvent An event fired when some class-specific state or status
variable has changed.
Release 1.3 and later: All devices may be able
to report device power state. See “Device Power
Reporting Model” on page A-18.

ErrorEvent An event fired when the State is changed to Error.

A-8
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
Status Model
The rules of the status model are as follows:

• The only aspect of the status model that is common to all device classes is the
means of alerting the application, which is through the firing of the
StatusUpdateEvent.

• Each device class specifies the status changes that cause it to fire the event.
Examples of device class-specific status changes are:

• A change in the cash drawer position (for example, a transition from open
to closed).

• A change in a POS printer sensor (for example, activation of a “form
present” sensor, indicating that a slip has been inserted).

Result Code Model
The rules of the result code model are as follows:

• Every method returns a result code. This code is also placed into ResultCode.

• Setting a writable property causes a result code to be placed into ResultCode.

• The ResultCode OPOS_SUCCESS is assigned the value of zero. Non-zero
values indicate an error or warning.

• The Control must select one of the result codes listed below. If the Control sets
ResultCode to OPOS_E_EXTENDED, then it must set
ResultCodeExtended to one of the values specified in the device class
documentation. (That is, when this ResultCode value is selected, then
ResultCodeExtended may only contain one of the values listed in this
document for the device class, in the appropriate method or property section.)

If the Control sets ResultCode to a value other than OPOS_E_EXTENDED,
then the Service Object may set the ResultCodeExtended property to any
SO-specific value. If an application uses these values, it will, of course, need
to add Service Object-specific code. (If the application needs to add such code,
then the ServiceObjectDescription, DeviceDescription, or DeviceName
property may be interrogated to determine the Service Object with which it is
dealing.)

A-9 Status, Result Code, and State Model
State Model
The rules of the state model are as follows:

• The Control’s State is initially OPOS_S_CLOSED.

• The State is changed to OPOS_S_IDLE when the Open method is called and
its result is OPOS_SUCCESS.

• The State is set to OPOS_S_BUSY when OPOS is processing output. The
State is restored to OPOS_S_IDLE when these complete successfully.

• The State is changed to OPOS_S_ERROR when:

• An asynchronous output encounters an error condition.

• An error is encountered during the gathering or processing of event-
driven input.

After OPOS changes the State property to OPOS_S_ERROR, it invokes
ErrorEvent. The parameters to this event are the result code and extended
result code, the locus of the error, and a pointer to the application’s response
to the error. The locus can indicate one of three error locations:

• Output – The error occurred while processing previously queued output.

• InputWithData – The error occurred while gathering or processing event-
driven input. Some previously gathered input data is available for the
application. When this error locus is given, then the application can
continue to process input until a second ErrorEvent is received with the
InputNoData locus, or it can clear the input.

• InputNoData – The error occurred while gathering or processing event-
driven input, and either all previously gathered input data has been
processed or there is no input data available.

When the application returns from the ErrorEvent, it may change the
response parameter. The response values are:

• Retry – If the locus is Output: Retry the asynchronous output and exit the
error state. If an error occurs while retrying, then another ErrorEvent
will be generated.
If the locus is Input: Some devices support retrying the input, if retry can
be controlled by the Service Object.
“Retry” is the default response when the locus is “Output.”

• Clear – Clear the asynchronous output or buffered input data and exit the
error state.
“Clear” is the default response when the locus is “InputNoData.”

A-10
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
• Continue – Use only if the locus is InputWithData. This response
acknowledges the error and directs the Control to continue processing.
The Control remains in the error state, and will deliver additional data
events as directed by the DataEventEnabled property. When all input
has been delivered and the DataEventEnabled property is again set to
TRUE, then another ErrorEvent is delivered with locus “InputNoData.”
“Continue” is the default response when the locus is “InputNoData.”

The Control ensures that while the application is processing an ErrorEvent,
it will not deliver any other ErrorEvents.

A-11 Device Sharing Model
Device Sharing Model
The OLE for Retail POS device sharing model supports devices that are to be

used exclusively by one application1 at a time, as well as devices that may be
partially or fully shared by multiple applications. (See “When Methods and
Properties May Be Accessed”, page A-5, for other details.) All OPOS Controls
may be opened by more than one application at a given time. Some or many of
the activities that an application can perform with the Control, however, may be
restricted to an application that claims access to the device.

Exclusive-Use Devices
The most common device type is called an “exclusive-use device.” An example is
the POS printer. Due to physical or operational characteristics, this device can
only be used by one application at a time. The application must call the
ClaimDevice method to gain exclusive access to the device before most methods,
properties, or events are legal. Until the device is claimed, calling methods or
setting properties cause an OPOS_E_NOTCLAIMED error, and events are not
fired to the application.

Should two closely cooperating applications want to treat an exclusive-use device
in a shared manner, then one application may claim the device for a short
sequence of operations, then release it so that the other application may use it.

When the ClaimDevice method is called again, settable device characteristics are
restored to their condition at ReleaseDevice. Examples of restored characteristics
are the line display’s brightness, the MSR’s tracks to read, and the printer’s
characters per line. State characteristics are not restored, such as the printer’s
sensor properties. Instead, these are updated to their current values.

Sharable Devices
Some devices are “sharable devices.” An example is the keylock. A sharable
device allows multiple applications to call its methods and access its properties.
Also, it may fire its events to all applications that have opened it. A sharable
device may still limit access to some methods or properties to an application that
has claimed it, or may fire some events only to this application.

1. This document assumes that an application consists of only one process. Multi-process
applications are possible to create but uncommon. Technically, device sharing is
performed on a process basis. However, with single-process applications we can view
sharing as application-level.

A-12
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
Note:

One might argue that all devices should be defined as sharable to allow maximum
flexibility to applications. In practical use, this flexibility is unlikely to be useful.
The downside is an implementation that may be significantly more complex and
less likely to be accurate.

In the interest of a specification that is both sufficiently robust for application
development, plus implementable by hardware manufacturers, this document
defines most devices as exclusive-use, and defines as sharable only those devices
that have a significant potential for simultaneous use by multiple applications.

A-13 Events
Events
OLE for Retail POS uses events to inform an application of various activities or
changes with the OPOS Control. The five event types follow. Subsequent sections
will clarify their definitions.

• DataEvent: Input data has been placed into device class-specific properties.
• ErrorEvent: An error has occurred during event-driven input or

asynchronous output.
• StatusUpdateEvent: Reports a change in the device’s status.
• OutputCompleteEvent: An asynchronous output has successfully

completed.
• DirectIOEvent: This event may be defined by a Service Object provider for

purposes not covered by the specification.

The Service Object enqueues events as they occur. Often these events will be
enqueued by worker threads, rather than the application’s thread. Enqueued
events are delivered to the application when conditions are correct. Conditions
which delay the delivery of events include:

• The application thread is busy processing other messages.
OPOS Controls are to follow the OLE Apartment Threading model.
According to OLE Apartment Threading rules, events are to be delivered on
the thread that created the COM object, which will usually be the application’s
main thread. If the application is processing another message, then event
delivery must wait until this processing has finished.

• The application has set the property FreezeEvents to TRUE.
• The event type is DataEvent or an input ErrorEvent, but the property

DataEventEnabled is FALSE. (See “Input Model” on page A-15.)

If the oldest enqueued event is blocked for one of these reasons, then all newer
events may also be blocked. That is, the delivery of enqueued events is typically
in a strict first in, first out order. Priority is not given to any event types on the
queue.

A-14
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
__
Note – Terminology

The following event terminology is used rather consistently in this document.
Some implementations may vary from the model described here, but the net
effect is similar:

• Enqueue: When the Service Object determines that an event needs to be fired
to the Application, it enqueues the event on an internal event queue. Event
queuing typically occurs from one or more internal Service Object worker
threads.

• Deliver: When the event queue is non-empty and all conditions are met for the
top event on the queue, this event is removed from the queue and delivered to
the Application. Event delivery is typically managed by a dedicated internal
Service Object worker thread. This thread ensures that events are delivered in
the context of the thread that created the Control, in order to adhere to the
Apartment Threading model.

• Fire: The combination of enqueuing and delivering an event. Sometimes, the
term is used more loosely and may only refer to one of these steps. The reader
should differentiate these cases by context.

__

Rules on the management of the queue of events are:

• The Control may only enqueue new events while the device is enabled.
• The Control may deliver enqueued events until the application calls the

ReleaseDevice method (for exclusive-use devices) or the Close method (for
any device), at which time any remaining events are deleted.

• For input devices, the ClearInput method clears data and error events.

While within an event handler, the application may access properties and call
methods. However, the application must not call the ReleaseDevice or Close
methods from an event handler, since ReleaseDevice may shut down event
handling (possibly including a thread that caused the event to be delivered) and
Close must shut down event handling before returning.

A-15 Input Model
Input Model
The OLE for Retail POS input model supports event-driven input. Event-driven
input allows input data to be received after DeviceEnabled is set to TRUE.
Received data is enqueued as a DataEvent, which is delivered to the application
when preconditions are correct. If the AutoDisable property is TRUE when data
is received, then the control will automatically disable itself, setting
DeviceEnabled to FALSE. This will inhibit the Control from enqueuing further
input and, when possible, physically disable the device.

When the application is ready to receive input from the device, it sets the
DataEventEnabled property to TRUE. Then, when input is received (usually as
a result of a hardware interrupt), the Control enqueues and delivers a DataEvent.
(If input has already been enqueued, the DataEvent will be delivered.) This event
may include input status information through a numeric parameter. The Control
places the input data plus other information as needed into device specific-
specific properties just before the event is fired.

Just before delivering this event, the Control disables further data events by
setting the DataEventEnabled property to FALSE. This causes subsequent input
data to be enqueued by the Control while the application processes the current
input and associated properties. When the application has finished the current
input and is ready for more data, it re-enables events by setting
DataEventEnabled to TRUE.

If the input device is an exclusive-use device, the application must both claim and
enable the device before the device begins reading input.

For sharable input devices, one or more applications must open and enable the
device before the device begins reading input. An application must call the
ClaimDevice method to request exclusive access to the device before the Control
will send data to it using the DataEvent. If event-driven input is received, but no
application has claimed the device, then the input is buffered until an application
claims the device (and the DataEventEnabled property is TRUE). This behavior
allows orderly sharing of the device between multiple applications, effectively
passing the input focus between them.

If the Control encounters an error while gathering or processing event-driven
input, then the Control changes its state to Error, and enqueues one or two
ErrorEvents to alert the application of the error condition. This event (or events)
is not delivered until the DataEventEnabled property is TRUE, so that orderly
application sequencing occurs. Error events are delivered with the following loci:

• InputWithData (OPOS_EL_INPUT_DATA) – Only enqueued if the error
occurred while one or more DataEvents are enqueued. It is enqueued ahead
of all DataEvents. (A typical implementation would place it at the head of the
event queue.) This event gives the application the ability to immediately clear
the input, or to optionally alert the user to the error and process the buffered
input.

A-16
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
The latter case may be useful with a Scanner Control: The user can be
immediately alerted to the error so that no further items are scanned until the
error is resolved. Any previously scanned items can then be successfully
processed before error recovery is performed.

• InputNoData (OPOS_EL_INPUT) – Delivered when an error has occurred
and there is no data available. (A typical implementation would place it at the
tail of the event queue.) If some input data was already enqueued when the
error occurred, then an ErrorEvent with the locus “InputWithData” was
enqueued and delivered first, and then this error event is delivered after all
DataEvents have been fired. (If an “InputWithData” event was delivered and
the application event handler responded with a “Clear”, then this
“InputNoData” event is not delivered.)

The Control exits the Error state when one of the following occurs:

• The application returns from the InputNoData ErrorEvent.

• The application returns from the InputWithData ErrorEvent with
OPOS_ER_CLEAR.

• The application calls the ClearInput method.

For some Controls, the Application must call a method to begin event driven
input. After the input is received by the Control, then typically no additional input
will be received until the method is called again to reinitiate input. Examples are
the MICR and Signature Capture devices. This variation of event driven input is
sometimes called “asynchronous input.”

The DataCount property may be read to obtain the number of DataEvents
enqueued by the Control.

All input enqueued by a Control may be deleted by calling the ClearInput
method. ClearInput may be called after Open for sharable devices and after
ClaimDevice for exclusive-use devices.

The general event-driven input model does not specifically rule out the definition
of device classes containing methods or properties that return input data directly.
Some device classes will define such methods and properties in order to operate
in a more intuitive or flexible manner. An example is the Keylock device. This
type of input is sometimes called “synchronous input.”

A-17 Output Model
Output Model
The OLE for Retail POS output model consists of two output types: synchronous
and asynchronous. A device class may support one or both types, or neither type.

Synchronous Output
This type of output is preferred when device output can be performed quickly. Its
merit is simplicity.

The application calls a class-specific method to perform output. The Control does
not return until the output is completed.

Asynchronous Output
This type of output is preferred when device output requires slow hardware
interactions. Its merit is perceived responsiveness, since the application can
perform other work while the device is performing the output.

The application calls a class-specific method to start the output. The Control
buffers the request, sets the OutputID property to an identifier for this request,
and returns as soon as possible. When the device completes the request
successfully, OPOS fires an OutputCompleteEvent. A parameter of this event
contains the OutputID of the completed request.

If an error occurs while performing an asynchronous request, an ErrorEvent is
fired. The application’s event handler can either retry the outstanding output or
clear it. The Control is in the Error state while the ErrorEvent is in progress.
(Note that if the condition causing the error was not corrected, then the Control
may immediately reenter the Error state and fire another ErrorEvent.)

Asynchronous output is performed on a first-in first-out basis.

All output buffered by the Control may be deleted by calling the ClearOutput
method. OutputCompleteEvents will not be fired for cleared output. This
method also stops any output that may be in progress (when possible).

A-18
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
Device Power Reporting Model
Added in OPOS Release 1.3.

Applications frequently need to know the power state of the devices they use.
Earlier versions of OPOS had no consistent method for reporting this
information. Note: This model is not intended to report PC or POS Terminal
power conditions (such as “on battery” and “battery low”). Reporting of these
conditions is left to PC power management standards and APIs.

Model
OPOS segments device power into three states:

• ONLINE: The device is powered on and ready for use. This is the
“operational” state.

• OFF: The device is powered off or detached from the terminal. This is a “non-
operational” state.

• OFFLINE: The device is powered on but is either not ready or not able to
respond to requests. It may need to be placed online by pressing a button, or it
may not be responding to terminal requests. This is a “non-operational” state.

In addition, one combination state is defined:

• OFF_OFFLINE: The device is either off or offline, and the Service Object
cannot distinguish these states.

Power reporting only occurs while the device is open, claimed (if the device is
exclusive-use), and enabled.
__
Note – Enabled/Disabled vs. Power States

These states are different and usually independent. OPOS defines “disabled” /
“enabled” as a logical state, whereas the power state is a physical state. A device
may be logically “enabled” but physically “offline”. It may also be logically
“disabled” but physically “online”. Regardless of the physical power state, OPOS
only reports the state while the device is enabled. (This restriction is necessary
because a Service Object typically can only communicate with the device while
enabled.)

If a device is “offline”, then a Service Object may choose to fail an attempt to
“enable” the device. However, once enabled, the Service Object may not disable a
device based on its power state.
__

A-19 Device Power Reporting Model
Properties
The OPOS device power reporting model adds the following common elements
across all device classes:

• CapPowerReporting property: Identifies the reporting capabilities of the
device. This property may be one of:

• OPOS_PR_NONE: The Service Object cannot determine the state of the
device. Therefore, no power reporting is possible.

• OPOS_PR_STANDARD: The Service Object can determine and report
two of the power states – OFF_OFFLINE (that is, off or offline) and
ONLINE.

• OPOS_PR_ADVANCED: The Service Object can determine and report
all three power states – ONLINE, OFFLINE, and OFF.

• PowerState property: Maintained by the Service Object at the current power
condition, if it can be determined. This property may be one of:

• OPOS_PS_UNKNOWN

• OPOS_PS_ONLINE

• OPOS_PS_OFF

• OPOS_PS_OFFLINE

• OPOS_PS_OFF_OFFLINE

• PowerNotify property: The Application may set this property to enable power
reporting via StatusUpdateEvents and the PowerState property. This
property may only be set before the device is enabled (that is, before
DeviceEnabled is set to TRUE). This restriction allows simpler
implementation of power notification with no adverse effects on the
application. The application is either prepared to receive notifications or does
not want them, and has no need to switch between these cases. This property
may be one of:

• OPOS_PN_DISABLED

• OPOS_PN_ENABLED

A-20
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
Power Reporting Requirements for DeviceEnabled
The following semantics are added to DeviceEnabled when
CapPowerReporting is not OPOS_PR_NONE, and
PowerNotify is OPOS_PN_ENABLED:

• When the Control changes from DeviceEnabled FALSE to TRUE, then begin
monitoring the power state:

• If the device is ONLINE, then:

PowerState is set to OPOS_PS_ONLINE.

A StatusUpdateEvent is fired with Status parameter set to
OPOS_SUE_POWER_ONLINE.

• If the device power state is OFF, OFFLINE, or OFF_OFFLINE, then the
Control may choose to fail the enable, setting ResultCode to
OPOS_E_NOHARDWARE or OPOS_E_OFFLINE.

However, if there are no other conditions that cause the enable to fail, and
the Control chooses to return success for the enable, then:

PowerState is set to OPOS_PS_OFF, OPOS_PS_OFFLINE, or
OPOS_PS_OFF_OFFLINE.

A StatusUpdateEvent is fired with Status parameter set to
OPOS_SUE_POWER_OFF, OPOS_SUE_POWER_OFFLINE,
or OPOS_SUE_POWER_OFF_OFFLINE.

• When the Control changes from DeviceEnabled TRUE to FALSE, then
OPOS assumes that the Control is no longer monitoring the power state.
Therefore:

PowerState is set to OPOS_PS_UNKNOWN.

A-21 OPOS Component Descriptions
OPOS Component Descriptions

The following sections are arranged as follows and provide detailed information
on how an Application is expected to interface with a device covered under
OPOS.

Section 1:
Describes the specific characteristics of the data types that OPOS uses as they
relate to the Windows OPOS implementation.

Section 2:
Provides interface descriptions for the properties, methods, and events specific to
OPOS. For thorough description of these, one should consult the applicable
chapters located in this document.

Section 3:
Details the OPOS use of the system registry specific to Windows.

Section 4:
Contains an example of the C++ OPOS application header files.

Section 5:
Provides some miscellaneous additional technical information to help the
Application Developer understand some of the finer details of a Windows OPOS
implementation.

Section 6:
Provides additional information on ClaimDevice and ReleaseDevice methods
which became necessary as a result of Microsoft’s ActiveX changes that affected
the Claim and Release method naming convention that was used in OPOS 1.4
and earlier editions.

A-22
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
Section 1: OPOS Data Types
The parameter and return types specified in the OPOS descriptions are as follows:

Type Meaning

BOOL An integer with the legal values TRUE (non-zero) and
FALSE (zero).

COM IDL type: VARIANT_BOOL (short). Values
 VARIANT_TRUE (-1) and VARIANT_FALSE (0).
VARIANT type: VT_BOOL

BSTR A character string. Consists of a length component
followed by the string and a terminating NUL (0)
character. See “System Strings (BSTR)” (page A-67)
for more information.

COM IDL type: BSTR (unsigned short*)

VARIANT type: VT_BSTR

BSTR* A pointer to a character string.

COM IDL type: BSTR* (unsigned short**)

VARIANT type: VT_BYREF | VT_BSTR

LONG An integer with a size of 32 bits.

COM IDL type: long

VARIANT type: VT_I4

LONG* A pointer to a 32-bit integer.

COM IDL type: long*

VARIANT type: VT_BYREF | VT_I4

CURRENCY Release 1.3 and later
A monetary value. An integer with a size of 64 bits. The
value assumes four decimal places. For example, if the
integer is “1234567”, then the value is “123.4567”.

COM IDL type: CURRENCY (union tagCY)
 “union tagCY” is declared as
 {
 struct { long Hi; long Lo; };
 __int64 int64;
 };
VARIANT type: VT_CY

CURRENCY* Release 1.3 and later
A pointer to a CURRENCY value.

COM IDL type: CURRENCY* (union tagCY*)

VARIANT type: VT_BYREF | VT_CY

A-23 Section 2: OPOS Interface Descriptions
Section 2: OPOS Interface Descriptions

Information in this section further defines the requirements of the UnifiedPOS for
a Windows OS environment implementation. The common Properties, Methods,
and Events are included to help transition from the UML given in Chapter 1 to the
specifics for the Windows environment.

Next, tables are included that outline the specific programmatic examples for
each of the device classifications and reference back to the UML for the
respective devices.

The examples have been provided in Visual Basic and Visual C++ as the
Windows OS reference programming platforms. Other programming languages
written for the Windows OS environment may be supported as long as they
comply to the Microsoft OLE 2.x.

A-24
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
OPOS Common Properties, Methods, and Events

Properties

AutoDisable Property R/W Added in Release 1.2

Syntax BOOL AutoDisable;

Remarks This property applies to event-driven input devices. It provides the application
with an additional option for controlling the receipt of input data. If an application
wants to receive and process only one input, or only one input at a time, then this
property may be set to TRUE.

When TRUE, then as soon as the Service Object receives and enqueues data to be
fired as a DataEvent, then it sets DeviceEnabled = FALSE. Before any
additional input can be received, the application must set DeviceEnabled =
TRUE.

When FALSE, the Service Object does not automatically disable the device when
data is received. This is the behavior of OPOS controls prior to Release 1.2.

This property is initialized to FALSE by the Open method.

Return When this property is set, the following value is placed in the ResultCode
property:

Value Meaning

OPOS_SUCCESS The property was set successfully.

A-25 Properties
BinaryConversion Property R/W Added in Release 1.2

Syntax LONG BinaryConversion;

Remarks OPOS passes multi-character input and output using BStrings. BStrings may be
safely used for text data. As the BStrings are passed between the application and
the OPOS Control, OLE may perform language-specific translations to or from
Unicode.

When BStrings are used to pass binary data, then these translations may alter the
data such that the data byte in a BString character at the application does not
match the corresponding byte at the Control. This mismatch is more likely when
BString pointers are used, since the Unicode characters are presented to the
application and/or Control, and a language difference between them may cause
misinterpretation. (This was first reported with Japanese, which uses the MBCS
Code Page 932, but can occur with other languages, also.)

Characters between 0x00 and 0x7F may be sent without fear of language-specific
translation. Only characters between 0x80 and 0xFF sometimes cause incorrect
translations.

This document specifies those properties and method parameters that are affected
by BinaryConversion in the individual property and method descriptions. The
following line is added to their description:

The format of this data depends upon the value of the BinaryConversion
property.

The binary conversion values are:

Value Meaning

OPOS_BC_NONE Data is placed one byte per BString character, with no
conversion.
(This is the default, and is the behavior of OPOS
Service Objects prior to 1.2.)

OPOS_BC_NIBBLE Each byte is converted into two characters.
(This option provides for the fastest conversion
between binary and ASCII characters.)

Each data byte is converted as follows:
 First character = 0x30 + bits 7-4 of the data byte.
 Second character = 0x30 + bits 3-0 of the data byte.

Example: Byte value 154 = 0x9A is converted into the
characters 0x39 0x3A (= the string “9:”). Note that this
conversion is not the more common hexadecimal
ASCII, which would have converted 154 to 0x39 0x41
(= the string “9A”).

OPOS_BC_DECIMAL Each byte is converted into three characters.
(This option provides for the easiest conversion

A-26
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
between binary and ASCII characters for Visual Basic
and similar languages.)

VAL(string) may be used on each 3 characters to
convert from ASCII to binary.
RIGHT(“^^”+STR(byte), 3) may be used to produce 3
ASCII characters from each byte, where '^' represents
the space character.

Example 1: Byte value 154 = 0x9A becomes the
characters 0x31 0x35 0x34 (= the string “154”).

Example 2: Byte value 8 becomes the characters 0x30
0x30 0x38 (= the string “008”).

Requirements for a Service Object are:

(1) When the Service Object converts from ASCII to
binary, it must allow either leading spaces or ASCII
zeroes, since STR(byte) produces a leading space. (For
example, the application may pass “^^8^27”, where '^'
represents the space character, which will be interpreted
as the two bytes 8 (0x08) and 27 (0x1B).)

(2) When the Service Object converts from binary to
ASCII, is must always convert each byte into exactly
three ASCII decimal characters (range 0x30 to 0x39).

When BinaryConversion is on (that is, not OPOS_BC_NONE) and the property
or method parameter description specifies that BinaryConversion applies, then
the application has the following responsibilities:

• Before setting the property or passing the method parameter, convert the string
data into the format specified by the BinaryConversion value.

• After getting the property or receiving the method parameter, convert the
string data from the format specified by the BinaryConversion value.

To better understand the “direction” of the conversion, determine if the data flow
follows the Output Model or the Input Model. If the flow follows the Output
Model, then the application must adhere to the first responsibility listed above. If
the flow follows the Input Model, then the application must adhere to the second
responsibility listed above.

This property is initialized to OPOS_BC_NONE by the Open method.

Return When this property is set, one of the following values is placed in the ResultCode
property:

Value Meaning

OPOS_SUCCESS The property was set successfully.

OPOS_E_ILLEGAL An illegal value was specified.

A-27 Properties
CapPowerReporting Property Added in Release 1.3

Syntax LONG CapPowerReporting;

Remarks Identifies the reporting capabilities of the device.

The power reporting values are:

Value Meaning

OPOS_PR_NONE The Service Object cannot determine the state of the
device. Therefore, no power reporting is possible.

OPOS_PR_STANDARD
The Service Object can determine and report two of the
power states – OFF_OFFLINE (that is, off or offline)
and ONLINE.

OPOS_PR_ADVANCED
The Service Object can determine and report all three
power states – OFF, OFFLINE, and ONLINE.

This property is initialized by the Open method.

CheckHealthText Property

Syntax BSTR CheckHealthText;

Remarks Holds the results of the most recent call to the CheckHealth method. The
following examples illustrate some possible diagnoses:

• “Internal HCheck: Successful”

• “External HCheck: Not Responding”

• “Interactive HCheck: Complete”

Before the first CheckHealth method call, its value is uninitialized.

Claimed Property

Syntax BOOL Claimed;

Remarks If TRUE, the device is claimed for exclusive access.
If FALSE, the device is released for sharing with other applications.

Many devices must be claimed before the Control will allow access to many of its
methods and properties, and before it will fire events to the application.

The value of Claimed is initialized to FALSE by the Open method.

A-28
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
ControlObjectDescription Property

Syntax BSTR ControlObjectDescription;

Remarks String identifying the Control Object and the company that produced it.

The property identifies the Control Object. A sample returned string is:

“POS Printer OLE Control, (C) 1995 Epson”

This property is always readable.

ControlObjectVersion Property

Syntax LONG ControlObjectVersion;

Remarks Control Object version number.

This property holds the Control Object version number. Three version levels are
specified, as follows:

Version Level Description

Major The “millions” place.
A change to the OPOS major version level for a device
class reflects significant interface enhancements, and
may remove support for obsolete interfaces from
previous major version levels.

Minor The “thousands” place.
A change to the OPOS minor version level for a device
class reflects minor interface enhancements, and must
provide a superset of previous interfaces at this major
version level.

Build The “units” place.
Internal level provided by the Control Object developer.
Updated when corrections are made to the CO
implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major version
1, minor version 2, build 38 of the Control Object.

This property is always readable.

A-29 Properties
Note:
A Control Object for a device class will operate with any Service Object for that
class, as long as its major version number matches the Service Object’s major
version number. If they match, but the Control Object’s minor version number is
greater than the Service Object’s minor version number, then the Control Object
may support some new methods or properties that are not supported by the
Service Object’s release.

The following rules apply to APIs supported by the Control Object’s release but
not supported by the Service Object’s older release:

• Reading an unsupported property: The Control Object returns the property’s
uninitialized value. (See “When Methods and Properties May Be Accessed”
on page A-5 for uninitialized property default values.)

• Writing an unsupported property: The Control Object returns, but must re-
member that an unsupported property write or method call occurred. Then, if
the application reads the ResultCode property, the Control Object must return
a value of OPOS_E_NOSERVICE (rather than reading the current Result-
Code from the Service Object). It must do this until the next property write or
method call, at which time ResultCode is set by that API.

• Calling an unsupported method: The Control Object returns a value of
OPOS_E_NOSERVICE, and must remember that an unsupported property
write or method call occurred. Then, if the application reads the ResultCode
property, the Control Object must return a value of OPOS_E_NOSERVICE
(rather than reading the current ResultCode from the Service Object). It must
do this until the next property write or method call, at which time ResultCode
is set by that API.

DataCount Property Added in Release 1.2

Syntax LONG DataCount;

Remarks Holds the number of enqueued DataEvents at the control.

The application may interrogate DataCount to determine whether additional
input is enqueued from a device, but has not yet been delivered because of other
application processing, freezing of events, or other causes.

This property is initialized to zero by the Open method.

A-30
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
DataEventEnabled Property R/W

Syntax BOOL DataEventEnabled;

Remarks When TRUE, a DataEvent will be delivered as soon as input data is enqueued. If
changed to TRUE and some input data is already queued, then a DataEvent is
delivered immediately. (Note that other, less likely, conditions may delay
“immediate” delivery: If FreezeEvents is TRUE or another event is already being
processed at the application, the DataEvent will remain enqueued at the Service
Object until the condition is corrected.)

When FALSE, input data is queued for later delivery to the application. Also, if
an input error occurs, the ErrorEvent is not delivered while DataEventEnabled
is FALSE.

This property is initialized to FALSE by the Open method.

Return When this property is set, the following value is placed in the ResultCode
property:

Value Meaning

OPOS_SUCCESS The property was set successfully.

DeviceDescription Property

Syntax BSTR DeviceDescription;

Remarks String identifying the device.

The property identifies the device and any pertinent information about it. A
sample returned string is:

“NCR 7192-0184 Printer, Japanese Version”

This property is initialized by the Open method.

A-31 Properties
DeviceEnabled Property R/W

Syntax BOOL DeviceEnabled;

Remarks When TRUE, the device has been placed in an operational state. If changed to
TRUE, then the device is brought to an operational state.

When FALSE, the device has been disabled. If changed to FALSE, then the
device is physically disabled when possible, any subsequent input will be
discarded, and output operations are disallowed.

Changing this property usually does not physically affect output devices. For
consistency, however, the application must set this property to TRUE before
using output devices.

Release 1.3 and later: The device’s power state may be reported
while DeviceEnabled is TRUE.

This property is initialized to FALSE by the Open method.

Return When this property is set, one of the following values is placed in the ResultCode
property:

Value Meaning

OPOS_SUCCESS The property was set successfully.

OPOS_E_NOTCLAIMED
An exclusive use device must be claimed before the
device may be enabled.

Other Values See ResultCode.

DeviceName Property

Syntax BSTR DeviceName;

Remarks Short string identifying the device.

The property identifies the device and any pertinent information about it. This is a
short version of DeviceDescription and should be limited to 30 characters.

DeviceName will typically be used to identify the device in an application
message box, where the full description is too verbose. A sample returned string
is:

“NCR 7192 Printer, Japanese”

This property is initialized by the Open method.

A-32
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
FreezeEvents Property R/W

Syntax BOOL FreezeEvents;

Remarks When TRUE, the application has requested that the Control not deliver events.
Events will be held by the Control until events are unfrozen.

When FALSE, the application allows events to be delivered. If some events have
been held while events were frozen and all other conditions are correct for
delivering the events, then changing FreezeEvents to FALSE will cause these

events to be delivered.1

An application may choose to freeze events for a specific sequence of code where
interruption by an event is not desirable.

This property is initialized to FALSE by the Open method.

Return When this property is set, the following value is placed in the ResultCode
property:

Value Meaning

OPOS_SUCCESS The property was set successfully.

1. Firing of events can also be deferred by the containing application. A control con-
tainer may request controls to freeze event firing. For example, this feature is utilized by
Visual Basic when modal dialog boxes are active. Therefore, events are fired when both
FreezeEvents is FALSE and the container has not requested event freezing.
Container-initiated event freezing is not referenced elsewhere in this document, since an
Application will seldom if ever notice it and cannot directly control it.

A-33 Properties
OpenResult Property Added in Release 1.5

Syntax LONG OpenResult;

Remarks Holds additional details about the most recent Open method.

The open result values are:

Value Meaning

OPOS_SUCCESS Successful open.

OPOS_OR_ALREADYOPEN
Control already open.

OPOS_OR_REGBADNAME
The registry does not contain a key for the specified
device name.

OPOS_OR_REGPROGID
Could not read the device name key’s default value, or
could not convert the Programmatic ID it holds into a
valid Class ID.

OPOS_OR_CREATE Could not create a service object instance, or could not
get its IDispatch interface.

OPOS_OR_BADIF The service object does not support one or more of the
methods required by its release.

OPOS_OR_FAILEDOPEN
The service object returned a failure status from its
open call, but does not have a more specific failure
code.

OPOS_OR_BADVERSION
The service object major version number does not
match the control object major version number.

The following values can be returned by the Service
Object if it returns a failure status from its open call.
The Service Object can choose to return one of these, if
applicable, or define additional values. (See the Control
Programmer’s Guide’s GetOpenResult description for
details on how the Service Object returns these values.
If the Service Object does not implement
GetOpenResult, then OpenResult returns
OPOS_OR_FAILEDOPEN.)

OPOS_ORS_NOPORT The Service Object tried to access an I/O port (for
example, an RS232 port) during Open processing, but
the port that is configured for the DeviceName is
invalid or inaccessible.

A-34
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
As a general rule, an SO should refrain from accessing
the physical device until the DeviceEnabled property is
set to TRUE. But in some cases, it may require some
access at Open; for instance, to dynamically
determining the device type in order to set the
DeviceName and DeviceDescription properties.

OPOS_ORS_NOTSUPPORTED
The Service Object does not support the specified
device.

The SO has determined that it does not have the ability
to control the device it is opening. This determination
may be due to an inspection of the registry entries for
the device, or dynamic querying of the device during
open processing.

OPOS_ORS_CONFIG Configuration information error.

Usually this is due to incomplete configuration of the
registry, such that the SO does not have sufficient or
valid data to open the device.

OPOS_ORS_SPECIFIC Errors greater than this value are service object-
specific.

If the previous return values do not apply, then the SO
may define additional OpenResult values. These values
are Service Object-specific, but may be of value in
these cases:

 1) The Application logs or reports this error during
debug and testing.

 2) The Application adds SO-specific logic, to attempt to
report more error conditions or to recover from them.

This property is initialized by the Open method.

OutputID Property

Syntax LONG OutputID;

Remarks Holds the identifier of the most recently started asynchronous output.

When a method successfully initiates an asynchronous output, the Control assigns
an identifier to the request. When the output completes, the Control will fire an
OutputCompleteEvent passing this output ID as a parameter.

The output ID numbers are assigned by the Control and are guaranteed to be
unique among the set of outstanding asynchronous outputs. No other facts about
the ID should be assumed.

A-35 Properties
PowerNotify Property R/W Added in Release 1.3

Syntax LONG PowerNotify;

Remarks Contains the type power notification selection made by the Application.

The power notification values are:

Value Meaning

OPOS_PN_DISABLED The Control will not provide any power notifications to
the application. No power notification
StatusUpdateEvents will be fired, and PowerState
may not be set.

OPOS_PN_ENABLED The Control will fire power notification
StatusUpdateEvents and update PowerState,
beginning when DeviceEnabled is set to TRUE. The
level of functionality depends upon
CapPowerReporting.

PowerNotify may only be set while the device is disabled, that is, while
DeviceEnabled is FALSE.

This property is initialized to OPOS_PN_DISABLED by the Open method. This
value provides compatibility with earlier releases.

Return When this property is set, one of the following values is placed in the ResultCode
property:

Value Meaning

OPOS_SUCCESS The property was set successfully.

OPOS_E_ILLEGAL One of the following occurred:

The device is already enabled.

PowerNotify = OPOS_PN_ENABLED but CapPower-
Reporting = OPOS_PR_NONE.

Other Values See ResultCode.

PowerState Property Added in Release 1.3

Syntax LONG PowerState;

Remarks Contains the current power condition, if it can be determined.

The power reporting values are:

Value Meaning

OPOS_PS_UNKNOWN Cannot determine the device’s power state, for one of
the following reasons:

CapPowerReporting = OPOS_PR_NONE. Device does

A-36
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
not support power reporting.

PowerNotify = OPOS_PN_DISABLED. Power notifica-
tions are disabled.

DeviceEnabled = FALSE. Power state monitoring does
not occur until the device is enabled.

OPOS_PS_ONLINE The device is powered on and ready for use.
Can be returned if CapPowerReporting =
OPOS_PR_STANDARD or OPOS_PR_ADVANCED.

OPOS_PS_OFF The device is off or detached from the terminal.
Can only be returned if CapPowerReporting =
OPOS_PR_ADVANCED.

OPOS_PS_OFFLINE The device is powered on but is either not ready or not
able to respond to requests.
Can only be returned if CapPowerReporting =
OPOS_PR_ADVANCED.

OPOS_PS_OFF_OFFLINE
The device is either off or offline.
Can only be returned if CapPowerReporting =
OPOS_PR_STANDARD.

This property is initialized to OPOS_PS_UNKNOWN by the Open method.
When PowerNotify is set to enabled and DeviceEnabled is TRUE, then this
property is updated as the Service Object detects power condition changes.

ResultCode Property

Syntax LONG ResultCode;

Remarks This property is set by each method. It is also set when a writable property is set.

This property is always readable. Before the Open method is called, it returns the
value OPOS_E_CLOSED.

It is conceivable that more than one of the following result codes could be valid
for a particular failure. The order of error reporting precedence for such scenarios
is the following:

• OPOS_E_CLAIMED

• OPOS_E_NOTCLAIMED

• OPOS_E_DISABLED

A-37 Properties
The result code values are:

Value Meaning

OPOS_SUCCESS Successful operation.

OPOS_E_CLOSED Attempt was made to access a closed device.

OPOS_E_CLAIMED Attempt was made to access a device that is claimed by
another process. The other process must release the
device before this access may be made. For exclusive-
use devices, the application will also need to claim the
device before the access is legal.

OPOS_E_NOTCLAIMED
Attempt was made to access an exclusive-use device
that must be claimed before the method or property set
action can be used.
If the device is already claimed by another process, then
the status OPOS_E_CLAIMED is returned instead.

OPOS_E_NOSERVICE The Control cannot communicate with the Service
Object. Most likely, a setup or configuration error must
be corrected.

OPOS_E_DISABLED Cannot perform operation while device is disabled.

OPOS_E_ILLEGAL Attempt was made to perform an illegal or unsupported
operation with the device, or an invalid parameter value
was used.

OPOS_E_NOHARDWAREThe device is not connected to the system or is not
powered on.

OPOS_E_OFFLINE The device is off-line.

OPOS_E_NOEXIST The file name (or other specified value) does not exist.

OPOS_E_EXISTS The file name (or other specified value) already exists.

OPOS_E_FAILURE The device cannot perform the requested procedure,
even though the device is connected to the system,
powered on, and on-line.

OPOS_E_TIMEOUT The Service Object timed out waiting for a response
from the device, or the Control timed out waiting for a
response from the Service Object.

OPOS_E_BUSY The current Service Object state does not allow this
request. For example, if asynchronous output is in
progress, certain methods may not be allowed.

OPOS_E_EXTENDED A class-specific error condition occurred. The error
condition code is available in the
ResultCodeExtended property.

A-38
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
ResultCodeExtended Property

Syntax LONG ResultCodeExtended;

Remarks When the ResultCode is set to OPOS_E_EXTENDED, this property is set to a
class-specific value, and must match one of the values given in this document
under the appropriate device class section.

When the ResultCode is set to any other value, this property may be set by the
Service Object to any SO-specific value. These values are only meaningful if the
application adds Service Object-specific code to handle them.

ServiceObjectDescription Property

Syntax BSTR ServiceObjectDescription;

Remarks String identifying the Service Object supporting the device and the company that
produced it.

A sample returned string is:

“TM-U950 Printer OPOS Service Driver, (C) 1995 Epson”

This property is initialized by the Open method.

A-39 Properties
ServiceObjectVersion Property

Syntax LONG ServiceObjectVersion;

Remarks Service object version number.

This property holds the Service Object version number. Three version levels are
specified, as follows:

Version Level Description

Major The “millions” place.
A change to the OPOS major version level for a device
class reflects significant interface enhancements, and
may remove support for obsolete interfaces from
previous major version levels.

Minor The “thousands” place.
A change to the OPOS minor version level for a device
class reflects minor interface enhancements, and must
provide a superset of previous interfaces at this major
version level.

Build The “units” place.
Internal level provided by the Service Object developer.
Updated when corrections are made to the SO
implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major version
1, minor version 2, build 38 of the Service Object.

This property is initialized by the Open method.

Note:

A Service Object for a device class will operate with any Control Object for that
class, as long as its major version number matches the Control Object’s major
version number. If they match, but the Service Object’s minor version number is
greater than the Control Object’s minor version number, then the Service Object
may support some methods or properties that cannot be accessed from the
Control Object’s release.

If the application requires such features, then it will need to be updated to use a
later version of the Control Object.

A-40
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
State Property

Syntax LONG State;

Remarks Contains the current state of the Control.

Value Meaning

OPOS_S_CLOSED The Control is closed.

OPOS_S_IDLE The Control is in a good state and is not busy.

OPOS_S_BUSY The Control is in a good state and is busy performing
output.

OPOS_S_ERROR An error has been reported, and the application must
recover the Control to a good state before normal I/O
can resume.

This property is always readable.

A-41 Methods
Methods
CheckHealth Method

Syntax LONG CheckHealth (LONG Level);

The Level parameter indicates the type of health check to be performed on the
device. The following values may be specified:

Value Meaning

OPOS_CH_INTERNAL Perform a health check that does not physically
change the device. The device is tested by internal tests
to the extent possible.

OPOS_CH_EXTERNAL Perform a more thorough test that may change the
device. For example, a pattern may be printed on the
printer.

OPOS_CH_INTERACTIVEPerform an interactive test of the device. The
supporting Service Object will typically display a
modal dialog box to present test options and results.

Remarks Called to test the state of a device.

A text description of the results of this method is placed in the CheckHealthText
property.

The CheckHealth method is always synchronous.

Return One of the following values are returned by the method, and also placed in the
ResultCode property.

Value Meaning

OPOS_SUCCESS Indicates that the health checking procedure was
initiated properly and, when possible to determine,
indicates that the device is healthy. However, the health
of many devices can only be determined by a visual
inspection of the test results.

OPOS_E_ILLEGAL The specified health check level is not supported by the
Service Object.

OPOS_E_BUSY Cannot perform while output is in progress.

Other Values See ResultCode.

A-42
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
ClaimDevice Method Added in Release 1.5

Syntax LONG ClaimDevice (LONG Timeout);

The Timeout parameter gives the maximum number of milliseconds to wait for
exclusive access to be satisfied.
If zero, the method attempts to claim the device, then returns the appropriate
status immediately.
If OPOS_FOREVER (-1), the method waits as long as needed until exclusive
access is satisfied.

Remarks Call this method to request exclusive access to the device. Many devices require
an application to claim them before they can be used.

When successful, the Claimed property is changed to TRUE.

Release 1.0 – 1.4 In releases prior to 1.5, this method is named Claim.

Release 1.5 and later

ClaimDevice must be used by early-bound applications. For compatibility with
late-bound applications, the Control Object’s IDispatch interface supports both
ClaimDevice and Claim. It is recommended that applications written to the 1.5
specification use ClaimDevice, not Claim.

Early bound applications acquire Control Object calling details at development
time, including Class IDs, Interface IDs, and method, property, and event calling
details. They then can build in static sequences to call methods and properties and
receive events. Microsoft Visual C++ and Visual Basic plus most compiled
languages support early binding.

Late bound applications acquire calling details at run time. They then
dynamically build code sequences to call methods and properties plus receive
events. Scripting languages usually support late binding. Late binding can be
implemented with many compiled languages, too, but often require additional
programmer effort, especially to receive events.

Return One of the following values is returned by the method and placed in the
ResultCode property:

Value Meaning

OPOS_SUCCESS Exclusive access has been granted. The Claimed
property is now TRUE.
Also returned if this application has already claimed the
device.

OPOS_E_ILLEGAL This device cannot be claimed for exclusive access, or
an invalid Timeout parameter was specified.

OPOS_E_TIMEOUT Another application has exclusive access to the device,
and did not relinquish control before Timeout
milliseconds expired.

A-43 Methods
ClearInput Method

Syntax LONG ClearInput ();

Remarks Called to clear all device input that has been buffered.

Any data events or input error events that were enqueued – usually waiting for
DataEventEnabled to be set to TRUE and FreezeEvents to be set to FALSE –
are also cleared.

Return The following value is returned by the method and placed in the ResultCode
property.

Value Meaning

OPOS_SUCCESS Input has been cleared.

OPOS_E_CLAIMED The device is claimed by another process.

OPOS_E_NOTCLAIMED
The device must be claimed before this method can be
used.

ClearOutput Method

Syntax LONG ClearOutput ();

Remarks Called to clear all device output that has been buffered. Also, when possible, halts
outputs that are in progress.

Any output error events that were enqueued – usually waiting for FreezeEvents
to be set to FALSE – are also cleared.

Return The following value is returned by the method and placed in the ResultCode
property.

Value Meaning

OPOS_SUCCESS Output has been cleared.

OPOS_E_CLAIMED The device is claimed by another process.

OPOS_E_NOTCLAIMED
The device must be claimed before this method can be
used.

A-44
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
Close Method

Syntax LONG Close ();

Remarks Called to release the device and its resources.

If the DeviceEnabled property is TRUE, then the device is first disabled.

If the Claimed property is TRUE, then exclusive access to the device is first
released.

Return One of the following values is returned by the method and placed in the
ResultCode property:

Value Meaning

OPOS_SUCCESS Device has been disabled and closed.

Other Values See ResultCode.

DirectIO Method

Syntax LONG DirectIO (LONG Command, LONG* pData, BSTR* pString);

Parameter Description

Command Command number. Specific values assigned by the
Service Object.

pData Pointer to additional numeric data. Specific values vary
by Command and Service Object.

pString Pointer to additional string data. Specific values vary by
Command and Service Object.
The format of this data depends upon the value of the
BinaryConversion property.

Remarks Call to communicate directly with the Service Object.

This method provides a means for a Service Object to provide functionality to the
application that is not otherwise supported by the standard Control Object for its
device class. Depending upon the Service Object’s definition of the command,
this method may be asynchronous or synchronous.

Use of DirectIO will make an application non-portable. The application may,
however, maintain portability by performing DirectIO calls within conditional
code. This code may be based upon the value of the ServiceObjectDescription,
DeviceDescription, or DeviceName property.

Return One of the following values is returned by the method and placed in the
ResultCode property:

Value Meaning

OPOS_SUCCESS Direct I/O successful.

Other Values See ResultCode.

A-45 Methods
Open Method

Syntax LONG Open (BSTR DeviceName);

The DeviceName parameter specifies the device name to open.

Remarks Call to open a device for subsequent I/O.

The device name specifies which of one or more devices supported by this
Control Object should be used. The DeviceName must exist in the system registry
for this device class. The relationship between the device name and physical
devices is determined by entries within the operating system registry; these
entries are maintained by a setup or configuration utility.

When the Open method is successful, it sets the properties Claimed,
DeviceEnabled, DataEventEnabled, and FreezeEvents, as well as descriptions
and version numbers of the OPOS software layers. Additional class-specific
properties may also be initialized.

Release 1.5 and later

The value of the OpenResult property is set by the Open method.

Return One of the following values is returned by the method:

Value Meaning

OPOS_SUCCESS Open successful.

OPOS_E_ILLEGAL The Control is already open.

OPOS_E_NOEXIST The specified DeviceName was not found.

OPOS_E_NOSERVICE Could not establish a connection to the corresponding
Service Object.

Other Values See ResultCode.

Note:

The value of the ResultCode property after calling the Open method may not be
the same as the Open method return value for the following two cases:

• The Control was closed and the Open method failed: The ResultCode property
will continue to return OPOS_E_CLOSED.

• The Control was already opened: The Open method will return
OPOS_E_ILLEGAL, but the ResultCode property may continue to return the
value it held before the Open method.

A-46
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
ReleaseDevice Method Added in Release 1.5

Syntax LONG ReleaseDevice ();

Remarks Call this method to release exclusive access to the device.

If the DeviceEnabled property is TRUE, and the device is an exclusive-use
device, then the device is first disabled. (ReleaseDevice does not change the
device enabled state of sharable devices.)

Release 1.0 – 1.4

In releases prior to 1.5, this method is named Release.

Release 1.5 and later

ReleaseDevice must be used by early-bound applications. For compatibility with
late-bound applications, the Control Object’s IDispatch interface supports both
ReleaseDevice and Release. It is recommended that applications written to the
1.5 specification use ReleaseDevice, not Release.

Early bound applications acquire Control Object calling details at development
time, including Class IDs, Interface IDs, and method, property, and event calling
details. They then can build in static sequences to call methods and properties and
receive events. Microsoft Visual C++ and Visual Basic plus most compiled
languages support early binding.

Late bound applications acquire calling details at run time. They then
dynamically build code sequences to call methods and properties plus receive
events. Scripting languages usually support late binding. Late binding can be
implemented with many compiled languages, too, but often require additional
programmer effort, especially to receive events.

Return One of the following values is returned by the method and placed in the
ResultCode property:

Value Meaning

OPOS_SUCCESS Exclusive access has been released. The Claimed
property is now FALSE.

OPOS_E_ILLEGAL The application does not have exclusive access to the
device.

A-47 Events
Events
DataEvent Event

Syntax void DataEvent (LONG Status);

The Status parameter contains the input status. Its value is Control-dependent,
and may describe the type or qualities of the input.

Remarks Fired to present input data from the device to the application. The
DataEventEnabled property is changed to FALSE, so that no further data events
will be generated until the application sets this property back to TRUE. The actual
input data is placed in one or more device-specific properties.

If DataEventEnabled is FALSE at the time that data is received, then the data is
queued in an internal OPOS buffer, the device-specific input data properties are
not updated, and the event is not delivered. (When this property is subsequently
changed back to TRUE, the event will be delivered immediately if input data is
queued and FreezeEvents is FALSE.)

DirectIOEvent Event

Syntax void DirectIOEvent (LONG EventNumber, LONG* pData, BSTR* pString);

Parameter Description

EventNumber Event number. Specific values are assigned by the
Service Object.

pData Pointer to additional numeric data. Specific values vary
by EventNumber and the Service Object.

pString Pointer to additional string data. Specific values vary by
EventNumber and the Service Object.
The format of this data depends upon the value of the
BinaryConversion property. See page A-25.

Remarks Fired by a Service Object to communicate directly with the application.

This event provides a means for a Service Object to provide events to the
application that are not otherwise supported by the Control Object.

A-48
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
ErrorEvent Event

Syntax void ErrorEvent (LONG ResultCode, LONG ResultCodeExtended,
LONG ErrorLocus, LONG* pErrorResponse);

Parameter Description

ResultCode Result code causing the error event. See ResultCode
for values.

ResultCodeExtended Extended result code causing the error event. See
ResultCodeExtended for values.

ErrorLocus Location of the error. See values below.

pErrorResponse Pointer to the error event response. See values below.

The ErrorLocus parameter may be one of the following:

Value Meaning

OPOS_EL_OUTPUT Error occurred while processing asynchronous output.

OPOS_EL_INPUT Error occurred while gathering or processing event-
driven input. No input data is available.

OPOS_EL_INPUT_DATA
Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

The contents at the location pointed to by the pErrorResponse parameter are
preset to a default value, based on the ErrorLocus. The application may change
them to one of the following:

Value Meaning

OPOS_ER_RETRY Typically valid only when locus is
OPOS_EL_OUTPUT.
Retry the asynchronous output. The error state is exited.
May be valid when locus is OPOS_EL_INPUT.
Default when locus is OPOS_EL_OUTPUT.

OPOS_ER_CLEAR Clear the asynchronous output or buffered input data.
The error state is exited.
Default when locus is OPOS_EL_INPUT.

OPOS_ER_CONTINUEINPUT
Use only when locus is OPOS_EL_INPUT_DATA.
Acknowledges the error and directs the Control to
continue processing. The Control remains in the error
state and will deliver additional DataEvents as directed

A-49 Events
by the DataEventEnabled property. When all input has
been delivered and the DataEventEnabled property is
again set to TRUE, then another ErrorEvent is
delivered with locus OPOS_EL_INPUT.
Default when locus is OPOS_EL_INPUT_DATA.

Remarks Fired when an error is detected and the Control’s State transitions into the error
state.

Input error events are not delivered until the DataEventEnabled property is
TRUE, so that proper application sequencing occurs.

OutputCompleteEvent Event

Syntax void OutputCompleteEvent (LONG OutputID);

The OutputID parameter indicates the ID number of the asynchronous output
request that is complete.

Remarks Fired when a previously started asynchronous output request completes
successfully.

A-50
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
StatusUpdateEvent Event

Syntax void StatusUpdateEvent (LONG Status);

The Status parameter is for device class-specific data, describing the type of
status change.

Remarks Fired when a Control needs to alert the application of a device status change.

Examples are a change in the cash drawer position (open vs. closed) or a change
in a POS printer sensor (form present vs. absent).

When a device is enabled, then the Control may fire initial StatusUpdateEvents
to inform the application of the device state. This behavior, however, is not
required.

Release 1.3 and later – Power State Reporting

All device classes may fire StatusUpdateEvents with at least the following
Status parameter values, if PowerNotify = OPOS_PN_ENABLED:

Value Meaning

OPOS_SUE_POWER_ONLINE
The device is powered on and ready for use.
Can be returned if CapPowerReporting =
OPOS_PR_STANDARD or OPOS_PR_ADVANCED.

OPOS_SUE_POWER_OFF
The device is off or detached from the terminal.
Can only be returned if CapPowerReporting =
OPOS_PR_ADVANCED.

OPOS_SUE_POWER_OFFLINE
The device is powered on but is either not ready or not
able to respond to requests.
Can only be returned if CapPowerReporting =
OPOS_PR_ADVANCED.

OPOS_SUE_POWER_OFF_OFFLINE
The device is either off or offline.
Can only be returned if CapPowerReporting =
OPOS_PR_STANDARD.

The common property PowerState is also maintained at the current power state
of the device.

A-51 Peripheral Interfaces
Peripheral Interfaces

Note:

The following are two examples that attempt to show how a Visual Basic
program and a VC++ program would use the commands in a typical MFC
implementation. Where possible the tables are arranged to show the sequence
of the commands for proper operation of the peripheral device.

The Cash Drawer and the MICR devices were chosen because they represent a
simple output device and a more complex input device. The other peripheral
devices would follow similar command usage and flow.

A-52
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
OPOS: Cash Drawer
Visual Basic Command Examples.

Initializing Properties, Methods, & Events

Capabilities, Assignments and Descriptions Properties, Methods, & Events

OPERATION T

Y

P

E

VISUAL BASIC SAMPLE R

E

A

D

W

R

I

T

E

A

R

G

S

R

T

N

V

R

C

R

C

E

Ref
Page

Open * M lResult = CashDrawer.Open(“Standard”) • • 1 LONG • • 48

ClaimDevice * M lResult = CashDrawer.ClaimDevice(“1000”) • • 1 LONG • • A-42

Claimed P bResult = CashDrawer.Claimed • BOOL 34

DeviceEnabled * P CashDrawer.DeviceEnabled = True • 1 - 37

DeviceEnabled P bResult = CashDrawer.DeviceEnabled • BOOL • • 37

DirectIO M lResult= CashDrawer.DirectIO(0,lval,”[[“) • • 3 LONG • • 47

CheckHealth M lResult = CashDrawer.CheckHealth(OPOS_CH_INTERNAL) • • 1 LONG • • 44

DirectIOEvent E Private Sub CashDrawer_DirectIOEvent(ByVal EventNumber
As Long, pData As Long, pString As String)

3 CMF 53

StatusUpdateEvent E Private Sub CashDrawer_StatusUpdateEvent(ByVal Status As

Long)

1 CMF 56

BinaryConversion P CashDrawer.BinaryConversion = OPOS_BC_DECIMAL • 1 - • • A-25

BinaryConversion P lResult = CashDrawer.BinaryConversion • LONG A-25

CapPowerReporting P lResult = CashDrawer.CapPowerReporting • LONG 33

CheckHealthText P sResult = CashDrawer.CheckHealthText • BSTR 34

FreezeEvents P CashDrawer.FreezeEvents = True • 1 - • • 39

FreezeEvents P bResult = CashDrawer.FreezeEvents • BOOL 39

PowerNotify P CashDrawer.PowerNotify = OPOS_PN_ENABLED • 1 - • • 40

PowerNotify P lResult = CashDrawer.PowerNotify • LONG 40

PowerState P lResult = CashDrawer.PowerState • LONG 41

A-53 OPOS: Cash Drawer
Cash Drawer Operations Properties & Methods

Terminating Methods

Notes:

* Required for basic Cash Drawer operations

Legends:
TYPE = (P)roperty, (M)ethod, or (E)vent
ARGS = Number of Arguments Expected
RTNV = Return Value
‘CMF’ = Class Member Function
RC = Result Code
RCE = Result Code Extended
Ref Page = Page Number of UnifiedPOS Reference Description

OPERATION T

Y

P

E

VISUAL BASIC SAMPLE R

E

A

D

W

R

I

T

E

A

R

G

S

R

T

N

V

R

C

R

C

E

Ref
Page

ResultCode P lResult = CashDrawer.ResultCode • LONG A-36

ResultCodeExtended P lResult = CashDrawer.ResultCodeExtended • LONG A-38

State P lResult = CashDrawer.State • LONG 43

ControlObject
Description

P sResult = CashDrawer.ControlObjectDescription • BSTR 35

ControlObject
Version

P lResult = CashDrawer.ControlObjectVersion • LONG 36

ServiceObject

Description

P sResult = CashDrawer.ServiceObjectDescription • BSTR 37

ServiceObject
Version

P lResult = CashDrawer.ServiceObjectVersion • LONG 38

DeviceDescription P sResult = CashDrawer.DeviceDescription • BSTR A-30

DeviceName P sResult = CashDrawer.DeviceName • BSTR A-31

CapStatus P bResult = CashDrawer.CapStatus • BOOL 120

DrawerOpened P bResult = CashDrawer.DrawerOpened • BOOL 121

OpenDrawer M lResult = CashDrawer.OpenDrawer • • LONG • • 122

WaitForDrawerClose M lResult = CashDrawer.WaitForDrawerClose(2500, 1000, 10, 5) • • 4 LONG • • 122

ReleaseDevice M lResult = CashDrawer.ReleaseDevice • • LONG • • A-46

Close * M lResult = CashDrawer.Close • • LONG • • 46

A-54
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
Visual C++ Command Examples.

Initializing Properties, Methods, & Events

Capabilities, Assignments and Descriptions Properties, Methods, & Events

OPERATION T

Y

P

E

VISUAL C++ SAMPLE R

E

A

D

W

R

I

T

E

A

R

G

S

R

T

N

V

R

C

R

C

E

Ref
Page

Open * M lResult = m_CashDrawer.Open(“Standard”); • • 1 LONG • • 48

ClaimDevice * M lResult = m_CashDrawer.ClaimDevice(“1000”); • • 1 LONG • • A-42

Claimed P bResult = m_CashDrawer.GetClaimed(); • BOOL 34

DeviceEnabled * P m_CashDrawer.SetDeviceEnabled(TRUE); • 1 - 37

DeviceEnabled P bResult = m_CashDrawer.GetDeviceEnabled(); • BOOL • • 37

DirectIO M lResult = m_CashDrawer.DirectIO(0,&lval,”[[“) • • 3 LONG • • 47

CheckHealth M lResult = m_CashDrawer.CheckHealth(OPOS_CH_INTERNAL); • • 1 LONG • • 44

DirectIOEvent E void COCashDrawerDlg::OnDirectIOEventCashDrawerctrl(long
EventNumber, long FAR* pData, BSTR FAR* pString)

3 CMF 53

StatusUpdateEvent E void COCashDrawerDlg::OnStatusUpdateEventCashDrawerctrl
(long Status)

1 CMF 56

BinaryConversion P m_CashDrawer.SetBinaryConversion(OPOS_BC_DECIMAL); • 1 - • • A-25

BinaryConversion P lResult = m_CashDrawer.GetBinaryConversion(); • LONG A-25

CapPowerReporting P lResult = m_CashDrawer.GetCapPowerReporting(); • LONG 33

CheckHealthText P sResult = m_CashDrawer.GetCheckHealthText(); • BSTR 34

FreezeEvents P m_CashDrawer.SetFreezeEvents(TRUE); • 1 - • • 39

FreezeEvents P bResult = m_CashDrawer.GetFreezeEvents(); • BOOL 39

PowerNotify P m_CashDrawer.SetPowerNotify(OPOS_PN_ENABLED); • 1 - • • 40

PowerNotify P lResult = m_CashDrawer.GetPowerNotify(); • LONG 40

PowerState P lResult = m_CashDrawer.GetPowerState(); • LONG 41

ResultCode P lResult = m_CashDrawer.GetResultCode(); • LONG A-36

ResultCodeExtended P lResult = m_CashDrawer.GetResultCodeExtended(); • LONG A-38

A-55 OPOS: Cash Drawer
Cash Drawer Operations Properties & Methods

Terminating Methods

Notes:

* Required for basic Cash Drawer operations

Legends:
TYPE = (P)roperty, (M)ethod, or (E)vent
ARGS = Number of Arguments Expected
RTNV = Return Value
‘CMF’ = Class Member Function
RC = Result Code
RCE = Result Code Extended
Ref Page = Page Number of UnifiedPOS Reference Description

OPERATION T

Y

P

E

VISUAL C++ SAMPLE R

E

A

D

W

R

I

T

E

A

R

G

S

R

T

N

V

R

C

R

C

E

Ref
Page

State P lResult = m_CashDrawer.GetState (); • LONG 43

ControlObject

Description

P sResult = m_CashDrawer.GetControlObjectDescription(); • BSTR 35

ControlObject
Version

P lResult = m_CashDrawer.GetControlObjectVersion(); • LONG 36

ServiceObject
Description

P sResult = m_CashDrawer.GetServiceObjectDescription(); • BSTR 37

ServiceObject
Version

P lResult = m_CashDrawer.GetServiceObjectVersion(); • LONG 38

DeviceDescription P sResult = m_CashDrawer.GetDeviceDescription(); • BSTR 42

DeviceName P sResult = m_CashDrawer.GetDeviceName(); • BSTR 42

CapStatus P bResult = m_CashDrawer.GetCapStatus(); • BOOL 120

DrawerOpened P bResult = m_CashDrawer.GetDrawerOpened(); • BOOL 121

OpenDrawer M lResult = m_CashDrawer.OpenDrawer(); • • LONG • • 122

WaitForDrawerClose M lResult = m_CashDrawer.WaitForDrawerClose(2500, 1000,

10, 5);
• • 4 LONG • • 122

ReleaseDevice M lResult = m_CashDrawer.ReleaseDevice(); • • LONG • • A-46

Close * M lResult = m_CashDrawer.Close(); • • LONG • • 46

A-56
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
OPOS: MICR
Visual Basic Command Examples.

Initializing Properties, Methods, & Events

Capabilities, Assignments and Descriptions Properties, Methods, & Events

OPERATION T

Y

P

E

VISUAL BASIC SAMPLE R

E

A

D

W

R

I

T

E

A

R

G

S

R

T

N

V

R

C

R

C

E

Ref
Page

Open * M lResult = Micr.Open(“M101”) • • 1 LONG • • 48

ClaimDevice * M lResult = Micr.ClaimDevice(“1000”) • • 1 LONG • • A-42

Claimed P bResult = Micr.Claimed • BOOL 34

DeviceEnabled * P Micr.DeviceEnabled = True • 1 - • • 37

DeviceEnabled P bResult = Micr.DeviceEnabled • BOOL 37

AutoDisable P Micr.AutoDisable = True • 1 - • • 33

AutoDisable P bResult = Micr.AutoDisable • 1 BOOL 33

DirectIO M lResult= Micr.DirectIO(0,lval,”0x1b“) • • 3 LONG • • 47

CheckHealth M lResult = Micr.CheckHealth(OPOS_CH_INTERNAL) • • 1 LONG • • 44

DirectIOEvent E Private Sub Micr_DirectIOEvent(ByVal EventNumber As Long,

pData As Long, pString As String)

3 CMF 53

ErrorEvent E Private Sub Micr_ErrorEvent(ByVal ResultCode As Long, ByVal

ResultCodeExtended As Long, ByVal ErrorLocus As Long,
pErrorResponse As Long)

4 CMF 54

StatusUpdateEvent E Private Sub Micr_StatusUpdateEvent(ByVal Status As Long) 1 CMF 56

BinaryConversion P Micr.BinaryConversion = OPOS_BC_DECIMAL • 1 - • • A-25

BinaryConversion P lResult = Micr.BinaryConversion • LONG A-25

CapPowerReporting P lResult = Micr.CapPowerReporting • LONG 33

CheckHealthText P sResult = Micr.CheckHealthText • BSTR 34

DataCount P lResult = Micr.DataCount • LONG 34

FreezeEvents P Micr.FreezeEvents = True • 1 - • • 39

FreezeEvents P bResult = Micr.FreezeEvents • BOOL 39

A-57 OPOS: MICR
MICR Operations Properties, Methods, & Events

OPERATION T

Y

P

E

VISUAL BASIC SAMPLE R

E

A

D

W

R

I

T

E

A

R

G

S

R

T

N

V

R

C

R

C

E

Ref
Page

PowerNotify P Micr.PowerNotify = OPOS_PN_ENABLED • 1 - • • 40

PowerNotify P lResult = Micr.PowerNotify • LONG 40

PowerState P lResult = Micr.PowerState • LONG 41

ResultCode P lResult = Micr.ResultCode • LONG A-36

ResultCodeExtended P lResult = Micr.ResultCodeExtended • LONG A-38

State P lResult = Micr.State • LONG 43

ControlObject
Description

P sResult = Micr.ControlObjectDescription • BSTR 35

ControlObject
Version

P lResult = Micr.ControlObjectVersion • LONG 36

ServiceObject

Description

P sResult = Micr.ServiceObjectDescription • BSTR 37

ServiceObject
Version

P lResult = Micr.ServiceObjectVersion • LONG 38

DeviceDescription P sResult = Micr.DeviceDescription • BSTR 42

DeviceName P sResult = Micr.DeviceName • BSTR 42

CapValidationDevice P bResult = Micr.CapValidationDevice • BOOL 396

ClearInput M lResult = Micr.ClearInput • • LONG • • 45

DataEventEnabled * P Micr.DataEventEnabled = True • 1 - • • 35

DataEventEnabled P bResult = Micr.DataEventEnabled • BOOL 35

BeginInsertion * M lResult = Micr.BeginInsertion • • LONG • • 399

EndInsertion * M lResult = Micr.EndInsertion • • LONG • • 401

DataEvent E Private Sub Micr_DataEvent(ByVal Status As Long) 1 CMF 52

BeginRemoval * M lResult = Micr.BeginRemoval • • LONG • • 400

EndRemoval * M lResult = Micr.EndRemoval • • LONG • • 402

RawData P sResult = Micr.RawData • BSTR 398

AccountNumber P sResult = Micr.AccountNumber • BSTR 395

A-58
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
Terminating Methods

Notes:

* Required for basic MICR operations

Legends:
TYPE = (P)roperty, (M)ethod, or (E)vent
ARGS = Number of Arguments Expected
RTNV = Return Value
‘CMF’ = Class Member Function
RC = Result Code
RCE = Result Code Extended
Ref Page = Page Number of UnifiedPOS Reference Description

OPERATION T

Y

P

E

VISUAL BASIC SAMPLE R

E

A

D

W

R

I

T

E

A

R

G

S

R

T

N

V

R

C

R

C

E

Ref
Page

Amount P sResult = Micr.Amount • BSTR 395

BankNumber P sResult = Micr.BankNumber • BSTR 395

EPC P sResult = Micr.EPC • BSTR 397

SerialNumber P sResult = Micr.SerialNumber • BSTR 398

TransitNumber P sResult = Micr.TransitNumber • BSTR 398

CheckType P lResult = Micr.CheckType • LONG 396

CountryCode P lResult = Micr.CountryCode • LONG 397

ReleaseDevice M lResult = Micr.ReleaseDevice • • LONG • • A-46

Close * M lResult = Micr.Close • • LONG • • 46

A-59 OPOS: MICR
Visual C++ Command Examples.

Initializing Properties, Methods, & Events

Capabilities, Assignments and Descriptions Properties, Methods, & Events

OPERATION T

Y

P

E

VISUAL C++ SAMPLE R

E

A

D

W

R

I

T

E

A

R

G

S

R

T

N

V

R

C

R

C

E

Ref
Page

Open * M lResult = m_Micr.Open(“M101”); • • 1 LONG • • 48

ClaimDevice * M lResult = m_Micr.ClaimDevice(“1000”); • • 1 LONG • • A-42

Claimed P bResult = m_Micr.GetClaimed(); • BOOL 34

DeviceEnabled * P m_Micr.SetDeviceEnabled(TRUE); • 1 - • • 37

DeviceEnabled P bResult = m_Micr.GetDeviceEnabled(); • BOOL 37

AutoDisable P m_Micr.SetAutoDisable(TRUE); • 1 - • • 33

AutoDisable P bResult m_Micr.GetAutoDisable(); • 1 BOOL 33

DirectIO M lResult = m_Micr.DirectIO(0,&lval,”0x1b“) • • 3 LONG • • 47

CheckHealth M lResult = m_Micr.CheckHealth(OPOS_CH_INTERNAL); • • 1 LONG • • 44

DirectIOEvent E void COMicrDlg::OnDirectIOEventMicrctrl(long EventNumber,
long FAR* pData, BSTR FAR* pString)

3 CMF 53

ErrorEvent E void COMicrDlg::OnErrorEventMicrctrl(long ResultCode, long

ResultCodeExtended, long ErrorLocus, long FAR*
pErrorResponse)

4 CMF 54

StatusUpdateEvent E void COMicrDlg::OnStatusUpdateEventMicrctrl

(long Status)

1 CMF 56

BinaryConversion P m_Micr.SetBinaryConversion(OPOS_BC_DECIMAL); • 1 - • • A-25

BinaryConversion P lResult = m_Micr.GetBinaryConversion(); • LONG A-25

CapPowerReporting P lResult = m_Micr.GetCapPowerReporting(); • LONG 33

CheckHealthText P sResult = m_Micr.GetCheckHealthText(); • BSTR 34

DataCount P lResult = m_Micr.GetDataCount(); • LONG 34

FreezeEvents P m_Micr.SetFreezeEvents(TRUE); • 1 - • • 39

FreezeEvents P bResult = m_Micr.GetFreezeEvents(); • BOOL 39

A-60
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
MICR Operations Properties, Methods, & Events

OPERATION T

Y

P

E

VISUAL C++ SAMPLE R

E

A

D

W

R

I

T

E

A

R

G

S

R

T

N

V

R

C

R

C

E

Ref
Page

PowerNotify P m_Micr.SetPowerNotify(OPOS_PN_ENABLED); • 1 - • • 40

PowerNotify P lResult = m_Micr.GetPowerNotify(); • LONG 40

PowerState P lResult = m_Micr.GetPowerState(); • LONG 41

ResultCode P lResult = m_Micr.GetResultCode(); • LONG A-36

ResultCodeExtended P lResult = m_Micr.GetResultCodeExtended(); • LONG A-38

State P lResult = m_Micr.GetState(); • LONG 43

ControlObject
Description

P sResult = m_Micr.GetControlObjectDescription(); • BSTR 35

ControlObject
Version

P lResult = m_Micr.GetControlObjectVersion(); • LONG 36

ServiceObject

Description

P sResult = m_Micr.GetServiceObjectDescription(); • BSTR 37

ServiceObject
Version

P lResult = m_Micr.GetServiceObjectVersion(); • LONG 38

DeviceDescription P sResult = m_Micr.GetDeviceDescription(); • BSTR 42

DeviceName P sResult = m_Micr.GetDeviceName(); • BSTR 42

CapValidationDevice P bResult = m_Micr.GetCapValidationDevice(); • BOOL 396

ClearInput M lResult = m_Micr.ClearInput(); • • LONG • • 45

DataEventEnabled * P m_Micr.SetDataEventEnabled(TRUE); • 1 - • • 35

DataEventEnabled P bResult = m_Micr.GetDataEventEnabled(); • BOOL 35

BeginInsertion * M lResult = m_Micr.BeginInsertion(); • • LONG • • 399

EndInsertion * M lResult = m_Micr.EndInsertion(); • • LONG • • 401

DataEvent E void COMicrDlg::OnDirectIOEventMicrctrl(long Status) 1 CMF 53

BeginRemoval * M lResult = m_Micr.BeginRemoval(); • • LONG • • 400

EndRemoval * M lResult = m_Micr.EndRemoval(); • • LONG • • 402

RawData P sResult = m_Micr.GetRawData(); • BSTR 398

AccountNumber P sResult = m_Micr.GetAccountNumber(); • BSTR 395

A-61 OPOS: MICR
Terminating Methods

Notes:

* Required for basic MICR operations

Legends:
TYPE = (P)roperty, (M)ethod, or (E)vent
ARGS = Number of Arguments Expected
RTNV = Return Value
‘CMF’ = Class Member Function
RC = Result Code
RCE = Result Code Extended
Ref Page = Page Number of UnifiedPOS Reference Description

OPERATION T

Y

P

E

VISUAL C++ SAMPLE R

E

A

D

W

R

I

T

E

A

R

G

S

R

T

N

V

R

C

R

C

E

Ref
Page

Amount P sResult = m_Micr.GetAmount(); • BSTR 395

BankNumber P sResult = m_Micr.GetBankNumber(); • BSTR 395

EPC P sResult = m_Micr.GetEPC(); • BSTR 397

SerialNumber P sResult = m_Micr.GetSerialNumber(); • BSTR 398

TransitNumber P sResult = m_Micr.GetTransitNumber(); • BSTR 398

CheckType P lResult = m_Micr.GetCheckType(); • LONG 396

CountryCode P lResult = m_Micr.GetCountryCode(); • LONG 397

ReleaseDevice M lResult = m_Micr.ReleaseDevice(); • • LONG • • A-46

Close * M lResult = m_Micr.Close(); • • LONG • • 46

A-62
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
Section 3: OPOS Registry Usage
OPOS Controls require some data in the system registry in order for the Control
Objects to locate the proper Service Object and initialize it for the device.

The registry is organized in a hierarchical structure, in which each level is named
a “key.” Each key may contain:

• Additional keys (sometimes called “subkeys”).
• Zero or more named “values.” A value is assigned “data” of type string,

binary, or double-word.
• One “default value” that may be assigned data of type string.

OPOS only defines string data.

Service Object Root Registry Key

All OPOS Service Object entries should be placed under the following main key:

 HKEY_LOCAL_MACHINE\SOFTWARE\OLEforRetail\ServiceOPOS

The “HKEY_LOCAL_MACHINE\SOFTWARE” key is the recommended key
for software configuration local to the PC. The “OLEforRetail” key will group all
OLE for Retail related configuration information. The “ServiceOPOS” key
maintains configuration information for OPOS Service Objects.

Device Class Keys

Each class has an identifying Device Class subkey under the main OPOS key.
The following key names have been established:

 BumpBar
CashChanger
CashDrawer
CAT
CoinDispenser
FiscalPrinter
HardTotals
Keylock
LineDisplay
MICR
MSR
PINPad
PointCardRW
POSKeyboard
POSPower
POSPrinter
RemoteOrderDisplay
Scale
Scanner
SignatureCapture
ToneIndicator

A-63 Section 3: OPOS Registry Usage
Device Name Keys and Values

Each device within a class is assigned a Device Name subkey under the class’s
key. This should be performed by a Service Object installation procedure. This
Device Name key is passed to the Control Object’s Open method by the
application. The Device Name is not constrained, except that it must be unique
among the names under the device class.

The default value of the Device Name key is the programmatic ID11 of the
Service Object. This string is needed by the Control Object, so that the Service
Object may be loaded and the OLE Automation interfaces established between
the CO and the SO.

The device unit key’s values and their data describe the characteristics of the
actual device on the terminal or PC. The following values are strongly
recommended for use by installation and support personnel:

Other values may be defined as needed by the Service Object. Values might
contain information such as:

Communications Port
Baud Rate
Serial Line Characteristics
Interrupt Request (IRQ) Values
Input/Output (I/O) Ports

Logical Device Name Values

An application may open a Control by passing the Device Name key to the Open
method. In many cases, however, the application will want a level of isolation
where the application specifies a “Logical Device Name” that is translated into a
Device Name.

A Logical Device Name is added to the registry as a value contained in the
Device Class key. The value name is set to the Logical Device Name, and its data
must match a Device Name key contained in the same Device Class.

The application integrator is responsible for adding Logical Device Names to the
registry. (They are not added by the Service Object install procedure.)

Value – Required Data

(Default) Service Object’s OLE Programmatic ID.

Value – Recommended Data
Service Filename of the Service Object.
Description String describing the Service Object.

Version
String containing the Service Object version number.
General format is:
MajorVersion.MinorVersion.BuildVersion.

A-64
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
Service Provider Root Registry Key

The SO service providers may need to store some information in the registry that
is common to some or all of its Service Objects. This data could include
installation directories, installation date, and de-install information. Service
provider information should be placed under the following main key:

HKEY_LOCAL_MACHINE\SOFTWARE\OLEforRetail\ServiceInfo

The subkeys under this key should be the names of service provider companies.
Subkeys and values within each service provider company subkey are provider-
dependent.

Example

In this example, keys are listed in italics. Comments appear as comment.

Two device classes are given: POSPrinter and CashDrawer.

The POSPrinter class contains two Device Names. Also, two Logical Device
Names are present, which point to the Device Names.

The CashDrawer class contains one Device Name and one Logical Device Name.
The Service Object has a unique ProgID but uses the same executable as one of
the printers. This Service Object could use the example value “Uses” to point to
some registry values of the printer device that can be used for the cash drawer
parameters.

A-65
\HKEY_LOCAL_MACHINE

→ \SOFTWARE

 → \OLEforRetail

↓
 → \ServiceOPOS

↓
 → \POSPrinterDevice Class Key

 → \NCR7156=NCR.Ptr7156.1Device Name Key

 Service=C:\OPOS\NCR\PTR7156.DLL

 Description=NCR 7156 Serial Printer

 Version=1.0.12

 ...Service Object-specific values. Might include:

 Port=COM3

 BaudRate=9600

 → \Epson950=Epson.PtrTMU950.1Device Name Key

 Service=TMU950.EXE

 Description=Epson TM-U950 Printer

 Version=1.0.7

 ...Service Object-specific values could go here.

 → PSI.Ptr.1=NCR7156Logical Device Name

 → PSI.Ptr.2=Epson950Logical Device Name

 → \CashDrawerDevice Class Key

 → \EpsonCash=Epson.CD.1Device Name Key

 Service=TMU950.EXE

 Description=Epson Cash Drawer Kickout on TM-U950

 Version=1.0.7

 ...Service Object-specific values. Might include:

 Uses=POSPrinter\Epson950

 → PSI.CD.1=EpsonCashLogical Device Name

→ \ServiceInfo

→ \EPSON

 InstallDir=C:\OPOS\EPSON

 InstallDate=1995/11/13

↓

A-66
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
Section 4: OPOS Application Header Files
The header files are listed in alphabetical order. The mapping of device class
name to header file name is as follows:

General Opos.h
Bump Bar OposBb.h
Cash Changer OposChan.h
Cash Drawer OposCash.h
CAT OposCat.h
Coin Dispenser OposCoin.h
Fiscal Printer OposFptr.h
Hard Totals OposTot.h
Keylock OposLock.h
Line Display OposDisp.h
MICR OposMicr.h
MSR OposMsr.h
PIN Pad OposPpad.h
Point Card Reader Writer OposPcrw.h
POS Keyboard OposKbd.h
POS Power OposPwr.h
POS Printer OposPtr.h
Remote Order Display OposRod.h
Scale OposScal.h
Scanner OposScan.h
Signature Capture OposSig.h
Tone Indicator OposTone.h

The most up to date header files can be downloaded from the web site,

http://www.nrf-arts.org

under the OPOS standard files section.

http://www.nrf-arts.org
http://www.nrf-arts.org
http://www.nrf-arts.org

A-67 Section 5: Technical Details
Section 5: Technical Details
System Strings (BSTR)
System String Characteristics

OPOS uses OLE system strings to pass and return data of variable length. System
strings are often referred to as BStrings, and are assigned the type BSTR by
Microsoft Visual C++.

A system string consists of a sequence of Unicode characters, which are each 16-
bits wide. Thus, they are also referred to as “wide” characters. The string is
followed by a NUL, or zero, character. The string is preceded by an unsigned long
count of the bytes in the string, not including the NUL. Divide this count by two
to obtain the number of characters in the string.

Most of the time, OPOS uses system strings to pass character data back and forth
among the Application, Control Object, and System Object. A system string
(BSTR) is used to pass string parameters by methods and to return string
properties. A pointer to a system string (BSTR*) is used as a method parameter
when the method must return string data.

System String Usage

Visual Basic both receives and sends system strings without any complications.
The internal representation of VB strings is as wide characters with a length
component. A BSTR may be passed using a variable, a string expression, or a
literal. A BSTR* requires use of a variable, so that the data may be modified by
the method.

Similarly, Visual C++ using ATL is straightforward. BSTR and BSTR* data is
passed and received using these types. Any translation to or from Unicode is the
developer’s responsibility.

Visual C++ with MFC, however, requires more consideration.

BSTR is handled as follows:

• BSTR Method Parameters

• Calling Function Calling an automation method with a BSTR parameter
is treated by MFC as a pointer to a character string, LPCTSTR. If the
VC++ ANSI option is used, MFC automatically converts from ANSI to
Unicode.

• Called Function The function implementing an automation method
receives a BSTR parameter as a pointer to a character string, LPCTSTR.
If the VC++ ANSI option is used, then MFC performs an automatic
conversion from Unicode into ANSI before passing control to the
function. The string length immediately precedes the string pointer.

• BSTR Return Type (used for getting properties)

• Calling Function An automation method returning a BSTR result is

A-68
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference
automatically converted by MFC into a CString.

• Called Function An automation method returns a BSTR result by
placing the data into an MFC CString object, and returning the result of
the CString's “AllocSysString” member function. If the VC++ ANSI
option is used, then this function automatically converts the string from
ANSI into Unicode.

BSTR* is passed and received by MFC as BSTR*, so the developer handling is
the same as with ATL. Some MFC macros and classes may be helpful:

• If the VC++ ANSI option is used, then conversion between Unicode and
MBCS is required. Some macros are available that make this conversion
easier, such as T2OLE and OLE2T. (These do not handle NUL characters
embedded in the string, however.)

• To set the string, place the data into an MFC CString object, and use CString's
“SetSysString” member function.

System Strings and Binary Data
Sometimes OPOS uses BSTR and BSTR* to pass binary data.

These cases may return byte data in the range 00-hex to FF-hex. Each 16-bit
character of the system string contains one byte of binary data in the lower 8 bits.
The upper 8 bits are zero. This can lead to two problematic areas:

• The NUL character, or zero. Although system strings have a length
component, some software still relies upon the NUL character to determine
the end of the string.

• Characters in the range 0x80 – 0xFF. The translation between ANSI and
Unicode formats may yield incorrect data, especially for eastern languages.

In order to avoid these translation and transmission problems, an Application
should employ the BinaryConversion feature if data outside the range of 0x01 –
0x7F may be sent or received by a method parameter or a property.
BinaryConversion, added in Release 1.2, supports two means of converting data
between binary and ASCII formats.

A-69 Section 6: Release 1.5 API Change: ClaimDevice and ReleaseDevice
Section 6: Release 1.5 API Change: ClaimDevice and ReleaseDevice
The common methods Claim and Release were defined in the very first OPOS
release. Since that time, an increased number of conflicts have occurred between
the OPOS Release method and the COM Release method, which is a required
method of every COM object. This conflict has required some development
restrictions:

• Control Objects and Service Objects must define their interfaces as pure
dispatch interfaces. This has precluded the use of the Microsoft Visual C++
Active Template Library, since ATL only supports IDispatch via a dual
interface implementation.

• Some development environments assume that ActiveX Controls will not
define a dispatch method that conflicts with COM. For example, users of
Delphi have had to work around the Release conflict. Future tools may be
even less tolerant of this conflict.

Therefore, these methods have been renamed to ClaimDevice and
ReleaseDevice in Release 1.5.

Several steps have been taken to provide a maximal migration of Applications
and Service Objects. These have been implemented in the reference set of Control
Objects known as the “Common Control Objects”:

• Application.

Both the ClaimDevice and Claim methods and the ReleaseDevice and
Release methods are supported by the Control Object’s IDispatch interface.
The IDispatch interface is used by an application to implement late binding.
By doing this, full backward compatibility is provided for current late bound
Applications.

If an application using a development environment that performs early
binding (including Microsoft Visual C++ and Visual Basic) changes from a
1.4 or earlier Control Object to a 1.5 or later Control Object, then it will also
have to update all Claim calls to ClaimDevice, and Release calls to
ReleaseDevice.

• Service Object.

A Service Object may expose either the Claim or ClaimDevice method and
either the Release or ReleaseDevice method through its IDispatch interface.
Note that if the Service Object is implemented using ATL, then it must use
ReleaseDevice, since Release is reserved for COM’s IUnknown reference
counting.

When the Application calls ClaimDevice or Claim, the Control Object calls
the Service Object method ClaimDevice if present; otherwise it calls Claim.
When the Application calls ReleaseDevice or Release, the Control Object
calls the Service Object method ReleaseDevice if present; otherwise it calls
Release. By doing this, full backward compatibility is provided for current
Service Objects while allowing new Service Objects to be implemented using
ATL.

A-70
UnifiedPOS Retail Peripheral Architecture Appendix A

OPOS Implementation Reference

A P P E N D I X B

Java for Retail POS — JavaPOS Implementation Reference

What Is Java for Retail POS?

Java for Retail POS (JavaPOS) provides for open POS device solutions for
applications based on Java development technology. It is an implementation of
the UnifiedPOS architecture that defines:

• An architecture for Java-based POS (Point-Of-Service or Point-Of-Sale)
device access.

• A set of POS device interfaces (APIs) sufficient to support a range of POS
solutions.

The Java for Retail POS standards committee was formed by a collection of retail
vendors and end users, with a primary goal of providing device interfaces for the
retail applications written in Java. Prior to version 1.7 of the UnifiedPOS and
JavaPOS standards these documents were separate sets of documentation. This
Appendix has been added to this UnifiedPOS Standard to provide guidance on
how to implement services in a Java environment.

The JavaPOS committee will produce the following:

• UnifiedPOS Programmer’s Guide (this document).

• Java source files, including:

• Definition files. Various interface and class files described in the
standard.

• jpos.config/loader (JCL), configuration and service loader example.

• Example files. These will include a set of sample Device Control classes,
to illustrate the interface presented to an application.

The JavaPOS committee will not provide the following:

• Complete software components. Hardware providers or third-party providers
develop and distribute these components.

Benefits
The benefits of JavaPOS include:

• The opportunity for reduced POS terminal costs, through the use of thinner
clients.

• Platform-independent applications, where the application is separated from
both hardware and operating system specifics.

• Reduced administration costs, because an application and supporting software
may be maintained on a server and loaded on demand by Java.

B-2
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Dependencies
Deployment of JavaPOS depends upon the following software components:

• Java Communications Port API (COM/API) or optionally some other Java
communications API that supports hardware device connectivity.

• jpos.config/loader (JCL)

• For more information concerning the availability and any other up-to-date
information about these components, see http://www.javapos.com/.

Relationship to OPOS
The OLE for Retail POS (OPOS) standards committee developed device
interfaces for Win32-based terminals using ActiveX technologies. The OPOS
standard was used as the starting point for JavaPOS, due to:

• Similar purposes. Both standards involve developing device interfaces for a
segment of the software community.

• Reuse of device models. The majority of the OPOS documentation specifies
the properties, methods, events, and constants used to model device behavior.
These behaviors are in large part independent of programming language.

• Reduced learning curve. Many application and hardware vendors are
already familiar with using and implementing the OPOS APIs.

• Early deployment. By sharing device models, JavaPOS “wrappers” or
“bridges” may be built to migrate existing OPOS device software to JavaPOS.

Therefore, most of the OPOS APIs were mapped into the Java language. The
general translation rules are given in Section 3 of this Appendix, page B-81.

Who Should Read This Section
This section is targeted to both the application developer who will use JavaPOS
Devices and the system developer who will write JavaPOS Devices.

This section assumes that the application developer is familiar with the following:

• General characteristics of POS peripheral devices.

• Java terminology and architecture.

• A Java development environment, such as Javasoft's JDK, Sun's Java
Workshop, IBM's VisualAge for Java, or others.

A system developer must understand the above, plus the following:

• The POS peripheral device to be supported.

• The host operating system, if the JavaPOS Device will require a specific
operating system.

• A thorough knowledge of the JavaPOS models and the APIs of the device.

http://www.javapos.com

B-3Architectural Overview Appendix Overview
Appendix Overview
This appendix contains the following major sections:

Architectural Overview

JavaPOS defines a multi-layered architecture in which a POS Application
interacts with the Physical or Logical Device through the JavaPOS Device.

Section Name Developer Audience
What Is “Java for Retail POS?” Application and System
Architectural Overview (page B-3) Application and System
Device Behavior Models (page B-6) Application and System
Classes and Interfaces (page B-28) Application and System
Device Controls (page B-37) System
Device Services (page B-46) System

POS
Application

JavaPOS Device
Control

JavaPOS Device
Service

Physical (or Logical)
Device

JavaPOS
Device

JavaPOS
Device
Service

Interface

JavaPOS
Device

Interface

JavaPOS API

B-4
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Architectural Components
The POS Application (or Application) is either a Java Application or applet that
uses one or more JavaPOS Devices. An application accesses the JavaPOS Device
through the JavaPOS Device Interface, which is specified by Java interfaces.

JavaPOS Devices are divided into categories called Device Categories, such as
Cash Drawer and POS Printer.

Each JavaPOS Device is a combination of these components:

• JavaPOS Device Control (or Device Control) for a device category. The
Device Control class provides the interface between the Application and the
device category. It contains no graphical component and is therefore invisible
at runtime, and conforms to the JavaBeans API.

The Device Control has been designed so that all implementations of a device
category’s control will be compatible. Therefore, the Device Control can be
developed independently of a Device Service for the same device category
(they can even be developed by different companies).

• JavaPOS Device Service (or Device Service), which is a Java class that is
called by the Device Control through the JavaPOS Device Service Interface
(or Service Interface). The Device Service is used by the Device Control to
implement JavaPOS-prescribed functionality for a Physical Device. It can
also call special event methods provided by the Device Control to deliver
events to the Application.

A set of Device Service classes can be implemented to support Physical
Devices with multiple Device Categories.

The Application manipulates the Physical Device (the hardware unit or
peripheral) by calling the JavaPOS Device APIs. Some Physical Devices support
more than one device category. For example, some POS Printers include a Cash
Drawer kickout, and some Bar Code Scanners include an integrated Scale.
However with JavaPOS, an application treats each of these device categories as if
it were an independent Physical Device. The JavaPOS Device writer is
responsible for presenting the peripheral in this way.

Note: Occasionally, a Device may be implemented in software with no user-
exposed hardware, in which case it is called a Logical Device.

B-5Architectural Overview Architectural Components
Additional Layers and APIs

The JavaPOS architecture contains additional layers and APIs in order to
integrate well with the Java development environment.

Note: Comm Port API refers to the Java Communications Port API (COM/API)
or optionally some other Java communications API that supports hardware
device connectivity.

JavaPOS Development Environment

JavaPOS will use these packages:

• JavaPOS Configuration / Loader (JCL) Added in Release 1.5
The jpos.config/loader (JCL) is a simple binding (configuration and loading)
API which enables a JavaPOS control to bind to the correct JavaPOS service
in a manner independent of the actual configuration mechanism. For POS
applications, it represents a somewhat minimum (however, extensible)
functional equivalent of the “NT Registry”, JposEntryRegistry.
All JavaPOS Device Controls should use this API.

• Communications Port API (for example, JavaComm v2.0 API), so that
Applications can make standard access to devices that may use serial (RS-
232), parallel, USB, and other future communication methods.

POS
Application

JavaPOS Device
Control

JavaPOS Device
Service

Serial
Driver

Parallel
Driver

USB Proprietary

Service
Loader

System
 Database

JDK 1.2 Comm Port API

Physical (or Logical)
Device

JDK

JavaPOS
Device
Service

Interface

JavaPOS
Device

Interface

Java
Device

Interface

JavaPOS
Device -

-

JavaPOS API

-&/��-DYD

 &RQILJXUDWLRQ
/RDGHU�

-(5��-DYD326
(QWU\�5HJLVWU\�

B-6
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Device Behavior Models
Introduction to Properties, Methods, and Events

An application accesses a JavaPOS Device via the JavaPOS APIs.

The three elements of JavaPOS APIs are:

• Properties. Properties are device characteristics or settings. A type is
associated with each property, such as boolean or String. An application may
retrieve a property’s value, and it may set a writable property’s value.
JavaPOS properties conform to the JavaBean property design pattern.

To read a property value, use the method:

Type getSampleProperty() throws JposException;

where Type is the data type of the property and SampleProperty is the property
name.

To write a property value (assuming that the property is writable), use the
method:

void setSampleProperty(Type value) throws JposException;

where Type is the data type of the property and SampleProperty is the property
name.

• Methods. An application calls a method to perform or initiate some activity
at a device. Some methods require parameters of specified types for sending
and/or returning additional information.

A JavaPOS method has the form:

void sampleMethod(parameters) throws JposException;

where sampleMethod is the method name and parameters is a list of zero or
more parameters.

Since JavaPOS uses Method names that are consistent with OPOS some
Methods may appear to be Property getters/setters (for example, setDate page
307 in Fiscal Printer). BeanInfo classes are used to properly describe the
Properties and Methods to provide clarification so that various vendors
builder tools will properly function.

• Events. A JavaPOS Device may call back into the application via events. The
application must specifically register for each event type that it needs to
receive. JavaPOS events conform to the JavaBean event design pattern.

See “Events” on page B-15 for further details.

B-7Device Behavior Models Device Initialization and Finalization
Device Initialization and Finalization
Initialization
The first actions that an application must take to use a JavaPOS Device are:

• Obtain a reference to a JavaPOS Device Control, either by creating a new
instance or by accessing an existing one.

• Call Control methods to register for the events that the application needs to
receive. (See “Events” on page B-15.)

To initiate activity with the Physical Device, an application calls the Control’s
open method:

void open(String logicalDeviceName) throws JposException;

The logicalDeviceName parameter specifies a logical device to associate with the
JavaPOS Device. The open method performs the following steps:

1. Creates and initializes an instance of the proper Device Service class for the
specified name.

2. Initializes many of the properties, including the descriptions and version
numbers of the JavaPOS Device.

More than one instance of a Device Control may have a Physical Device open at
the same time. Therefore, after the Device is opened, an application might need to
call the claim method to gain exclusive access to it. Claiming the Device ensures
that other Device instances do not interfere with the use of the Device. An
application can release the Device to share it with another Device Control
instance– for example, at the end of a transaction.

Before using the Device, an application must set the DeviceEnabled property to
true. This value brings the Physical Device to an operational state, while false
disables it. For example, if a Scanner JavaPOS Device is disabled, the Physical
Device will be put into its non-operational state (when possible). Whether
physically operational or not, any input is discarded until the JavaPOS Device is
enabled.

Finalization
After an application finishes using the Physical Device, it should call the close
method. If the DeviceEnabled property is true, close disables the Device. If the
Claimed property is true, close releases the claim.

Before exiting, an application should close all open JavaPOS Devices to free
device resources in a timely manner, rather than relying on the Java garbage
collection mechanism to free resources at some indeterminate time in the future.

B-8
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Summary
In general, an application follows this general sequence to open, use, and close a
Device:

• Obtain a Device Control reference.

• Register for events (add listeners).

• Call the open method to instantiate a Device Service and link it to the Device
Control.

• Call the claim method to gain exclusive access to the Physical Device.
Required for exclusive-use Devices; optional for some sharable Devices. (See
“Device Sharing Model” on page B-9 for more information).

• Set the DeviceEnabled property to true to make the Physical Device
operational. (For sharable Devices, the Device may be enabled without first
claiming it.)

• Use the device.

• Set the DeviceEnabled property to false to disable the Physical Device.

• Call the release method to release exclusive access to the Physical Device.

• Call the close method to unlink the Device Service from the Device Control.

• Unregister from events (remove listeners).

B-9Device Behavior Models Device Sharing Model
Device Sharing Model
JavaPOS Devices fall into two sharing categories:

• Devices that are to be used exclusively by one JavaPOS Device Control
instance.

• Devices that may be partially or fully shared by multiple Device Control
instances.

Any Physical Device may be open by more than one Device Control instance at a
time. However, activities that an application can perform with a Device Control
may be restricted to the Device Control instance that has claimed access to the
Physical Device.

Note: Currently, device exclusivity and sharing can only be guaranteed within an
application’s Java Virtual Machine. This is because the Java language and
environment does not directly support inter-virtual machine communication or
synchronization mechanisms. At some time in the future, this restriction may be
lifted. Until then, the sharing model will typically be of little benefit because a
single application will seldom find value in opening a Physical Device through
multiple Device Control instances.

B-10
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Exclusive-Use Devices
The most common device type is called an exclusive-use device. An example is
the POS printer. Due to physical or operational characteristics, an exclusive-use
device can only be used by one Device Control at a time. An application must call
the Device’s claim method to gain exclusive access to the Physical Device before
most methods, properties, or events are legal. Until the Device is claimed and
enabled, calling methods or accessing properties may cause a JposException
with an error code of JPOS_E_NOTCLAIMED, JPOS_E_CLAIMED, or
JPOS_E_DISABLED. No events are delivered until the Device is claimed.

An application may in effect share an exclusive-use device by calling the Device
Control’s claim method before a sequence of operations, and then calling the
release method when the device is no longer needed. While the Physical Device
is released, another Device Control instance can claim it.

When an application calls the claim method again (assuming it did not perform
the sequence of close method followed by open method on the device), some
settable device characteristics are restored to their condition at the release.
Examples of restored characteristics are the line display’s brightness, the MSR’s
tracks to read, and the printer’s characters per line. However, state characteristics
are not restored, such as the printer’s sensor properties. Instead, these are updated
to their current values.

Sharable Devices
Some devices are “sharable devices.” An example is the keylock. A sharable
device allows multiple Device Control instances to call its methods and access its
properties. Also, it may deliver its events to all Device Controls that have
registered listeners. A sharable device may still limit access to some methods or
properties to the Device Control that has claimed it, or it may deliver some events
only to the Device Control that has claimed it.

B-11Device Behavior Models Data Types
Data Types
JavaPOS uses the following data types:

The convention of type[1] (an array of size 1) is used to pass a modifiable basic
type. This is required since Java’s primitive types, such as int and boolean, are
passed by value, and its primitive wrapper types, such as Integer and Boolean,
do not support modification.

For strings and arrays, do not use a null value to report no information. Instead
use an empty string (“ “) or an empty array (zero length).

In some chapters, an integer may contain a “bit-wise mask”. That is, the integer
data may be interpreted one or more bits at a time. The individual bits are
numbered beginning with Bit 0 as the least significant bit.

Type Usage
boolean Boolean true or false.
boolean[1] Modifiable boolean.
byte[] Array of bytes. May be modified, but size of array cannot be changed.
int 32-bit integer.
int[1] Modifiable 32-bit integer.
long 64-bit integer. Sometimes used for currency values, where 4 decimal

places are implied. For example, if the integer is “1234567”, then the
currency value is “123.4567”.

long[1] Modifiable 64-bit integer.
String Text character string.
String[1] Modifiable text character string.
Point[] Array of points. Used by Signature Capture.
Object An object. This will usually be subclassed to provide a Device Service-

specific parameter.

B-12
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Exceptions
Every JavaPOS method and property accessor may throw a JposException upon
failure, except for the properties DeviceControlVersion,
DeviceControlDescription, and State. No other types of exceptions will be
thrown.

JposException is in the package jpos, and extends java.lang.Exception. The
constructor variations are:

public JposException(int errorCode);

public JposException(int errorCode, int errorCodeExtended);

public JposException(int errorCode, String description);

public JposException(int errorCode, int errorCodeExtended,
String Description);

public JposException(int errorCode, String description,
Exception origException);

public JposException(int errorCode, int errorCodeExtended,
String description, Exception origException)

The parameters are:

Parameter Description

errorCode The JavaPOS error code. Access is through the
getErrorCode method.

errorCodeExtended May contain an extended error code. If not provided by
the selected constructor, then is set to zero. Access is
through the getErrorCodeExtended method.

description A text description of the error. If not provided by the
selected constructor, then one is formed from the
errorCode and errorCodeExtended parameters. Access
is through the superclass’ methods getMessage or
toString.

origException Original exception. If the JavaPOS Device caught a
non-JavaPOS exception, then an appropriate errorCode
is selected and the original exception is referenced by
this parameter. Otherwise, it is set to null. Access is
through the getOrigException method.

B-13Device Behavior Models Exceptions
ErrorCode
This section lists the general meanings of the error code property of an
ErrorEvent or a JposException. In general, the property and method
descriptions in later chapters list error codes only when specific details or
information are added to these general meanings.

The error code is set to one of the following values:

Value Meaning

JPOS_E_CLOSED An attempt was made to access a closed JavaPOS
Device.

JPOS_E_CLAIMED An attempt was made to access a Physical Device that
is claimed by another Device Control instance. The
other Control must release the Physical Device before
this access may be made. For exclusive-use devices, the
application will also need to claim the Physical Device
before the access is legal.

JPOS_E_NOTCLAIMED
An attempt was made to access an exclusive-use device
that must be claimed before the method or property set
action can be used.
If the Physical Device is already claimed by another
Device Control instance, then the status
JPOS_E_CLAIMED is returned instead.

JPOS_E_NOSERVICE The Control cannot communicate with the Service,
normally because of a setup or configuration error.

JPOS_E_DISABLED Cannot perform this operation while the Device is
disabled.

JPOS_E_ILLEGAL An attempt was made to perform an illegal or
unsupported operation with the Device, or an invalid
parameter value was used.

JPOS_E_NOHARDWARE
The Physical Device is not connected to the system or
is not powered on.

JPOS_E_OFFLINE The Physical Device is off-line.

JPOS_E_NOEXIST The file name (or other specified value) does not exist.

JPOS_E_EXISTS The file name (or other specified value) already exists.

JPOS_E_FAILURE The Device cannot perform the requested procedure,
even though the Physical Device is connected to the
system, powered on, and on-line.

B-14
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
JPOS_E_TIMEOUT The Service timed out waiting for a response from the
Physical Device, or the Control timed out waiting for a
response from the Service.

JPOS_E_BUSY The current Device Service state does not allow this
request. For example, if asynchronous output is in
progress, certain methods may not be allowed.

JPOS_E_EXTENDED A device category-specific error condition occurred.
The error condition code is available by calling
getErrorCodeExtended.

ErrorCodeExtended
The extended error code is set as follows:

• When errorCode is JPOS_E_EXTENDED, errorCodeExtended is set to a
device category-specific value, and must match one of the values given in this
document under the appropriate device category chapter.

• When errorCode is any other value, errorCodeExtended may be set by the
Service to any Device Service-specific value. These values are only
meaningful if an application adds Service-specific code to handle them.

B-15Device Behavior Models Events
Events
Java for Retail POS uses events to inform the application of various activities or
changes with the JavaPOS Device. The five event types follow.

Each of these events contains the following properties:

Property Type Description

Source Object Reference to the Device Control delivering the event. If
the application defines a class that listens for events
from more than one Device, then it uses this property to
determine the Device instance that delivered the event.

SequenceNumber long JavaPOS event sequence number. This number is a
sequence number that is global across all JavaPOS
Devices. Each JavaPOS event increments the global
sequence number, then places its value in this property.

When long An event timestamp; value is set to
System.currentTimeMillis().

Chapter 1, “Events (UML interfaces)” on page 50, provides details about each of
these events, including additional properties.

Event Class Description
Supported When A

Device Category
Supports...

DataEvent Input data has been placed into device
class-category properties.

Event-driven input

ErrorEvent An error has occurred during event-
driven input or asynchronous output.

Event-driven input
-or-

Asynchronous
output

OutputCompleteEvent An asynchronous output has
successfully completed.

Asynchronous
output

StatusUpdateEvent

A change in the Physical Device’s
status has occurred.
Release 1.3 and later: All
devices may be able to report device
power state. See “Device Power
Reporting Model” on page B-23.

Status change
notification

DirectIOEvent
This event may be defined by a Device
Service provider for purposes not
covered by the specification.

Always, for Service-
specific use

B-16
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
The Device Service must enqueue these events on an internally created and
managed queue. All JavaPOS events are delivered in a first-in, first-out manner.
(The only exception is that a special input error event is delivered early if some
data events are also enqueued. See “Device Input Model” on page B-18.) Events
are delivered by an internally created and managed Device Service thread. The
Device Service causes event delivery by calling an event firing callback method
in the Device Control, which then calls each registered listener's event method in
the order in which they were added.

The following conditions cause event delivery to be delayed until the condition is
corrected:

• The application has set the property FreezeEvents to true.

• The event type is a DataEvent or an input ErrorEvent, but the property
DataEventEnabled is false. (See “Device Input Model” on page B-18.)

Rules for event queue management are:

• The JavaPOS Device may only enqueue new events while the Device is
enabled.

• The Device delivers enqueued events until the application calls the release
method (for exclusive-use devices) or the close method (for any device), at
which time any remaining events are deleted.

• For input devices, the clearInput method clears data and input error events.

• For output devices, the clearOutput method clears output error events.

• The application returns from the JPOS_EL_INPUT_DATA ErrorEvent with
ErrorResponse set to JPOS_ER_CLEAR.

B-17Device Behavior Models Events
Registering for Events
JavaPOS events use the event delegation model first outlined in JDK 1.1. With
this model, an application registers for events by calling a method supplied by the
event source, which is the Device Control. The method is supplied a reference to
an application class that implements a listener interface extended from
java.util.EventListener.

The following table specifies the event interfaces and methods for each event
class:

Although more than one listener may be registered for an event type, the typical
case is for only one listener, or at least only one primary listener. This listener
takes actions such as processing data events and direct I/O events, and responding
to error events.

Event Delivery
A Device delivers an event by calling the listener method of each registered
listener. The listener processes the event, then returns to the Device Control.

An application must not assume that events are delivered in the context of any
particular thread. The JavaPOS Device delivers events on a privately created and
managed thread. It is an application’s responsibility to synchronize event
processing with its threads as needed.

While an application is processing an event within its listener method, no
additional events will be delivered by the Device.

While within a listener method, an application may access properties and call
methods of the Device. However, an application must not call the release or close
methods from an event method, because the release method may shut down event
handling (possibly including a thread on which the event was delivered) and close
must shut down event handling before returning.

Event Class

Listener Interface and
Methods

Implemented in an
application class

Source Methods

Implemented in the Device Control

DataEvent
DataListener
dataOccurred (DataEvent e)

addDataListener (DataListener l)
removeDataListener (DataListener l)

ErrorEvent
ErrorListener
errorOccurred (ErrorEvent e)

addErrorListener (ErrorListener l)
removeErrorListener (ErrorListener l)

StatusUpdateEvent
StatusUpdateListener
statusUpdateOccurred
(StatusUpdateEvent e)

addStatusUpdateListener
(StatusUpdateListener l)
removeStatusUpdateListener
(StatusUpdateListener l)

OutputCompleteEvent
OutputCompleteListener
outputCompleteOccurred
(OutputCompleteEvent e)

addOutputCompleteListener
(OutputCompleteListener l)
removeOutputCompleteListener
(OutputCompleteListener l)

DirectIOEvent
DirectIOListener
directIOOccurred
(DirectIOEvent e)

addDirectIOListener
(DirectIOListener l)
removeDirectIOListener
(DirectIOListener l)

B-18
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Device Input Model
The standard JavaPOS input model for exclusive-use devices is event-driven
input. Event-driven input allows input data to be received after DeviceEnabled is
set to true. Received data is enqueued as a DataEvent, which is delivered to an
application as detailed in the “Events” (page B-15). If the AutoDisable property
is true when data is received, then the JavaPOS Device will automatically disable
itself, setting DeviceEnabled to false. This will inhibit the Device from
enqueuing further input and, when possible, physically disable the device.

When the application is ready to receive input from the JavaPOS Device, it sets
the DataEventEnabled property to true. Then, when input is received (usually as
a result of a hardware interrupt), the Device delivers a DataEvent. (If input has
already been enqueued, the DataEvent will be delivered immediately after
DataEventEnabled is set to true.) The DataEvent may include input status
information through its Status property. The Device places the input data plus
other information as needed into device category-specific properties just before
the event is delivered.

Just before delivering this event, the JavaPOS Device disables further data events
by setting the DataEventEnabled property to false. This causes subsequent input
data to be enqueued by the Device while an application processes the current
input and associated properties. When an application has finished the current
input and is ready for more data, it enables data events by setting
DataEventEnabled to true.

B-19Device Behavior Models Device Input Model
Error Handling

If the JavaPOS Device encounters an error while gathering or processing event-
driven input, then the Device:

• Changes its state to JPOS_S_ERROR.

• Enqueues an ErrorEvent with locus JPOS_EL_INPUT to alert an application
of the error condition. This event is added to the end of the queue

• If one or more DataEvents are already enqueued for delivery, an additional
ErrorEvent with locus JPOS_EL_INPUT_DATA is enqueued before the
DataEvents, as a pre-alert.

This event (or events) is not delivered until the DataEventEnabled property is
true, so that orderly application sequencing occurs.

ErrorLocus Description

JPOS_EL_INPUT_DATA

Only delivered if the error occurred when one or more
DataEvents are already enqueued.
This event gives the application the ability to immediately clear
the input, or to optionally alert the user to the error before
processing the buffered input. This error event is enqueued
before the oldest DataEvent, so that an application is alerted of
the error condition quickly.
This locus was created especially for the Scanner: When this
error event is received from a Scanner JavaPOS Device, the
operator can be immediately alerted to the error so that no
further items are scanned until the error is resolved. Then, the
application can process any backlog of previously scanned
items before error recovery is performed.

JPOS_EL_INPUT

Delivered when an error has occurred and there is no data
available.
If some input data was buffered when the error occurred, then
an ErrorEvent with the locus JPOS_EL_INPUT_DATA was
delivered first, and then this error event is delivered after all
DataEvents have been delivered.
Note: This JPOS_EL_INPUT event is not delivered if: an
JPOS_EL_INPUT_DATA event was delivered and the
application event handler responded with a JPOS_ER_CLEAR.

B-20
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
The application’s event listener method can set the ErrorResponse property to
one of the following:

The Device exits the Error state when one of the following occurs:

• The application returns from the JPOS_EL_INPUT ErrorEvent.

• The application returns from the JPOS_EL_INPUT_DATA ErrorEvent.

• The application calls the clearInput method.

Miscellaneous

For some Devices, the Application must call a method to begin event driven
input. After the input is received by the Device, then typically no additional input
will be received until the method is called again to re-initiate input. Examples are
the MICR and Signature Capture devices. This variation of event driven input is
sometimes called “asynchronous input.”

The DataCount property contains the number of DataEvents enqueued by the
JavaPOS Device.

Calling the clearInput method deletes all input enqueued by a JavaPOS Device.
clearInput may be called after open for sharable devices and after claim for
exclusive-use devices.

The general event-driven input model does not specifically rule out the definition
of device categories containing methods or properties that return input data
directly. Some device categories define such methods and properties in order to
operate in a more intuitive or flexible manner. An example is the Keylock Device.
This type of input is sometimes called “synchronous input.”

ErrorResponse Description

JPOS_ER_CLEAR
Clear the buffered DataEvents and ErrorEvents and exit
the error state, changing State to JPOS_S_IDLE.
This is the default response for locus JPOS_EL_INPUT.

JPOS_ER_CONTINUE_INPUT

This response acknowledges the error and directs the
Device to continue processing. The Device remains in the
error state, and will deliver additional data events as
directed by the DataEventEnabled property. When all
input has been delivered and the DataEventEnabled
property is again set to true, another ErrorEvent is
delivered with locus JPOS_EL_INPUT.
This is the default response when the locus is
JPOS_EL_INPUT_DATA, and is legal only with this
locus.

JPOS_ER_RETRY

This response directs the Device to retry the input. The
error state is exited, and State is changed to
JPOS_S_IDLE.
This response may only be selected when the device
chapter specifically allows it and when the locus is
JPOS_EL_INPUT. An example is the scale.

B-21Device Behavior Models Device Output Models
Device Output Models
The Java for Retail POS output model consists of two output types: synchronous
and asynchronous. A device category may support one or both types, or neither
type.

Synchronous Output
The application calls a category-specific method to perform output. The JavaPOS
Device does not return until the output is completed.

This type of output is preferred when device output can be performed relatively
quickly. Its merit is simplicity.

Asynchronous Output
The application calls a category-specific method to start the output. The JavaPOS
Device validates the method parameters and throws an exception immediately if
necessary. If the validation is successful, the JavaPOS Device does the following:

1. Buffers the request.

2. Sets the OutputID property to an identifier for this request.

3. Returns as soon as possible.

When the JavaPOS Device successfully completes a request, an
OutputCompleteEvent is enqueued for delivery to the application. A property of
this event contains the output ID of the completed request. If the request is
terminated before completion, due to reasons such as the application calling the
clearOutput method or responding to an ErrorEvent with a JPOS_ER_CLEAR
response, then no OutputCompleteEvent is delivered.

This type of output is preferred when device output requires slow hardware
interactions. Its merit is perceived responsiveness, since the application can
perform other work while the device is performing the output.

Note: Asynchronous output is always performed on a first-in first-out basis.

B-22
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Error Handling

If an error occurs while performing an asynchronous request, the error state
JPOS_S_ERROR is entered and an ErrorEvent is enqueued with the
ErrorLocus property set to JPOS_EL_OUTPUT. The application is guaranteed
that the request in error is the one following the request whose output ID was
most recently reported by an OutputCompleteEvent. An application’s event
listener method can set the ErrorResponse property to one of the following:

Miscellaneous

Calling the clearOutput method deletes all output buffered by the JavaPOS
Device. This method also stops any output that may be in progress (when
possible).

Note: Currently, only the POS printer uses the complete Asynchronous Output
model described here. Other device categories use portions of the model.

ErrorResponse Description

JPOS_ER_CLEAR
Clear the outstanding output and exit the error state (to
JPOS_S_IDLE).

JPOS_ER_RETRY

Exit the error state (to JPOS_S_BUSY) and retry the
outstanding output. If the condition that caused the error was not
corrected, then the Device may immediately reenter the error
state and enqueue another ErrorEvent.
This is the default response.

B-23Device Behavior Models Device Power Reporting Model
Device Power Reporting Model
Added in JavaPOS Release 1.3.

Applications frequently need to know the power state of the devices they use.
Earlier Releases of JavaPOS had no consistent method for reporting this
information. Note: This model is not intended to report Workstation or POS
Terminal power conditions (such as “on battery” and “battery low”). Reporting of
these conditions is left to power management standards and APIs.

Model
JavaPOS segments device power into three states:

• ONLINE. The device is powered on and ready for use. This is the
“operational” state.

• OFF. The device is powered off or detached from the terminal. This is a “non-
operational” state.

• OFFLINE. The device is powered on but is either not ready or not able to
respond to requests. It may need to be placed online by pressing a button, or it
may not be responding to terminal requests. This is a “non-operational” state.

In addition, one combination state is defined:

• OFF_OFFLINE. The device is either off or offline, and the Device Service
cannot distinguish these states.

Power reporting only occurs while the device is open, claimed (if the device is
exclusive-use), and enabled.

Note - Enabled/Disabled vs. Power States

These states are different and usually independent. JavaPOS defines “disabled” /
“enabled” as a logical state, whereas the power state is a physical state. A device may
be logically “enabled” but physically “offline”. It may also be logically “disabled” but
physically “online”. Regardless of the physical power state, JavaPOS only reports the
state while the device is enabled. (This restriction is necessary because a Device Service
typically can only communicate with the device while enabled.)
If a device is “offline”, then a Device Service may choose to fail an attempt to “enable”
the device. However, once enabled, the Device Service may not disable a device based
on its power state.

B-24
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Properties
The JavaPOS device power reporting model adds the following common
elements across all device classes:

• CapPowerReporting property. Identifies the reporting capabilities of the
device. This property may be one of:

• JPOS_PR_NONE. The Device Service cannot determine the state of the
device. Therefore, no power reporting is possible.

• JPOS_PR_STANDARD. The Device Service can determine and report
two of the power states - OFF_OFFLINE (that is, off or offline) and
ONLINE.

• JPOS_PR_ADVANCED. The Device Service can determine and report
all three power states - ONLINE, OFFLINE, and OFF.

• PowerState property. Maintained by the Device Service at the current power
condition, if it can be determined. This property may be one of:

• JPOS_PS_UNKNOWN

• JPOS_PS_ONLINE

• JPOS_PS_OFF

• JPOS_PS_OFFLINE

• JPOS_PS_OFF_OFFLINE

• PowerNotify property. The application may set this property to enable power
reporting via StatusUpdateEvents and the PowerState property. This
property may only be set before the device is enabled (that is, before
DeviceEnabled is set to true). This restriction allows simpler implementation
of power notification with no adverse effects on the application. The
application is either prepared to receive notifications or doesn't want them,
and has no need to switch between these cases. This property may be one of:

• JPOS_PN_DISABLED

• JPOS_PN_ENABLED

B-25Device Behavior Models Device Power Reporting Model
Power Reporting Requirements for DeviceEnabled
The following semantics are added to DeviceEnabled when

CapPowerReporting is not JPOS_PR_NONE, and
PowerNotify is JPOS_PN_ENABLED:

• When the Control changes from DeviceEnabled false to true, then begin
monitoring the power state:

• If the Physical Device is ONLINE, then:

PowerState is set to JPOS_PS_ONLINE.

A StatusUpdateEvent is enqueued with its Status property set to
JPOS_SUE_POWER_ONLINE.

• If the Physical Device’s power state is OFF, OFFLINE, or
OFF_OFFLINE, then the Device Service may choose to fail the enable by
throwing a JposException with error code JPOS_E_NOHARDWARE or
JPOS_E_OFFLINE.

However, if there are no other conditions that cause the enable to fail, and
the Device Service chooses to return success for the enable, then:

PowerState is set to JPOS_PS_OFF, JPOS_PS_OFFLINE, or
JPOS_PS_OFF_OFFLINE.

A StatusUpdateEvent is enqueued with its Status property set to
JPOS_SUE_POWER_OFF, JPOS_SUE_POWER_OFFLINE,
or JPOS_SUE_POWER_OFF_OFFLINE.

• When the Device changes from DeviceEnabled true to false, JavaPOS
assumes that the Device is no longer monitoring the power state and sets the
value of PowerState to JPOS_PS_UNKNOWN.

B-26
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Device States
JavaPOS defines a property State with the following values:

JPOS_S_CLOSED
JPOS_S_IDLE
JPOS_S_BUSY
JPOS_S_ERROR

The State property is set as follows:

• State is initially JPOS_S_CLOSED.

• State is changed to JPOS_S_IDLE when the open method is successfully
called.

• State is set to JPOS_S_BUSY when the Device Service is processing output.
The State is restored to JPOS_S_IDLE when the output has completed.

• The State is changed to JPOS_S_ERROR when an asynchronous output
encounters an error condition, or when an error is encountered during the
gathering or processing of event-driven input.

After the Device Service changes the State property to JPOS_S_ERROR, it
enqueues an ErrorEvent. The properties of this event are the error code and
extended error code, the locus of the error, and a modifiable response to the
error. See Input Model, Error Handling on page B-19 and Output Model, Error
Handling on page B-22 for further details.

B-27Device Behavior Models Threads
Threads
The Java language directly supports threads, and an application may create
additional threads to perform different jobs. The use of threads can add
complexity, however, often requiring synchronization to arbitrate sharing of
resources. For applications that share a control instance among multiple threads,
actions of one thread may have undesirable effects on the other thread(s). For
example, cancelled I/O (e.g., clearOutput) can result in any pending synchronous
requests of other threads being completed with a JPOS exception with an error
code of JPOS_E_FAILURE. These situations can be avoided by insuring a
control instance is managed by a single thread.

An application must be aware of multiple threads in the following cases:

• Properties and Methods. Calling some JavaPOS methods or setting some
properties can cause other property values to be changed. When an application
needs to access these properties, it must either access the properties and
methods from only one thread, or ensure that its threads synchronize these
sequences as required.

• Events. An application must not assume that events are delivered in the
context of any particular thread. The JavaPOS Device typically will deliver
events on a privately created and managed thread. It is an application’s
responsibility to synchronize event processing with its threads if necessary.

Version Handling
As JavaPOS evolves, additional releases will introduce enhanced versions of
some Devices. JavaPOS imposes the following requirements on Device Control
and Service versions:

• Device Control requirements. A Device Control for a device category must
operate with any Device Service for that category, as long as its major version
number matches the Service's major version number. If they match, but the
Control's minor version number is greater than the Service’s minor version
number, the Control may support some new methods or properties that are not
supported by the Service’s release. If an application calls one of these methods
or accesses one of these properties, a JposException with error code
JPOS_E_NOSERVICE will be thrown.

• Device Service requirements. A Device Service for a device category must
operate with any Device Control for that category, as long as its major version
number matches the Control's major version number. If they match, but the
Service's minor version number is greater than the Control's minor version
number, then the Service may support some methods or properties that cannot
be accessed from the Control.

When an application wishes to take advantage of the enhancements of a version,
it must first determine that the Device Control and Device Service are at the
proper major version and at or greater than the proper minor version. The
versions are reported by the properties DeviceControlVersion and
DeviceServiceVersion.

B-28
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Classes and Interfaces
Synopsis

This section lists the JavaPOS classes and interfaces used by applications, Device Controls and
Device Services. Further details about their usage appear later in this document.

In the tables that follow, the following substitutions should be made for italic type:

The classes and interfaces defined or used by JavaPOS are summarized in the following tables,
organized by the software entity that implements them.

Application

Substitution
Name

Description

Event Replace with one of the five event types:
Data, Error, OutputComplete, StatusUpdate, DirectIO

event
Replace with one of the five event types:
data, error, outputComplete, statusUpdate, directIO

Devcat

Replace with one of the device categories:
BumpBar, CashChanger, CashDrawer, CAT, CoinDispenser, FiscalPrinter,
HardTotals, Keylock, LineDisplay, MICR, MSR, PINPad, PointCardRW,
POSKeyboard, POSPower, POSPrinter, RemoteOrderDisplay, Scale, Scanner,
SignatureCapture, ToneIndicator

Rr
Replace with the JavaPOS release number. For example, Release 1.2 is shown as 12.
When an interface or class uses a release number, interfaces for later releases at the same
major version number extend the previous release’s interface or class.

Pp
Replace with the JavaPOS release number prior to Rr. For example, if Rr is 13, then Pp
is 12.

Class or
Interface

Name Description Extends / Implements

Interface
jpos.EventListener
(Ex: DataListener)

Application defines and registers a class
that implements this interface. Events
are delivered by calling the
eventOccurred (ex: dataOccurred)
method of this interface with an
EventEvent (ex: DataEvent) instance.

Extends:
java.util.EventListener

B-29Classes and Interfaces Synopsis
Device Control

Device Service

Class or
Interface

Name Description Extends / Implements

Class
jpos.Devcat
(ex: Scanner,
POSPrinter)

Device Control Class.
One fixed name per device category.

Implements:
jpos.DevcatControlRr
(ex: ScannerControl12,
POSPrinterControl13)
Implements (as an Inner
Class): jpos.services.
EventCallbacks

Interface
jpos.DevcatControlRr

(ex: ScannerControl12,
POSPrinterControl13)

Contains the methods and properties
specific to Device Controls for this
device category and release.

Extends either:
jpos.BaseControl
(for first release) or
jpos.DevcatControlPp
(for later releases) (ex:
POSPrinterControl13)

Interface jpos.BaseControl Contains the methods and properties
common to all Device Controls.

--

Interface jpos.services.
EventCallbacks

Includes one callback method per
event type. The Device Service calls
these methods to cause events to be
delivered to the application.

--

Class or
Interface

Name Description Extends / Implements

Class Vendor-defined name Device Service Class.

Implements:
jpos.services.
DevcatServiceRr
(ex: ScannerService12,
POSPrinterService13)

Interface

jpos.services.
DevcatServiceRr
(ex: ScannerService12,
POSPrinterService13)

Contains the methods and properties
specific to Device Services for this
device category and release.

Extends either:
jpos.services.
BaseService
(for first release) or
jpos.services.
DevcatServicePp
(for later releases) (ex:
POSPrinterService13)

Interface
jpos.services.
BaseService

Contains the methods and properties
common to all Device Services.

--

B-30
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Helper Classes
Class or
Interface

Name Description Extends / Implements

Interface jpos.JposConst
Interface containing the JavaPOS
constants that are common to several
device categories.

--

Interface
jpos.DevcatConst
(ex: ScannerConst,
POSPrinterConst)

Interface containing the JavaPOS
constants specific to a device
category.

--

Class jpos.JposEvent Abstract class from which all
JavaPOS event classes are extended.

Extends:
java.util.EventObject

Class
jpos.EventEvent
(ex: DataEvent)

The Device Service creates Event
event instances of this class and
delivers them through the Device
Control’s event callbacks to the
application.

Extends:
jpos.JposEvent

Class jpos.JposException

Exception class. The Device Control
and Device Service create and throw
exceptions on method and property
access failures.

Extends:
java.lang.Exception

B-31Classes and Interfaces Sample Class and Interface Hierarchies
Sample Class and Interface Hierarchies
The following example class hierarchies are given for the scanner Release 1.2
(the initial Release) and for the printer (Release 1.3). Assume that neither Device
Service generates any DirectIO events in which the application is interested.

Application Sample
“MyApplication” class hierarchy:

• DataListener. Implement to receive Scanner data events.

• ErrorListener. Implement to receive Scanner and POSPrinter error
events.

• OutputCompleteListener. Implement to receive POSPrinter output
complete events.

• StatusUpdateListener. Implement to receive POSPrinter status update
events.

(Frequently, an application will define additional classes that implement one
or more of the listener interfaces.)

The “MyApplication” Application class also uses the following:

• Scanner and POSPrinter. Instances of the Device Controls.

• JposConst, ScannerConst, and POSPrinterConst. Use constants, either
by fully qualified package names or by adding to the “implements” clause
of an application class.

• DataEvent. Instance of this class received by the DataListener's method
dataOccurred.

• ErrorEvent. Instance of this class received by the ErrorListener's
method errorOccurred.

• OutputCompleteEvent. Instance of this class received by the
OutputCompleteListener's method outputCompleteOccurred.

• StatusUpdateEvent. Instance of this class received by the
StatusUpdateListener's method statusUpdateOccurred.

• JposException. Instance of this class is caught when a Scanner or
POSPrinter method or property access fails.

Device Control Sample
Scanner

Scanner class hierarchy:

• ScannerControl12. Implement scanner’s methods and properties.

• EventCallbacks. Derive an inner class to pass to Service so that it may
generate events.

B-32
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
The Scanner Control class also uses the following:

• JposConst and ScannerConst. Use constants, either by fully qualified
package names or by adding to the “implements” clause of the Device
Control.

• JposException. Instance of this class is thrown when a method or
property access fails.

POSPrinter

POSPrinter class hierarchy:

• POSPrinterControl13. Implement printer’s methods and properties and
extends POSPrinterControl12.

• EventCallbacks. Derive an inner class to pass to Service so that it may
generate events.

The POSPrinter Control class also uses the following:

• JposConst and POSPrinterConst. Use constants, either by fully
qualified package names or by adding to the “implements” clause of the
Device Control.

• JposException. Instance of this class is thrown when a method or
property access fails.

Device Service Sample
“MyScannerService”

“MyScannerService” class hierarchy:

• ScannerService12. Implement scanner’s methods and properties.

The “MyScannerService” Service class also uses the following:

• JposConst and ScannerConst. Use constants, either by fully qualified
package names or by adding to the “implements” clause of the Device
Service.

• DataEvent. Instance of this class created as data is received. It is
delivered to an application when the event delivery preconditions are met
by calling the fireDataEvent method of the Control's derived
EventCallbacks class.

• ErrorEvent. Instance of this class created when an error is detected while
reading scanner data. It is delivered to an application when the event
delivery preconditions are met by calling the fireErrorEvent method of
the Control's derived EventCallbacks class.

• JposException. Instance of this class is thrown when a method or
property access fails.

B-33Classes and Interfaces Sample Class and Interface Hierarchies
“MyPrinterService”

“MyPrinterService” class hierarchy:

• POSPrinterService13. Implement printer’s methods and properties and
extends POSPrinterService12.

The “MyPrinterService” Service class also uses the following:

• JposConst and POSPrinterConst. Use constants, either by fully
qualified package names or by adding to the “implements” clause of the
Device Service.

• ErrorEvent. Instance of this class created when an error is detected while
printing asynchronous data. It is delivered to an application when the
event delivery preconditions are met by calling the fireErrorEvent
method of the Control's derived EventCallbacks class.

• OutputCompleteEvent. Instance of this class created when an
asynchronous output request completes. It is delivered to an application
when the event delivery preconditions are met by calling the
fireOutputCompleteEvent method of the Control's derived
EventCallbacks class.

• StatusUpdateEvent. Instance of this class created when a printer status
change is detected. It is delivered to an application when the event
delivery preconditions are met by calling the fireStatusUpdateEvent
method of the Control's derived EventCallbacks class.

• JposException. Instance of this class is thrown when a method or
property access fails.

B-34
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Sample Application Code
The following code snippet shows how to use a scanner.

//import ...;

import jpos.*;

import jpos.events.*;

public class MyApplication implements DataListener

{

 // Data listener’s method to process incoming scanner data.

 public void dataOccurred(DataEvent e)

 {

 jpos.Scanner dc = (jpos.Scanner) e.getSource();

 String Msg = “Scanner DataEvent (Status=” + e.getStatus() +

 “) received.”;

 System.out.println (Msg);

 try {

 dc.setDataEventEnabled(true);

 } catch (JposException e){}

 }

 // Method to initialize the scanner.

 public void initScanner(String openName) throws jpos.JposException

 {

 // Create scanner instance and register for data events.

 jpos.Scanner myScanner1 = new jpos.Scanner();

 myScanner1.addDataListener(this);

 // Initialize the scanner. Exception thrown if a method fails.

 myScanner1.open(openName);

 myScanner1.claim(1000);

 myScanner1.setDeviceEnabled(true);

 myScanner1.setDataEventEnabled(true);

 //...Success! Continue doing work...

 }

 //...Other methods, including main...

}

B-35Classes and Interfaces Package Structure
Package Structure
The JavaPOS packages and files for Release 1.4 are as follows:

Note: The only difference between Release 1.3 and Release 1.4 of JavaPOS is
the inclusion of the CAT device. No other technical changes were made.
Therefore the JavaPOS packages and files for devices covered under Release
1.3 may be used for Release 1.4. Additional device classifications of Point Card
Reader Writer and POS Power were added in Release 1.5.

jpos

New Peripheral Device Services Added in Release 1.3

New Peripheral Device Service Added in Release 1.4

BaseControl.java
JposConst.java
JposException.java

CashChanger.java MSR.java
CashChangerBeanInfo.java MSRBeanInfo.java
CashChangerConst.java MSRConst.java
CashChangerControl13.java MSRControl13.java

CashDrawer.java POSKeyboard.java
CashDrawerBeanInfo.java POSKeyboardBeanInfo.java
CashDrawerConst.java POSKeyboardConst.java
CashDrawerControl13.java POSKeyboardControl13.java

CoinDispenser.java POSPrinter.java
CoinDispenserBeanInfo.java POSPrinterBeanInfo.java
CoinDispenserConst.java POSPrinterConst.java
CoinDispenserControl13.java POSPrinterControl13.java

HardTotals.java Scale.java
HardTotalsBeanInfo.java ScaleBeanInfo.java
HardTotalsConst.java ScaleConst.java
HardTotalsControl13.java ScaleControl13.java

Keylock.java Scanner.java
KeylockBeanInfo.java ScannerBeanInfo.java
KeylockConst.java ScannerConst.java
KeylockControl13.java ScannerControl13.java

LineDisplay.java SignatureCapture.java
LineDisplayBeanInfo.java SignatureCaptureBeanInfo.java
LineDisplayConst.java SignatureCaptureConst.java
LineDisplayControl13.java SignatureCaptureControl13.java

MICR.java ToneIndicator.java
MICRBeanInfo.java ToneIndicatorBeanInfo.java
MICRConst.java ToneIndicatorConst.java
MICRControl13.java ToneIndicatorControl13.java

BumpBar.java PINpad.java
BumpBarBeanInfo.java PINpadBeanInfo.java
BumpBarConst.java PINpadConst.java
BumpBarControl13.java PINpadControl13.java

FiscalPrinter.java RemoteOrderDisplay.java
FiscalPrinterBeanInfo.java RemoteOrderDisplayBeanInfo.java
FiscalPrinterConst.java RemoteOrderDisplayConst.java
FiscalPrinterControl13.java RemoteOrderDisplayControl13.java

CAT.java
CATBeanInfo.java
CATConst.java
CATControl14.java

B-36
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
 New Peripheral Device Services Added in Release 1.5

jpos.events

jpos.services

PointCardRW.java
PointCardRWBeanInfo.java
PointCardRWConst.java
PointCardRWControl15.java

POSPower.java
POSPowerBeanInfo.java
POSPowerConst.java
POSPowerControl15.java

JposEvent.java

DataEvent.java
DataListener.java
DirectIOEvent.java
DirectIOListener.java
ErrorEvent.java
ErrorListener.java
OutputCompleteEvent.java
OutputCompleteListener.java
StatusUpdateEvent.java
StatusUpdateListener.java

BaseService.java
EventCallbacks.java

CashChangerService13.java
CashDrawerService13.java
CoinDispenserService13.java
HardTotalsService13.java
KeylockService13.java
LineDisplayService13.java
MICRService13.java
MSRService13.java
POSKeyboardService13.java
POSPrinterService13.java
ScaleService13.java
ScannerService13.java
SignatureCaptureService13.java
ToneIndicatorService13.java

New Peripheral Device Services Added in Release 1.3

BumpBarService13.java
FiscalPrinterService13.java
PINpadService13.java
RemoteOrderDisplayService13.java

New Peripheral Device Services Added in Release 1.4

CATService14.java

New Peripheral Device Services Added in Release 1.5

PointCardRW15.java
POSPower15.java

B-37Device Controls Device Control Responsibilities
Device Controls
Note: This section is intended primarily for programmers who are creating
JavaPOS Device Controls and Services.

Device Control Responsibilities
• Supporting the JavaPOS Device Interface for its category. This includes a set

of properties, methods, and events.

• Managing the connection and interface to a Device Service.

• Forwarding most property accesses and method calls to the Device Service,
and throwing exceptions when a property access or method call fails.

• Supporting add and remove event listener methods.

• Generating events to registered listeners upon command from the Device
Service.

• Downgrading for older Device Service versions.

A Device Control is not responsible for:

• Managing multi-thread access to the Device Control and Service. An
application must either access a Control from only one thread, or ensure that
its threads synchronize sequences of requests as required to ensure that
affected state and properties are maintained until the sequences have
completed.

• Data buffering, including input and output data plus events. The Device
Service manages all buffering and enqueuing.

• The device behavior/semantics and nuances that are specific to the functional
control of the device.

• The loading functions that are to be contained in the jpos.config/loader (JCL).

B-38
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Device Service Management
The Device Control manages the connection to the Device Service. The Control
calls upon the jpos.config/loader (JCL) to accomplish the connection and
disconnection.

jpos.config/loader (JCL) and JavaPOS Entry Registry
(JER)
The jpos.config/loader (JCL) along with the JavaPOS Entry Registry (JER) is
used as the binding (configuration and loading) API that allows a JavaPOS
control to bind to the correct JavaPOS service in a manner independent of the
actual configuration mechanism. For POS applications, it represents a somewhat
minimum (but extensible) functional equivalent of the “NT Registry” called the
JposEntryRegistry.

All JavaPOS Device Controls that use this API and additional helpful reference
material can be obtained on the JavaPOS website, http://www.javapos.com. In
addition other standards information may be obtained from the http://www.NRF-
ARTS.org website.

A reference open source implementation of the JCL is available on this website
and maintained under the control of the JavaPOS technical committee. Included
on the website is a functioning JCL with complete JavaDoc documentation,
examples, sample code, a browser-based configuration editor and additional
explanatory material.

A brief description of the JCL process is given below. However, for additional
detailed information on the JCL one should consult the referenced web sites for
the most up to date information.

jpos.config/loader (JCL) Characteristics

The jpos.config/loader is the name for the minimal set of classes (1) and
interfaces (6) which are necessary to abstract into the JavaPOS specification.
They provide for an independent way of configuring, loading and creating
JavaPOS device services while maintaining the following important goals.

• Minimize the impact on existing controls

• Allow services to easily support multiple jpos.config/loader implementations

• Abstract as much as possible using Java interfaces to separate the JCL
specification from its implementation

• Keep to a minimum the number of necessary classes and interfaces

The jpos.config/loader class/interfaces are added in two packages named
jpos.config and jpos.loader. A jpos implementation is dependent upon the jpos
and jpos.loader packages included in the jpos.loader class/interfaces, the
jpos.JposConst interfaces and the jpos.JposException classes.

The jpos.config/loader specification contains 1 class and 6 interfaces. The single

http://www.javapos.com
http://www.NRF-ARTS.org
http://www.NRF-ARTS.org
http://www.NRF-ARTS.org
http://www.javapos.com
http://www.NRF-ARTS.org
http://www.NRF-ARTS.org

B-39Device Controls Device Service Management
class is the jpos.loader.ServiceLoader which bootstraps the implementation of the
jpos.config/loader to be used in the JVM by creating the manager object (an
instance of the jpos.loader.JposServiceManager interface). It also defaults to the
simple jpos.config/loader implementation if no bootstrap is defined. The
following table gives the name and a brief description of the class and interfaces
that are involved.

Class or
Interface

Name Description

class jpos.loader.ServiceLoader

This is the only class in the jpos.config and
jpos.loader packages. It maintains a
JposServiceManager instance (manager)
which it uses to create a
JposServiceConnection. The manager is
created by looking for a Java property
“jpos.loader.serviceManagerClass”. If this
property is defined, then the class that it defines
will be loaded and an instance of this class
created as the manager (NOTE: this also
assumes that the class implements
JposServiceManager interface and has a 0-
argument constructor). If the property is not
defined then the “simple” JCL reference
implementation manager is created
(jpos.loader.simple.SimpleServiceManager).

interface jpos.loader.JposServiceManager
This interface defines a manager used to create
JposServiceConnection and allows access to
the JposEntryRegistry.

interface jpos.loader.JposServiceConnection

Defines a mediator between the service and the
user of the service. The JavaPOS controls use
this interface to connect to the service and then
get the JposServiceInstance associated with the
connection. Once disconnected the
JposServiceinstance is no longer valid and a re-
connect is necessary.

interface jpos.config.JposEntry

Defines an interface for configuring a service.
Properties can be added, queried, modified and
removed. The JposServiceInstanceFactory
uses the information in the object implementing
this interface to create the current
JposServiceInstance and configure it.

interface jpos.loader.JposEntryRegistry
This interface defines a way to statistically and
dynamically add known JposEntry objects to
the system.

interface jpos.loader.JposServiceInstance

Only interface required to be implemented by all
JavaPOS services. It defines one method that is
used to indicate to the service that the connection
has been disconnected.

interface jpos.loader.JposServiceInstanceFactory

Factory interface to create JposServiceInstance
objects (i.e. the JavaPOS services). It is passed a
JposEntry which it uses to create the correct
service.

B-40
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
The configuration information is described as a set of properties in the
JposEntry. These are entered as <key, value> pairs. The key is a String and the
value is a Java Object of type: String, Integer, Long, Float, Boolean, Character or
Byte (which are the String and primitive wrapper classes provided in the
java.lang package). The following are two properties which must be defined by
all the entries in the JposEntry in order for it to be considered valid.

All other properties are optionally provided or needed for the correct creation and
initialization of the JavaPOS service. Note the service providers will most likely
want to define their own set of properties and require them to be in the JposEntry
in order to allow their JposServiceFactory to be used and their device service to
be configured and loaded.

Future releases of the reference jpos.config/loader (JCL) might be modified to
define a standard set of properties (in addition to the two mandated above) that all
JavaPOS services would need to define.

Property Name Property Type Description

logicalName String
This is the unique name that identifies this entry.
The control uses this name to bind itself to the
service.

serviceInstanceFactoryClass String

Defines the factory class which should be used to
create the service. This class must implement the
jpos.loader.JposServiceInstanceFactory
interface and it must have a default constructor.

B-41Device Controls Property and Method Forwarding
Property and Method Forwarding
The Device Control must use the Device Service to implement all properties and
methods defined by the JavaPOS Device Interface for a device category, with the
following exceptions:

• open method.

• close method.

• DeviceControlDescription property. The Control returns its description.

• DeviceControlVersion property. The Control returns its version.

• State property. The Control forwards the request to the Service as shown in
the following paragraphs. Any exception is changed to a return value of
JPOS_S_CLOSED; an exception is never thrown to an application.

For all other properties and methods, the Device Control forwards the request to
the identically named method or property of the Device Service. A template for
set property and method request forwarding follows:

 public void name(Parameters) throws JposException

 {

 try

 service.name(Parameters);

 catch(JposException je)

 throw je;

 catch(Exception e)

 throw new JposException(JPOS_E_CLOSED,

 “Control not opened”, e);

 }

Similarly, a template for get property request forwarding is:

 public Type name() throws JposException

 {

 try

 return service.name();

 catch(JposException je)

 throw je;

 catch(Exception e)

 throw new JposException(JPOS_E_CLOSED,

 “Control not opened”, e);

 }

The general forwarding sequence is to call the Service to process the request, and
return to the application if no exception occurs. If an exception occurs and the
exception is JposException, rethrow it to the application.

Otherwise wrap the exception in a JposException and throw it. This should only
occur if an open has not successfully linked the Service to the Control, that is, if
the service field contains a null reference. (Any exceptions that occur while in the
Service should be caught by it, and the Service should rethrow it as a
JposException.) This allows the Control to set the message text to “Control not
opened” with reasonable certainty.

B-42
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Event Handling
Event Listeners and Event Delivery
An application must be able to register with the Device Control to receive events
of each type supported by the Device, as well as unregister for these events. To
conform to the JavaBean naming pattern for events, the registration methods have
the form:

 void addXxxListener(XxxListener l);

 void removeXxxListener(XxxListener l);

where Xxx is replaced by one of the event types: Data, Error, OutputComplete,
StatusUpdate, or DirectIO.

An example add listener method is:

 protected Vector dataListeners;

 public void addDataListener(DataListener l)

 {

 synchronized(dataListeners)

 dataListeners.addElement(l);

 }

When the Device Service requests that an event be delivered, the Control calls the
event method of each listener that has registered for that event. (Typically, only
one listener will register for each event type. However, diagnostic or other
software may choose to listen, also.) The event methods have the form:

 void xxxOccurred(XxxEvent e)

where xxx is replaced by: data, error, outputComplete, statusUpdate, or
directIO.

B-43Device Controls Event Handling
Event Callbacks
The Device Service requests that an event be delivered by calling a method in a
callback instance. This instance is created by the Control and passed to the
Service in the open method.

The callback instance is typically created as an inner class of the Control. An
example callback inner class is:

 protected class ScannerCallbacks implements EventCallbacks

 {

 public BaseControl getEventSource()

 {

 return (BaseControl)Scanner.this;

 }

 public void fireDataEvent(DataEvent e)

 {

 synchronized(Scanner.this.dataListeners)

 // deliver the event to all registered listeners

 for(int x = 0; x < dataListeners.size(); x++)

 ((DataListener)dataListeners.elementAt(x)).

 dataOccurred(e);

 }

 public void fireDirectIOEvent(DirectIOEvent e)

 {

 //…Removed code similar to fireDataEvent…

 }

 public void fireErrorEvent(ErrorEvent e)

 {

 //…Removed code similar to fireDataEvent…

 }

 public void fireOutputCompleteEvent(OutputCompleteEvent e)

 {

 }

 public void fireStatusUpdateEvent(StatusUpdateEvent e)

 {

 }

 }

B-44
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Device Control Version Handling
The Device Control responsibilities given in the preceding sections “Device
Service Management” and “Property and Method Forwarding” are somewhat
simplified: They do not take into account version handling.

Both the Device Control and the Device Service have version numbers. Each
version number is broken into three parts: Major, minor, and build. The major
and minor portions indicate compliance with a release of the JavaPOS
specifications. For example, release 1.4 compatibility is represented by a major
version of one and a minor version of four. The build portion is set by the
JavaPOS Device writer.

The JavaPOS version requirement is that a Device Control for a device category
must operate and return reasonable results with any Device Service for that class,
as long as its major version number matches the Service’s major version number.

In order to support this requirement, the following steps must be taken by the
Control:

• open method. The Control must validate and determine the version of the
Service, and save this version for later use (the “validated version”). The steps
are as follows:

1. After connecting to the Device Service and obtaining its reference,
determine the level of JavaPOS Service interface supported by the Service
(the “interface version”). This test ensures that the Service complies with
the property and method requirements of the interface.

For example, assume that the Scanner Control is at version 1.3. First
attempt to cast the Service reference to the original release version,
ScannerService12. If this succeeds, the “interface version” is at least 1.2;
otherwise fail the open. Next, attempt to cast to ScannerService13. If this
succeeds, the “interface version” is 1.3.

2. After calling the Service’s open method, get its DeviceServiceVersion
property. If the major version does not match the Control’s major version,
then fail the open.

3. At this point we know that some level of Service interface is supported,
and that the major Control and Service versions match. Now determine
the “validated version”:

 if (service_version <= interface_version)

 {

 // The Service version may match the interface

 // version, or it may be less. The latter case may

 // be true for a Service that wraps or bridges to

 // OPOS software, because the Service may be able to

 // support a higher interface version, but

 // downgrades its reported Service version to that of

 // the OPOS software.

 // Remember the Services real version.

 validated_version = service_version;

 }

 else if (service_version > interface_version)

B-45Device Controls Device Control Version Handling
 {

 // The Service is newer than the Control.

 // Look at two subcases.

 if (control_version == interface_version)

 {

 // The Service is newer than the Control, and it

 // supports all the Controls methods and

 // properties (and perhaps more that the Control

 // will not call).

 // Remember the maximum version that the Control

 // supports.

 validated_version = interface_version;

 }

 else if (service_version > interface_version)

 {

 //... Fail the open!

 // The Service is reporting a version for which it

 // does not support all the required methods and

 // properties.

 }

 }

• Properties and other methods. If an application accesses a property or calls a
method supported by the Control’s version but not by the “validated version”
of the Service, the Control must throw a JposException with error code
JPOS_E_NOSERVICE.

B-46
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Device Services
Note: This section is intended primarily for programmers creating JavaPOS
Device Controls and Services.

Device Service Responsibilities
A Device Service for a device category is responsible for:

• Supporting the JavaPOS Device Service Interface for its category. This
includes a set of properties and methods, plus event generation and delivery.

• Implementing property accesses and method calls, and throwing exceptions
when a property access or method call fails.

• Enqueuing events and delivering them (through calls to Device Control event
callback methods) when the preconditions for delivering the event are
satisfied.

• Managing access to the Physical Device.

The Device Service requires the jpos.config/loader (JCL) JposEntry object which
contains all the configuration information.

Property and Method Processing
The Device Service performs the actual work for the property access and method
processing. If the Service is successful in carrying out the request, it returns to the
application. Otherwise, it must throw a JposException.

At the beginning of property and method processing, the Service will typically
need to validate that an application has properly initialized the device before it is
processed. If the device must first be claimed, the Service throws an exception
with the error code JPOS_E_CLAIMED (if the device is already claimed by
another JPOS Device) or JPOS_E_NOTCLAIMED (if the device is available to
be claimed). If the device must first be enabled, then the Service throws an
exception with the error code JPOS_E_DISABLED.

Some special cases are:

• open method. The Service must perform additional housekeeping and
initialization during this method. Initialization will often include accessing the
Java System Database (Release 1.4 and prior) or JposEntryRegistry (Release
1.5 and beyond) to obtain parameters specific to the Service and the Physical
Device.

• close method. The Service releases all resources that were acquired during or
after open.

B-47Device Services Event Generation
Event Generation
The Device Service has the responsibility of enqueuing events and delivering
them in the proper sequence. The Service must enqueue and deliver them one at a
time, in a first-in, first-out manner. (The only exception is when a
JPOS_EL_INPUT_DATA event must be delivered early on an input error
because some data events are also enqueued.) Events are delivered by an
internally created and managed Service thread. They are delivered by calling an
event firing callback method in the Device Control, which then calls each
registered listener's event method. (See “Event Handling” on page B-42.)

The following conditions cause event delivery to be delayed until the condition is
corrected:

• The application has set the property FreezeEvents to true.

• The event type is a DataEvent or an input ErrorEvent, but the property
DataEventEnabled is false. (See “Device Input Model” on page B-18.)

Rules on the management of the queue of events are:

• The JavaPOS Device may only enqueue new events while the Device is
enabled.

• The Device may deliver enqueued events until the application calls the release
method (for exclusive-use devices) or the close method (for any device), at
which time any remaining events are deleted.

• For input devices, the clearInput method clears data and input error events.

• For output devices, the clearOutput method clears output error events.

B-48
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Physical Device Access
The Device Service is responsible for managing the Physical Device. Often, this
occurs by using a communications Port API (supplied or custom). At other times,
the Service may need to use other device drivers or techniques to control the
device.

The Java for Retail POS (JavaPOS) and OLE for Retail POS (OPOS) industry
standard initiatives are intentionally similar in many respects.

Support for Java requires several differences from OPOS in architecture, but the
JavaPOS committee agreed that the general model of OPOS device classes should
be reused as much as possible.

In order to reuse as much of the OPOS device models as possible, the following
sections detail the general mapping rules from OPOS to JavaPOS. A later section
lists the deviations of JavaPOS APIs from OPOS.

API Mapping Rules
In most cases, OPOS APIs may be translated in a mechanical fashion to equivalent
JavaPOS APIs. The exceptions to this mapping are largely due to differences in
some string parameters.

Areas of data mapping include data types, methods and properties, and events.

B-49JavaPOS Component Descriptions
JavaPOS Component Descriptions

The following sections are arranged as follows and provide detailed information
on how an Application is expected to interface with a device covered under
JavaPOS.

Section 1:
Describes the specific characteristics of the data types that JavaPOS uses as they
relate to Java and a OS platform neutral implementation.

Section 2:
Provides interface descriptions for the properties, methods, and events specific to
JavaPOS. For thorough description of these, one should consult the applicable
chapters located in previous chapters in this document.

Section 3:
Compares the evolution of the JavaPOS from the OPOS standard and briefly
describes some of the differences between the two implementations.

B-50
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Section 1: JavaPOS Data Types

Data Types
Data types are mapped from OPOS to JavaPOS as follows, with exceptions noted
after the table:

Table 1:
OPOS
Type

JavaPOS
Type

Usage

BOOL boolean Boolean true or false.
BOOL * boolean[1] Modifiable boolean.
LONG int 32-bit integer.
LONG * int[1] Modifiable 32-bit integer.

CURRENCY long
64-bit integer. Used for currency values, with an
assumed 4 decimal places.

CURRENCY * long[1] Modifiable 64-bit integer.
The string types are usually represented with the
following mapping:

BSTR String Text character string.
BSTR * String[1] Modifiable text character string.

For some APIs, the string types are represented in
one of the following:

byte[]
Array of bytes. May be modified, but size of array
cannot be changed. Often used when non-textual
data is possible.

Point[] Array of points. Used by Signature Capture.

Object
An object. This will usually be subclassed to
provide a Device Service-specific parameter for
directIO or DirectIOEvent.

nls (LONG) nls (String) Operating System National Language Data type.

B-51Section 2: JavaPOS Interface Descriptions
Section 2: JavaPOS Interface Descriptions

Information in this section further defines the requirements of the UnifiedPOS for
Java implementation. The common Properties, Methods, and Events are included
to help transition from the UML given in Chapter 1 to the specifics for the Java
Implementation on an Operating System that supports Java.

Next, tables are included that outline the specific programmatic examples for
each of the device classifications and reference back to the UML for the
respective devices.

The examples have been provided in Java and make no requirement of a specific
OS in order to run.

B-52
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
JavaPOS Common Properties, Methods, and Events

Properties

AutoDisable Property R/W

Type boolean

Remarks If true, the Device Service will set DeviceEnabled to false after it receives and
enqueues data as a DataEvent. Before any additional input can be received, the
application must set DeviceEnabled to true.

If false, the Device Service does not automatically disable the device when data is
received.

This property provides the application with an additional option for controlling the
receipt of input data. If an application wants to receive and process only one input,
or only one input at a time, then this property should be set to true. This property
applies only to event-driven input devices.

This property is initialized to false by the open method.

Errors A JposException may be thrown when this property is accessed. For further
information, see “Exceptions” on page B-12.

B-53Properties
CapPowerReporting Property R Added in Release 1.3

Type int

Remarks Identifies the reporting capabilities of the Device. It has one of the following
values:

Value Meaning

JPOS_PR_NONE The Device Service cannot determine the state of the
device. Therefore, no power reporting is possible.

JPOS_PR_STANDARD The Device Service can determine and report two of the
power states - OFF_OFFLINE (that is, off or offline)
and ONLINE.

JPOS_PR_ADVANCED The Device Service can determine and report all three
power states - OFF, OFFLINE, and ONLINE.

This property is initialized by the open method.

Errors None.

CheckHealthText Property R

Type String

Remarks Holds the results of the most recent call to the checkHealth method. The
following examples illustrate some possible diagnoses:

• “Internal HCheck: Successful”

• “External HCheck: Not Responding”

• “Interactive HCheck: Complete”

This property is empty (“”) before the first call to the checkHealth method.

Errors A JposException may be thrown when this property is accessed. For further
information, see “Exceptions” on page B-12.

B-54
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Claimed Property R

Type boolean

Remarks If true, the device is claimed for exclusive access. If false, the device is released
for sharing with other applications.

Many devices must be claimed before the Control will allow access to many of its
methods and properties, and before it will deliver events to the application.

This property is initialized to false by the open method.

Errors A JposException may be thrown when this property is accessed. For further
information, see “Exceptions” on page B-12.

DataCount Property R

Type int

Remarks Holds the number of enqueued DataEvents.

The application may read this property to determine whether additional input is
enqueued from a device, but has not yet been delivered because of other
application processing, freezing of events, or other causes.

This property is initialized to zero by the open method.

Errors A JposException may be thrown when this property is accessed. For further
information, see “Exceptions” on page B-12.

B-55Properties
DataEventEnabled Property R/W

Type boolean

Remarks If true, a DataEvent will be delivered as soon as input data is enqueued. If changed
to true and some input data is already queued, then a DataEvent is delivered
immediately. (Note that other conditions may delay “immediate” delivery: if
FreezeEvents is true or another event is already being processed at the
application, the DataEvent will remain queued at the Device Service until the
condition is corrected.)

If false, input data is enqueued for later delivery to the application. Also, if an input
error occurs, the ErrorEvent is not delivered while this property is false.

This property is initialized to false by the open method.

Errors A JposException may be thrown when this property is accessed. For further
information, see “Exceptions” on page B-12.

DeviceControlDescription Property R

Type String

Remarks Holds an identifier for the Device Control and the company that produced it.

A sample returned string is:

“POS Printer JavaPOS Control, (C) 1998 Epson”

This property is always readable.

Errors None.

B-56
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
DeviceControlVersion Property R

Type int

Remarks Holds the Device Control version number.

Three version levels are specified, as follows:

Version Level Description

Major The “millions” place.
A change to the JavaPOS major version level for a
device class reflects significant interface enhancements,
and may remove support for obsolete interfaces from
previous major version levels.

Minor The “thousands” place.
A change to the JavaPOS minor version level for a
device class reflects minor interface enhancements, and
must provide a superset of previous interfaces at this
major version level.

Build The “units” place.
Internal level provided by the Device Control developer.
Updated when corrections are made to the Device
Control implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major
version 1, minor version 2, build 38 of the Device Control.

This property is always readable.

Errors None.

B-57Properties
DeviceEnabled Property R/W

Type boolean

Remarks If true, the device is in an operational state. If changed to true, then the device is
brought to an operational state.

If false, the device has been disabled. If changed to false, then the device is
physically disabled when possible, any subsequent input will be discarded, and
output operations are disallowed.

Changing this property usually does not physically affect output devices. For
consistency, however, the application must set this property to true before using
output devices.

Release 1.3 and later: The Device’s power state may be reported while
DeviceEnabled is true; See “Device Power Reporting Model” on page B-22 for
details.

This property is initialized to false by the open method. Note that an exclusive use
device must be claimed before the device may be enabled.

DeviceServiceDescription Property R

Type String

Remarks Holds an identifier for the Device Service and the company that produced it.

A sample returned string is:

“TM-U950 Printer JPOS Service Driver, (C) 1998 Epson”

This property is initialized by the open method.

Errors A JposException may be thrown when this property is accessed. For further
information, see “Exceptions” on page B-12.

B-58
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
DeviceServiceVersion Property R

Type int

Remarks Holds the Device Service version number.

Three version levels are specified, as follows:

Version Level Description

Major The “millions” place.
A change to the JavaPOS major version level for a
device class reflects significant interface enhancements,
and may remove support for obsolete interfaces from
previous major version levels.

Minor The “thousands” place.
A change to the JavaPOS minor version level for a
device class reflects minor interface enhancements, and
must provide a superset of previous interfaces at this
major version level.

Build The “units” place.
Internal level provided by the Device Service developer.
Updated when corrections are made to the Device
Service implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major version
1, minor version 2, build 38 of the Device Service.

This property is initialized by the open method.

Errors A JposException may be thrown when this property is accessed. For further
information, see “Exceptions” on page B-12.

B-59Properties
FreezeEvents Property R/W

Type boolean

Remarks If true, events will not be delivered. Events will be enqueued until this property is
set to false.

If false, the application allows events to be delivered. If some events have been
held while events were frozen and all other conditions are correct for delivering
the events, then changing this property to false will allow these events to be
delivered. An application may choose to freeze events for a specific sequence of
code where interruption by an event is not desirable.

This property is initialized to false by the open method.

Errors A JposException may be thrown when this property is accessed. For further
information, see “Exceptions” on page B-12.

OutputID Property R

Type int

Remarks Holds the identifier of the most recently started asynchronous output.

When a method successfully initiates an asynchronous output, the Device assigns
an identifier to the request. When the output completes, an
OutputCompleteEvent will be enqueued with this output ID as a parameter.

The output ID numbers are assigned by the Device and are guaranteed to be unique
among the set of outstanding asynchronous outputs. No other facts about the ID
should be assumed.

Errors A JposException may be thrown when this property is accessed. For further
information, see “Exceptions” on page B-12.

B-60
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
PowerNotify Property R/W Added in Release 1.3

Type int

Remarks Contains the type of power notification selection made by the Application. It has
one of the following values:

Value Meaning

JPOS_PN_DISABLED The Device Service will not provide any power
notifications to the application. No power notification
StatusUpdateEvents will be fired, and PowerState
may not be set.

JPOS_PN_ENABLED The Device Service will fire power notification
StatusUpdateEvents and update PowerState,
beginning when DeviceEnabled is set to true. The level
of functionality depends upon CapPowerReporting.

PowerNotify may only be set while the device is disabled; that is, while
DeviceEnabled is false.

This property is initialized by the open method.

Errors A JposException may be thrown when this property is accessed. For further
information, see “Exceptions” on page B-12.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

JPOS_E_ILLEGAL One of the following occurred:

The device is already enabled.

PowerNotify = JPOS_PN_ENABLED but
CapPowerReporting = JPOS_PR_NONE.

B-61Properties
PowerState Property R Added in Release 1.3

Type int

Remarks Identifies the current power condition of the device, if it can be determined.
It has one of the following values:

Value Meaning

JPOS_PS_UNKNOWN Cannot determine the device’s power state for one of the
following reasons:

CapPowerReporting = JPOS_PR_NONE; the device
does not support power reporting.

PowerNotify = JPOS_PN_DISABLED; power
notifications are disabled.

DeviceEnabled = false; Power state monitoring does
not occur until the device is enabled.

JPOS_PS_ONLINE The device is powered on and ready for use. Can be
returned if CapPowerReporting =
JPOS_PR_STANDARD or JPOS_PR_ADVANCED.

JPOS_PS_OFF The device is powered off or detached from the POS
terminal. Can only be returned if CapPowerReporting
= JPOS_PR_ADVANCED.

JPOS_PS_OFFLINE The device is powered on but is either not ready or not
able to respond to requests. Can only be returned if
CapPowerReporting = JPOS_PR_ADVANCED.

JPOS_PS_OFF_OFFLINE
The device is either off or offline. Can only be returned
if CapPowerReporting = JPOS_PR_STANDARD.

This property is initialized to JPOS_PS_UNKNOWN by the open method. When
PowerNotify is set to enabled and DeviceEnabled is true, then this property is
updated as the Device Service detects power condition changes.

Errors None.

B-62
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
PhysicalDeviceDescription Property R

Type String

Remarks Holds an identifier for the physical device.

A sample returned string is:

“NCR 7192-0184 Printer, Japanese Version”

This property is initialized by the open method.

Errors A JposException may be thrown when this property is accessed. For further
information, see “Exceptions” on page B-12.

PhysicalDeviceName Property R

Type String

Remarks Holds a short name identifying the physical device. This is a short version of
PhysicalDeviceDescription and should be limited to 30 characters.

This property will typically be used to identify the device in an application
message box, where the full description is too verbose. A sample returned string is:

“IBM Model II Printer, Japanese”

This property is initialized by the open method.

Errors A JposException may be thrown when this property is accessed. For further
information, see “Exceptions” on page B-12.

B-63Properties
State Property R

Type int

Remarks Holds the current state of the Device. It has one of the following values:

Value Meaning

JPOS_S_CLOSED The Device is closed.

JPOS_S_IDLE The Device is in a good state and is not busy.

JPOS_S_BUSY The Device is in a good state and is busy performing
output.

JPOS_S_ERROR An error has been reported, and the application must
recover the Device to a good state before normal I/O can
resume.

This property is always readable.

Errors None.

B-64
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Methods

checkHealth Method

Syntax void checkHealth (int level) throws JposException;

The level parameter indicates the type of health check to be performed on the
device. The following values may be specified:

Value Meaning

JPOS_CH_INTERNAL
Perform a health check that does not physically change
the device. The device is tested by internal tests to the
extent possible.

JPOS_CH_EXTERNAL
Perform a more thorough test that may change the
device. For example, a pattern may be printed on the
printer.

JPOS_CH_INTERACTIVE
Perform an interactive test of the device. The supporting
Device Service will typically display a modal dialog box
to present test options and results.

Remarks Tests the state of a device.

A text description of the results of this method is placed in the
CheckHealthText property. The health of many devices can only be determined
by a visual inspection of these test results.

This method is always synchronous.

Errors A JposException may be thrown when this method is invoked. For further
information, see “Exceptions” on page B-12.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

JPOS_E_ILLEGAL The specified health check level is not supported by the
Device Service.

B-65Methods
claim Method

Syntax void claim (int timeout) throws JposException;

The timeout parameter gives the maximum number of milliseconds to wait for
exclusive access to be satisfied. If zero, then immediately either returns (if
successful) or throws an appropriate exception. If JPOS_FOREVER (-1), the
method waits as long as needed until exclusive access is satisfied.

Remarks Requests exclusive access to the device. Many devices require an application to
claim them before they can be used.

When successful, the Claimed property is changed to true.

Errors A JposException may be thrown when this method is invoked. For further
information, see “Exceptions” on page B-12.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

JPOS_E_ILLEGAL This device cannot be claimed for exclusive access, or
an invalid timeout parameter was specified.

JPOS_E_TIMEOUT Another application has exclusive access to the device,
and did not relinquish control before timeout
milliseconds expired.

clearInput Method

Syntax void clearInput () throws JposException;

Remarks Clears all device input that has been buffered.

Any data events or input error events that are enqueued – usually waiting for
DataEventEnabled to be set to true and FreezeEvents to be set to false – are also
cleared.

Errors A JposException may be thrown when this method is invoked. For further
information, see “Exceptions” on page B-12.

B-66
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
clearOutput Method

Syntax void clearOutput () throws JposException;

Remarks Clears all device output that has been buffered. Also, when possible, halts outputs
that are in progress.

Any output error events that are enqueued – usually waiting for FreezeEvents to
be set to false – are also cleared.

Errors A JposException may be thrown when this method is invoked. For further
information, see “Exceptions” on page B-12.

close Method

Syntax void close () throws JposException;

Remarks Releases the device and its resources.

If the DeviceEnabled property is true, then the device is disabled.

If the Claimed property is true, then exclusive access to the device is released.

Errors A JposException may be thrown when this method is invoked. For further
information, see “Exceptions” on page B-12.

B-67Methods
directIO Method

Syntax void directIO (int command, int[] data, Object object) throws JposException;

Parameter Description

command Command number whose specific values are assigned
by the Device Service.

data An array of one modifiable integer whose specific
values or usage vary by command and Device Service.

object Additional data whose usage varies by command and
Device Service.

Remarks Communicates directly with the Device Service.

This method provides a means for a Device Service to provide functionality to the
application that is not otherwise supported by the standard Device Control for its
device category. Depending upon the Device Service’s definition of the command,
this method may be asynchronous or synchronous.

Use of this method will make an application non-portable. The application may,
however, maintain portability by performing directIO calls within conditional
code. This code may be based upon the value of the DeviceServiceDescription,
PhysicalDeviceDescription, or PhysicalDeviceName property.

Errors A JposException may be thrown when this method is invoked. For further
information, see “Exceptions” on page B-12.

B-68
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
open Method

Syntax void open(String logicalDeviceName) throws JposException;

The logicalDeviceName parameter specifies the device name to open.

Remarks Opens a device for subsequent I/O.

The device name specifies which of one or more devices supported by this Device
Control should be used.
In Controls from version 1.4 and prior, The logicalDeviceName must exist in the
Java System Database (JSD) for this device category so that its relationship to the
physical device can be determined. Entries in the JSD are created by a setup or
configuration utility.

In Controls from version 1.5 and beyond, The logicalDeviceName must exist in
the JposEntryRegistry for this device category so that its relationship to the
physical device can be determined. JposEntry objects in the registry are created by
a populator or some configuration utility like the JCL GUI editor.

When this method is successful, it initializes the properties Claimed,
DeviceEnabled, DataEventEnabled and FreezeEvents, as well as descriptions
and version numbers of the JavaPOS software layers. Additional category-specific
properties may also be initialized.

Errors A JposException may be thrown when this method is invoked. For further
information, see “Exceptions” on page B-12.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

JPOS_E_ILLEGAL The Control is already open.

JPOS_E_NOEXIST The specified logicalDeviceName was not found.

JPOS_E_NOSERVICE Could not establish a connection to the corresponding
Device Service.

B-69Methods
release Method

Syntax void release () throws JposException;

Remarks Releases exclusive access to the device.

If the DeviceEnabled property is true, and the device is an exclusive-use device,
then the device is also disabled (this method does not change the device enabled
state of sharable devices).

Errors A JposException may be thrown when this method is invoked. For further
information, see “Exceptions” on page B-12.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

JPOS_E_ILLEGAL The application does not have exclusive access to the
device.

B-70
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Events

DataEvent

Interface jpos.events.DataListener

Method dataOccurred (DataEvent e)

Description Notifies the application that input data is available from the device.

Properties This event contains the following property:

Property Type Description

Status int The input status with its value dependent upon the
device category; it may describe the type or qualities of
the input data.

 Remarks When this event is delivered to the application, the DataEventEnabled property
is changed to false, so that no further data events will be delivered until the
application sets DataEventEnabled back to true. The actual byte array input data
is placed in one or more device-specific properties.

If DataEventEnabled is false at the time that data is received, then the data is
enqueued in an internal buffer, the device-specific input data properties are not
updated, and the event is not delivered. When DataEventEnabled is subsequently
changed back to true, the event will be delivered immediately if input data is
enqueued and FreezeEvents is false.

B-71Events
DirectIOEvent

Interface jpos.events.DirectIOListener

Method directIOOccurred (DirectIOEvent e);

Description Provides Device Service information directly to the application. This event
provides a means for a vendor-specific Device Service to provide events to the
application that are not otherwise supported by the Device Control.

Properties This event contains the following properties:

Property Type Description

EventNumber int Event number whose specific values are assigned by the
Device Service.

Data int Additional numeric data. Specific values vary by the
EventNumber and the Device Service. This property is
settable.

Object Object Additional data whose usage varies by the EventNumber
and the Device Service. This property is settable.

 Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described as part of the JavaPOS standard. Use of this event may
restrict the application program from being used with other vendor’s devices
which may not have any knowledge of the Device Service’s need for this event.

B-72
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
ErrorEvent

Interface jpos.events.ErrorListener

Method errorOccurred (ErrorEvent e);

Description Notifies the application that an error has been detected and a suitable response is
necessary to process the error condition.

Properties This event contains the following properties:

Property Type Description

ErrorCode int Error Code causing the error event. See the list of
ErrorCodes on page 16.

ErrorCodeExtended int Extended Error Code causing the error event. These
values are device category specific.

ErrorLocus int Location of the error. See values below.

ErrorResponse int Error response, whose default value may be overridden
by the application (i.e., this property is settable). See
values below.

The ErrorLocus parameter has one of the following values:

Value Meaning

JPOS_EL_OUTPUT Error occurred while processing asynchronous output.

JPOS_EL_INPUT Error occurred while gathering or processing event-
driven input. No input data is available.

JPOS_EL_INPUT_DATA
Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

The application’s error event listener can set the ErrorResponse property to one of
the following values:

Value Meaning

JPOS_ER_RETRY Retry the asynchronous output. The error state is exited.
May be valid only when locus is JPOS_EL_INPUT.
Default when locus is JPOS_EL_OUTPUT.

JPOS_ER_CLEAR Clear the asynchronous output or buffered input data.
The error state is exited. Default when locus is
JPOS_EL_INPUT.

B-73Events
JPOS_ER_CONTINUEINPUT
Acknowledges the error and directs the Device to
continue input processing. The Device remains in the
error state and will deliver additional DataEvents as
directed by the DataEventEnabled property. When all
input has been delivered and DataEventEnabled is
again set to true, then another ErrorEvent is delivered
with locus JPOS_EL_INPUT.
Use only when locus is JPOS_EL_INPUT_DATA.
Default when locus is JPOS_EL_INPUT_DATA.

Remarks This event is enqueued when an error is detected and the Device’s State transitions
into the error state. This event is not delivered until DataEventEnabled is true, so
that proper application sequencing occurs.

OutputCompleteEvent

Interface jpos.events.OutputCompleteListener

Method outputCompleteOccurred (OutputCompleteEvent e);

Description Notifies the application that the queued output request associated with the
OutputID property has completed successfully.

Properties This event contains the following property:

Property Type Description

OutputID int The ID number of the asynchronous output request that
is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Device
Service has confirmation that is was processed by the device successfully.

B-74
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
StatusUpdateEvent

Interface jpos.events.StatusUpdateListener

Method statusUpdateOccurred (StatusUpdateEvent e);

Description Notifies the application when a device has detected an operation status change.

Properties This event contains the following property:

Property Type Description

Status int Device category-specific status, describing the type of
status change.

Note that Release 1.3 added Power State Reporting with
additional Status values of:

Value Meaning

JPOS_SUE_POWER_ONLINE
The device is powered on and ready for use. Can be
returned if CapPowerReporting =
JPOS_PR_STANDARD or JPOS_PR_ADVANCED.

JPOS_SUE_POWER_OFF
The device is off or detached from the terminal. Can
only be returned if CapPowerReporting =
JPOS_PR_ADVANCED.

JPOS_SUE_POWER_OFFLINE
The device is powered on but is either not ready or not
able to respond to requests. Can only be returned if
CapPowerReporting = JPOS_PR_ADVANCED.

POS_SUE_POWER_OFF_OFFLINE
The device is either off or offline. Can only be returned
if CapPowerReporting = JPOS_PR_STANDARD.

The common property PowerState is also maintained at
the current power state of the device.

Remarks This event is enqueued when a Device needs to alert the application of a device
status change. Examples are a change in the cash drawer position (open vs. closed)
or a change in a POS printer sensor (form present vs. absent).

When a device is enabled, this event may be delivered to inform the application of
the device state. This behavior, however, is not required.

B-75Peripheral Interfaces
Peripheral Interfaces

Note:

The following are two examples of how the proposed sections for each of the
peripheral devices would be constructed. Where possible the tables are
arranged to show the sequence of the commands for proper operation of the
peripheral device.

The Cash Drawer and the MICR devices were chosen because they represent a
simple output device and a more complex input device. The other peripheral
devices would follow similar command usage and flow.

B-76
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
JavaPOS: Cash Drawer
Java Command Examples.

Initializing Properties, Methods, & Events

Capabilities, Assignments and Descriptions Properties, Methods, & Events

OPERATION T

Y

P

E

JAVA SAMPLE R

E

A

D

W

R

I

T

E

A

R

G

S

R

T

N

V

E

X

C

P

Ref
Page

Open * M myCashDrawer.open(LogicalDeviceName.CashDrawer); • 1 void • 48

Claim * M myCashDrawer.claim(1000); • 1 void • 45

Claimed P bResult = myCashDrawer.getClaimed(); • boolean • 34

DeviceEnabled * P myCashDrawer.setDeviceEnabled(true); • 1 - • 37

DeviceEnabled P bResult = myCashDrawer.getDeviceEnabled(); • boolean • 37

DirectIO M myCashDrawer.directIO(100,int[],byte[]) • 3 void • 47

CheckHealth M myCashDrawer.checkHealth(JPOS_CH_INTERNAL); • 1 void • 44

DirectIOEvent E public void directIOOccurred(DirectIOEvent e) 1 CMF 53

StatusUpdateEvent E public void statusUpdateOccurred(StatusUpdateEvent e) 1 CMF 56

CapPowerReporting P iResult = myCashDrawer.getCapPowerReporting(); • int 33

CheckHealthText P sResult = myCashDrawer.getCheckHealthText(); • String • 34

FreezeEvents P myCashDrawer.setFreezeEvents(true); • 1 - • 39

FreezeEvents P bResult = myCashDrawer.getFreezeEvents(); • boolean • 39

PowerNotify P myCashDrawer.setPowerNotify(JPOS_PN_ENABLED); • 1 - • 40

PowerNotify P iResult = myCashDrawer.getPowerNotify(); • int • 40

PowerState P iResult = myCashDrawer.getPowerState(); • int • 41

PhysicalDevice
Description

P sResult = myCashDrawer.getPhysicalDeviceDescription(); • String • 42

PhysicalDevice
Name

P sResult = myCashDrawer.getPhysicalDeviceName(); • String • 42

B-77JavaPOS: Cash Drawer
Cash Drawer Operations Properties, Methods, & Events

Cash Drawer Terminating Methods

Notes:
* Required for basic Cash Drawer operations

OPERATION T

Y

P

E

JAVA SAMPLE R

E

A

D

W

R

I

T

E

A

R

G

S

R

T

N

V

E

X

C

P

Ref
Page

State P iResult = myCashDrawer.getState(); • int 43

DeviceControl

Description

P sResult = myCashDrawer.getDeviceControlDescription(); • String 35

DeviceControl
Version

P iResult = myCashDrawer.getDeviceControlVersion(); • int 36

DeviceService
Description

P sResult = myCashDrawer.getDeviceServiceDescription(); • String • 37

DeviceService
Version

P iResult = myCashDrawer.getDeviceServiceVersion(); • int • 38

CapStatus P bResult = myCashDrawer.getCapStatus(); • boolean • 120

DrawerOpened P myCashDrawer.drawerOpened(); • boolean • 121

OpenDrawer M myCashDrawer.openDrawer(); • void • 122

WaitForDrawerClose M myCashDrawer.waitForDrawerClose(2500, 1000, 10, 5); • 4 void • 122

Release M myCashDrawer.release(); • void • 49

Close * M myCashDrawer.close(); • void • 46

B-78
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
JavaPOS: MICR
Java Command Examples.

Initializing Properties, Methods, & Events

Capabilities, Assignments and Descriptions Properties, Methods, & Events

OPERATION T

Y

P

E

JAVA SAMPLE R

E

A

D

W

R

I

T

E

A

R

G

S

R

T

N

V

E

X

C

P

Ref
Page

Open * M myMicr.open(LogicalDeviceName.MICR); • 1 void • 48

Claim * M myMicr.claim(1000); • 1 void • 45

Claimed P bResult = myMicr.getClaimed(); • boolean • 34

DeviceEnabled * P myMicr.setDeviceEnabled(true); • 1 - • 37

DeviceEnabled P bResult = myMicr.getDeviceEnabled(); • boolean • 37

AutoDisable P myMicr.setAutoDisable(true); • 1 - • 33

AutoDisable P bResult = myMicr.getAutoDisable(); • boolean • 33

DirectIO M myMicr.directIO(100,int[],byte[]) • 3 void • 47

CheckHealth M myMicr.checkHealth(JPOS_CH_INTERNAL); • 1 void • 44

DirectIOEvent E public void directIOOccurred(DirectIOEvent e) 1 CMF 53

ErrorEvent E public void errorOccurred(ErrorEvent e) 1 CMF 54

StatusUpdateEvent E public void statusUpdateOccurred(StatusUpdateEvent e) 1 CMF 56

CapPowerReporting P iResult = myMicr.getCapPowerReporting(); • int 33

CheckHealthText P sResult = myMicr.getCheckHealthText(); • String • 34

DataCount P iResult = myMicr.getDataCount(); • int • 34

FreezeEvents P myMicr.setFreezeEvents(true); • 1 - • 39

FreezeEvents P bResult = myMicr.getFreezeEvents(); • boolean • 39

PowerNotify P myMicr.setPowerNotify(JPOS_PN_ENABLED); • 1 - • 40

PowerNotify P iResult = myMicr.getPowerNotify(); • int • 40

B-79JavaPOS: MICR
OPERATION T

Y

P

E

JAVA SAMPLE R

E

A

D

W

R

I

T

E

A

R

G

S

R

T

N

V

E

X

C

P

Ref
Page

PowerState P iResult = myMicr.getPowerState(); • int • 41

PhysicalDevice

Description

P sResult = myMicr.getPhysicalDeviceDescription(); • String • 42

PhysicalDevice
Name

P sResult = myMicr.getPhysicalDeviceName(); • String • 42

State P iResult = myMicr.getState(); • int 43

DeviceControl
Description

P sResult = myMicr.getDeviceControlDescription(); • String 35

DeviceControl

Version

P iResult = myMicr.getDeviceControlVersion(); • int 36

DeviceService

Description

P sResult = myMicr.getDeviceServiceDescription(); • String • 37

DeviceService
Version

P iResult = myMicr.getDeviceServiceVersion(); • int • 38

B-80
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
MICR Operations Properties, Methods, & Events

MICR Terminating Methods

* Required for basic MICR operations

OPERATION T

Y

P

E

JAVA SAMPLE R

E

A

D

W

R

I

T

E

A

R

G

S

R

T

N

V

E

X

C

P

Ref
Page

CapValidationDevice P bResult = myMicr.getCapValidationDevice(); • boolean • 396

ClearInput M myMicr.clearInput(); • void • 45

DataEventEnabled * P myMicr.setDataEventEnabled(true); • 1 - • 35

DataEventEnabled P bResult = myMicr.getDataEventEnabled(); • boolean • 35

BeginInsertion * M myMicr.beginInsertion(2000); • 1 void • 399

EndInsertion * M myMicr.endInsertion(); • void • 401

DataEvent E public void dataOccurred(DataEvent e) 1 CMF 52

BeginRemoval * M myMicr.beginRemoval(1000); • void • 400

EndRemoval * M myMicr.endRemoval(); • void • 402

RawData P sResult = myMicr.getRawData(); • String • 398

AccountNumber P sResult = myMicr.getAccountNumber(); • String • 395

Amount P sResult = myMicr.getAmount(); • String • 395

BankNumber P sResult = myMicr.getBankNumber(); • String • 395

EPC P sResult = myMicr.getEPC(); • String • 397

SerialNumber P sResult = myMicr.getSerialNumber(); • String • 398

TransitNumber P sResult = myMicr.getTransitNumber(); • String • 398

CheckType P iResult = myMicr.getCheckType(); • int • 396

CountryCode P iResult = myMicr.getCountryCode(); • int • 397

Release M myMicr.release(); • void • 49

Close * M myMicr.close(); • void • 46

B-81Section 3: Technical Details - OPOS and JavaPOS OPOS to JavaPOS - API Mapping Rules
Section 3: Technical Details - OPOS and JavaPOS

The Java for Retail POS (JavaPOS) and OLE for Retail POS (OPOS) industry
standard initiatives are intentionally similar in many respects since the
UnifiedPOS architecture is the basis from which JavaPOS and OPOS
implementations are derived. The most up to date information can be downloaded
from the web site, www.nrf-arts.com under the JavaPOS Standard files section.

Support for Java requires several differences from OPOS in architecture, but the
JavaPOS committee agreed that the general model of OPOS device classes should
be reused as much as possible.

In order to reuse as much of the OPOS device models as possible, the following
sections detail the general mapping rules from OPOS to JavaPOS. A later section
lists the deviations of JavaPOS APIs from OPOS.

OPOS to JavaPOS - API Mapping Rules
In most cases, OPOS APIs may be translated in a mechanical fashion to equivalent
JavaPOS APIs. The exceptions to this mapping are largely due to differences in
some string parameters.

Areas of data mapping include data types, methods and properties, and events.

Data Types
Data types are mapped from OPOS to JavaPOS as follows, with exceptions noted
after the table:

Table 2:

OPOS
Type

JavaPOS
Type

Usage

BOOL boolean Boolean true or false.
BOOL * boolean[1] Modifiable boolean.
LONG int 32-bit integer.
LONG * int[1] Modifiable 32-bit integer.

CURRENCY long
64-bit integer. Used for currency values, with an
assumed 4 decimal places.

CURRENCY * long[1] Modifiable 64-bit integer.
The string types are usually represented with the
following mapping:

BSTR String Text character string.
BSTR * String[1] Modifiable text character string.

For some APIs, the string types are represented in
one of the following:

byte[]
Array of bytes. May be modified, but size of array
cannot be changed. Often used when non-textual
data is possible.

Point[] Array of points. Used by Signature Capture.

Object
An object. This will usually be subclassed to
provide a Device Service-specific parameter for
directIO or DirectIOEvent.

nls (LONG) nls (String) Operating System National Language Data type.

B-82
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
Property & Method Names
Property and method names are mapped from OPOS to JavaPOS as follows:

Table 3:

Type OPOS Examples JavaPOS Examples Mapping Rule

Property
Read

Claimed
DeviceEnabled
OutputID

getClaimed()
getDeviceEnabled()
getOutputID()

Prepend “get” to the property
name to form the property
accessor method.

No parameters.
Return value is the property.

Property
Write

AutoDisable
DeviceEnabled

setAutoDisable(...)
setDeviceEnabled(...)

Prepend “set” to the property
name to form the property
mutator method.

One parameter, which is of the
property's type.
No return value.

Method
Open
CheckHealth
DirectIO

open
checkHealth
directIO

Change first letter to
lowercase.
Other characters are
unchanged.

B-83Section 3: Technical Details - OPOS and JavaPOS OPOS to JavaPOS - API Mapping Rules
Events
JavaPOS events use the Java Development Kit 1.1 event delegation model, where-
by the application registers for events, supplying a class instance that implements
an interface extended from EventListener.

For each Event type which the Application wishes to receive, the Application must
implement the corresponding jpos.events.EventListener interface and handle its
event method. Events are delivered by the JavaPOS Device by calling this event
method.

Constants
Constants are mapped from OPOS to JavaPOS as follows:

• If the constant begins with “OPOS”, then change “OPOS” to “JPOS.”

• Otherwise, make no changes to the constant name.

All constant interface files are available in the package “jpos.” All constants are of
type “static final int.”

B-84
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference
API Deviations
The following OPOS APIs do not follow the above mapping rules:

• BinaryConversion property

Not needed by JavaPOS.

This OPOS property was used to overcome a COM-specific issue with passing
binary data in strings. JavaPOS uses more appropriate types for these cases,
such as byte arrays.

• OpenResult property

Not supported by JavaPOS.

• ResultCode and ResultCodeExtended properties

Not needed by JavaPOS.

These OPOS properties are used for reporting failures on method calls and
property sets. In JavaPOS, these failures (plus property get failures) cause a
JposException. This exception includes the properties ErrorCode and
ErrorCodeExtended, with values that match the OPOS properties.

• ClaimDevice method

In OPOS, this method was introduced in Release 1.5. Previous releases
defined the Claim method.

This method is claim in all releases of JavaPOS.

• ReleaseDevice method

In OPOS, this method was introduced in Release 1.5. Previous releases
defined the Release method.

This method is release in all releases of JavaPOS.

• DirectIO method and DirectIOEvent

The BSTR* parameter is mapped to Object.

• Cash Drawer WaitForDrawerClosed method

The tone function of this method may not work on non-PCs, since it depends
on the availability of a speaker.

• Hard Totals Read method

The BSTR* parameter is mapped to byte[], with its size set to the requested
number of bytes.

• Hard Totals Write method

The BSTR parameter is mapped to byte[].

• MSR Track1Data, Track1DiscretionaryData, Track2Data,
Track2DiscretionaryData, Track3Data properties

These BSTR properties are mapped to byte[].

• Pinpad PromptLanguage property
This LONG property is mapped to String.

• Scanner ScanData and ScanDataLabel properties

These BSTR properties are mapped to byte[].

B-85Section 3: Technical Details - OPOS and JavaPOS API Deviations
• Signature Capture PointArray property

This BSTR property is mapped to Point[].

• Signature Capture RawData property

This BSTR property is mapped to byte[].

• Signature Capture TotalPoints property

Not needed by JavaPOS.

This property is equivalent to “PointArray.length”, so TotalPoints is
redundant.

B-86
UnifiedPOS Retail Peripheral Architecture Appendix B

JavaPOS Implementation Reference

A P P E N D I X C

Change History

Release Version 1.4

Version 1.4 is the first release of the UnifiedPOS standard, and was issued on
February 25, 1999. It derives its release version number from the corresponding
OPOS and JavaPOS standard version numbers 1.4. In an attempt to prevent
confusion, all peripheral device classifications that are present in the version 1.4
standard of OPOS and JavaPOS are “grandfathered” into this first release of
UnifiedPOS standard.

The Chapters that are shown in this standard shall be used as guidelines for future
peripheral device classifications to be included in subsequent versions of the
standards. Therefore, one can be assured that if they have version 1.4 of the
UnifiedPOS standard it will be the basis for the version 1.4 of the OPOS or
JavaPOS standard. This cross-linking of standard version numbers will be
maintained in the future.

Release Version 1.5

Version 1.5 of this specification, issued on September 24, 2000, contains several
new chapters (devices) and updates to existing chapters that provide clarifications
and corrections to Version 1.4. These are detailed below, with links to the
corresponding pages and/or chapters as appropriate.

• Updated the Version and issue date on the front page.

• Updated the Table of Contents to reflect additional chapters and headings.
“Table of Contents” on page i

• Updated the “Table of extensions to UML for UnifiedPOS.” on page 7.

• Updated the Package Diagram. See “Package Diagram” on page 8.

• Added another condition that causes the Device to exit the Error state. See
“The Device exits the Error state when one of the following occurs:” on
page 20.

• Updated the Power State Diagram. See “Power State Diagram” on page 23.

• Updated the Device State Diagram. See “Device State Diagram” on page 27.

• Updated, throughout the specification, the mutability of the DirectIOEvent
attributes Data and Obj to reflect the fact that they are read-write.

C-2
UnifiedPOS Retail Peripheral Architecture Appendix C

Change History
• Updated, throughout the specification, the mutability of the ErrorEvent
attribute ErrorResponse to reflect the fact that it is read-write.

• Updated the case of the first letter of all Properties, and Event Attributes to
uppercase to make consistent throughout the specification.

• Added the Base Control Class Diagram. See “The following diagram shows
the relationships between the Common classes.” on page 32.

• Updated the Event Interfaces Diagram. See “upos::events interfaces” on
page 51.

• Updated the Bump Bar chapter header to remove the “example” status. See
“CHAPTER 2 BUMP BAR” on page 57.

• Updated the Bump Bar Class Diagram. See “Bump Bar Class Diagram” on
page 62.

• Updated the Bump Bar State Diagram. See “Bump Bar State Diagram” on
page 66.

• Added a new chapter describing the Cash Changer, including 1.5 specific
updates. See “CHAPTER 3 Cash Changer” on page 83.

• Added a new chapter describing the Cash Drawer, including 1.5 specific
updates. See “CHAPTER 4 CASH DRAWER” on page 115.

• Added a new chapter describing the CAT, including 1.5 specific updates. See
“CHAPTER 5 CAT - Credit Authorization Terminal” on page 125.

• Added a new chapter describing the MSR. See “CHAPTER 12 MSR -
MAGNETIC STRIPE READER” on page 407.

• Updated the MSR chapter to include Track 4 handling for JIS-II type cards.
See various additions within the MSR chapter.

• Updated the MSR chapter to include a typical usage sequence diagram. See
“MSR Usage Diagram” on page 415.

• Added a new chapter describing the PIN Pad, including 1.5 specific updates.
See “CHAPTER 13 PIN Pad” on page 433.

• Added a new chapter describing the Point Card Reader Writer. See
“CHAPTER 14 POINT CARD READER WRITER” on page 461.

• Added a new chapter describing the POS Power. See “CHAPTER 16 POS
Power” on page 517.

• Added a new chapter describing the POS Printer. See “CHAPTER 17 POS
Printer” on page 535.

• Updated the POS Printer chapter to include “both sides printing” support,
including a new Property, Method, and sequence diagram. See ““Both sides
printing” sequence Diagram” on page 549. See “CapSlpBothSidesPrint
Property Added in Release 1.5” on page 572. See “changePrintSide Method
Added in Release 1.5” on page 603.

• Added a new Appendix describing Hardware References. See “APPENDIX E
Additional Hardware References” on page E-1.

• Made minor typographical and formatting changes as necessary.

C-3 Release Version 1.6
Release Version 1.6

Version 1.6 of this specification, issued on June 25, 2001, contains several new/
completed chapters (not new devices) and updates to existing chapters that
provide updates, clarifications, and corrections to Version 1.5. These are detailed
below, with links to the corresponding pages and/or chapters as appropriate.

• Updated the Version and issue date on the front page.

• Updated the Table of Contents to reflect additional chapters and headings.
“Table of Contents” on page i

• Completed the chapter describing the Coin Dispenser device. See
“CHAPTER 6 COIN DISPENSER” on page 165.

• Completed the chapter describing the Fiscal Printer device. See “CHAPTER
7 FISCAL PRINTER” on page 175.

• Added the CapAdditionalHeader, CapAdditionalTrailer,
CapChangeDue, CapEmptyReceiptIsVoidable,
CapFiscalReceiptStation, CapFiscalReceiptType,
CapMultiContractor, CapOnlyVoidLastItem,
CapPackageAdjustment, CapPostPreLine, CapSetCurrency,
CapTotalizerType, ActualCurrency, AdditionHeader,
AdditionalTrailer, ChangeDue, ContractorId, DateType,
FiscalReceiptStation, FiscalReceiptType, MessageType, PostLine,
PreLine, and TotalizerType properties.

• Changed the descriptions of the following properties to indicate that
initialization takes place when the device is first enabled following the
open method call:
CountryCode, ErrorOutID, PrinterState, QuantityDecimalPlaces, and
QuantityLength.

• Added the setCurrency, printRecCash, printRecItemFuel,
printRecItemFuelVoid, printRecPackageAdjustment,
printRecPackageAdjustVoid, printRecRefundVoid,
printRecSubtotalAdjustVoid, and printRecTaxID methods.

• Added country support for Bulgaria and Romania.

• Many updates in the General Information section.

• Clarified the description of the CapPositiveAdjustment property.

• Updated the CountryCode, DayOpened, and DescriptionLength
properties to reflect additions to the specification.

• Updated the endFiscalReceipt, getData, getDate, printRecItem,
printRecMessage, printRecNotPaid, printRecRefund,
printRecSubtotal, printRecSubtotalAdjustment, printRecTotal,
printRecVoid, printRecVoidItem, printZReport, and setHeaderLine
methods to reflect additions to the specification.

• Updated ErrorEvent to reflect additions to the specification.

• Completed the chapter describing the Hard Totals device. See “CHAPTER 8
HARD TOTALS” on page 319.

C-4
UnifiedPOS Retail Peripheral Architecture Appendix C

Change History
• Completed the chapter describing the Keylock device. See “CHAPTER 9
KEYLOCK” on page 341.

• Completed the chapter describing the Line Display device. See “CHAPTER
10 LINE DISPLAY” on page 349.

• Added CapBlinkRate, CapCursorType, CapCustomGlyph,
CapReadBack, CapReverse, BlinkRate, CursorType,
CustomGlyphList, GlyphHeight, and GlyphWidth properties.

• Added defineGlyph and readCharacterAtCursor methods.

• Updated the displayText and displayTextAt methods to support new
attributes for reverse video, DISP_DT_REVERSE and
DISP_DT_BLINK_REVERSE.

• Completed the chapter describing the MICR device. See “CHAPTER 11
MICR - MAGNETIC INK CHARACTER RECOGNITION READER” on
page 387.

• Completed the chapter describing the POS Keyboard device. See “CHAPTER
15 POS KEYBOARD” on page 507.

• Completed the chapter describing the Remote Operator Display device. See
“CHAPTER 18 REMOTE ORDER DISPLAY” on page 637.

• Completed the chapter describing the Scale device. See “CHAPTER 19
SCALE” on page 679.

• Changed the descriptions of the following properties to indicate that
initialization takes place when the device is first enabled following the
open method call:
SalesPrice, TareWeight, and UnitPrice.

• Completed the chapter describing the Scanner device. See “CHAPTER 20
SCANNER (BAR CODE READER)” on page 697.

• Completed the chapter describing the Signature Capture device. See
“CHAPTER 21 SIGNATURE CAPTURE” on page 711.

• Completed the chapter describing the Tone Indicator device. See “CHAPTER
22 TONE INDICATOR” on page 727.

• Changed the descriptions of the following properties to indicate that
initialization takes place when the device is first enabled following the
open method call:
AsyncMode, InterToneWait, Tone1Duration, Tone1Pitch, Tone1Volume,
Tone2Duration, Tone2Pitch, and Tone2Volume.

• Reformatted the Tables in the Summary sections of each chapter and included
the original version in which the Properties, Methods, and Events were
supported.

• Moved Appendices A, B, & C to be Appendices C, D, & E to make room for
the OPOS and JavaPOS Appendices. See “APPENDIX C Change History” on
page C-1, “APPENDIX D Additional Software References” on page D-1, and
also “APPENDIX E Additional Hardware References” on page E-1.

A P P E N D I X D

Additional Software References

This appendix contains a list of additional material that may prove helpful for the
understanding of the UnifiedPOS software environment.

UML References

The following additional is a list of additional material that may prove helpful for
the understanding of the Unified Modeling Language which is used for the basis
of peripheral device modeling in this standard. They are listed in alphabetical
order and not according to a ranking on usefulness.

Web Location References

Official On-line UML Documentation at:

http://www.rational.com/uml/resources/documentation/

Object Management Group at:

http://www.omg.org

Reading Material References

1) [Booch98] Booch, G. et al, Unified Modeling Language User Guide, Addisson
Wesley Longman, Inc., 1998, ISBN 0201571684

2) Eriksson, H. and Penker, M., UML Toolkit, John Wiley & Sons, Inc., 1997,
ISBN 0471191612

3) Fowler, M. and Scott, K., UML Distilled: Applying the Standard Object
Modeling Language, Addisson Wesley Longman, Inc., 1997, ISBN 0201325632

4) Harmon, P. and Watson, M., Understanding UML: The Developer’s Guide,
Morgan Kaufmann Pubs., Inc., 1997, ISBN 1558604650

5) Muller, P., Instant UML, Wrox Press Ltd., 1997, ISBN 1861000871

6) Quatrani, T., foreword by Booch, G., Visual Modeling with Rational Rose &
UML, Addison Wesley Longman, Inc., 1997, ISBN 0201310163

7) Rumbaugh, J. et al, The Unified Modeling Language Reference Manual,
Addisson Wesley Longman, Inc., 1998, ISBN 020130998X

http://www.rational.com/uml/resources/documentation/
http://www.omg.org

D-2
UnifiedPOS Retail Peripheral Architecture Appendix D

Additional Software References
8) Si Alhir, S., UML In a Nutshell, O’Reilly & Associates, Inc., 1998, ISBN
1565924487

9) Warmer, J. and Kleppe, A., The Object Constraint Language: Precise
Modeling with UML, Addisson Wesley Longman, Inc., 1998, ISBN 0201379406

A P P E N D I X E

Additional Hardware References

This appendix contains a list of additional material that may prove helpful for the
understanding of the UnifiedPOS hardware environment.

USB PlusPower Connector
Web Location References

Official On-line Documentation for the USB PlusPower connector is available at:

http://www.eia.org

Reading Material References

1) EIA-700BAAD, Detail Specification for Shielded Rectangular Connector(s)
For Universal Serial Bus PlusPower Connector(s) Type “A”, EIA Engineering
Publications Office, 2500 Wilson Boulevard, Arlington, Virginia, 22201.

http://www.eia.org

E-2
UnifiedPOS Retail Peripheral Architecture Appendix E

Additional Hardware References

	Table of Contents
	Introduction and Architecture UnifiedPOS Architecture for Retail
	What Is UnifiedPOS?
	Goals
	Dependencies
	UnifiedPOS Relationship to OPOS and JavaPOS
	Who Should Read This Document

	Architectural Overview
	Architectural Components
	Use of UML
	Data Types

	Device Behavior Models
	Introduction to Properties, Methods, and Events
	Properties (UML Attributes)
	Methods (UML Operations)
	Events (UML Interfaces)

	Device Initialization and Finalization
	Initialization
	Finalization
	Summary

	Device Sharing Model
	Exclusive-Use Devices
	Sharable Devices

	Events
	Errors
	Error Codes
	Extended Error Code

	Device Input Model
	Device Output Models
	Synchronous Output
	Asynchronous Output

	Device Power Reporting Model
	Model
	Power State Diagram
	Power Properties
	Power Reporting Requirements for DeviceEnabled

	Device States
	Device State Diagram

	Version Handling

	Chapter 1 Common Properties, Methods, and Events
	Summary
	General Information
	Properties (UML attributes)
	AutoDisable Property
	CapPowerReporting Property
	CheckHealthText Property
	Claimed Property
	DataCount Property
	DataEventEnabled Property
	DeviceControlDescription Property
	DeviceControlVersion Property
	DeviceEnabled Property
	DeviceServiceDescription Property
	DeviceServiceVersion Property
	FreezeEvents Property
	OutputID Property
	PowerNotify Property
	PowerState Property
	PhysicalDeviceDescription Property
	PhysicalDeviceName Property
	State Property

	Methods (UML operations)
	checkHealth Method
	claim Method
	clearInput Method
	clearOutput Method
	close Method
	directIO Method
	open Method
	release Method

	Events (UML interfaces)
	DataEvent
	DirectIOEvent
	ErrorEvent
	OutputCompleteEvent
	StatusUpdateEvent

	Chapter 2 Bump Bar
	Summary
	General Information
	Bump Bar Class Diagram
	Bump Bar State Diagram

	Properties (UML attributes)
	AsyncMode Property
	AutoToneDuration Property
	AutoToneFrequency Property
	BumpBarDataCount Property
	CapTone Property
	CurrentUnitID Property
	DataCount Property
	ErrorString Property
	ErrorUnits Property
	EventString Property
	EventUnitID Property
	EventUnits Property
	Keys Property
	Timeout Property
	UnitsOnline Property

	Methods (UML operations)
	bumpBarSound Method
	checkHealth Method (Common)
	clearInput Method (Common)
	clearOutput Method (Common)
	setKeyTranslation Method

	Events (UML interfaces)
	DataEvent
	DirectIOEvent
	ErrorEvent
	OutputCompleteEvent
	StatusUpdateEvent

	Chapter 3 Cash Changer
	Summary
	General Information
	Capabilities
	CashChanger Class Diagram
	Cash Changer State Diagram

	Properties (UML attributes)
	AsyncMode Property
	AsyncResultCode Property
	AsyncResultCodeExtended Property
	CapDeposit Property Added in Release 1.5
	CapDepositDataEvent Property Added in Release 1.5
	CapDiscrepancy Property
	CapEmptySensor Property
	CapFullSensor Property
	CapNearEmptySensor Property
	CapNearFullSensor Property
	CapPauseDeposit Property Added in Release 1.5
	CapRepayDeposit Property Added in Release 1.5
	CurrencyCashList Property
	CurrencyCode Property
	CurrencyCodeList Property
	CurrentExit Property
	DepositAmount Property Added in Release 1.5
	DepositCashList Property Added in Release 1.5
	DepositCodeList Property Added in Release 1.5
	DepositCounts Property Added in Release 1.5
	DepositStatus Property Added in Release 1.5
	DeviceExits Property
	DeviceStatus Property
	ExitCashList Property
	FullStatus Property

	Methods (UML operations)
	beginDeposit Method Added in Release 1.5
	dispenseCash Method
	dispenseChange Method
	endDeposit Method Added in Release 1.5
	fixDeposit Method Added in Release 1.5
	pauseDeposit Method Added in Release 1.5
	readCashCounts Method

	Events (UML interfaces)
	DataEvent Added in Release 1.5
	DirectIOEvent
	StatusUpdateEvent

	Chapter 4 Cash Drawer
	Summary
	General Information
	Capabilities
	Cash Drawer Class Diagram

	Properties (UML attributes)
	CapStatus Property
	CapStatusMultiDrawerDetect Property Added in Release 1.5
	DrawerOpened Property

	Methods (UML operations)
	openDrawer Method
	waitForDrawerClose Method

	Events (UML interfaces)
	DirectIOEvent
	StatusUpdateEvent

	Chapter 5 CAT - Credit Authorization Terminal
	Summary
	General Information
	Description of terms
	Capabilities
	CAT Class Diagram
	Model
	Device Sharing
	CAT State Diagram

	Properties (UML attributes)
	AccountNumber Property
	AdditionalSecurityInformation Property
	ApprovalCode Property
	AsyncMode Property
	CapAdditionalSecurityInformation Property
	CapAuthorizeCompletion Property
	CapAuthorizePreSales Property
	CapAuthorizeRefund Property
	CapAuthorizeVoid Property
	CapAuthorizeVoidPreSales Property
	CapCenterResultCode Property
	CapCheckCard Property
	CapDailyLog Property
	CapInstallments Property
	CapPaymentDetail Property
	CapTaxOthers Property
	CapTransactionNumber Property
	CapTrainingMode Property
	CardCompanyID Property
	CenterResultCode Property
	DailyLog Property
	PaymentCondition Property
	PaymentDetail Property
	PaymentMedia Property Added in Release 1.5
	SequenceNumber Property
	SlipNumber Property
	TrainingMode Property
	TransactionNumber Property
	TransactionType Property

	Methods (UML operations)
	accessDailyLog Method
	authorizeCompletion Method
	authorizePreSales Method
	authorizeRefund Method
	authorizeSales Method
	authorizeVoid Method
	authorizeVoidPreSales Method
	checkCard Method

	Events (UML interfaces)
	DirectIOEvent
	ErrorEvent
	OutputCompleteEvent
	StatusUpdateEvent

	Chapter 6 Coin Dispenser
	Summary
	General Information
	Coin Dispenser Class Diagram

	Properties (UML attributes)
	CapEmptySensor Property
	CapJamSensor Property
	CapNearEmptySensor Property
	DispenserStatus Property

	Methods (UML operations)
	dispenseChange Method

	Events (UML interfaces)
	DirectIOEvent
	StatusUpdateEvent

	Chapter 7 Fiscal Printer
	Summary
	General Information
	Fiscal Printer Class Diagram
	General Requirements
	Fiscal Printer Modes
	Model
	Error Model
	Device Sharing
	Fiscal Printer State Diagram
	Fiscal Printer States
	Fiscal Printer PrinterState Diagram
	Document Printing
	Ordering of Fiscal Receipt Print Requests
	Fiscal Receipt Layouts
	Example of a fiscal receipt
	Totalizers and Fiscal Memory
	Counters
	VAT Tables
	Receipt Duplication
	Currency amounts, percentage amounts, VAT rates, and quantity amounts
	Currency Change

	Properties (UML attributes)
	ActualCurrency Property Added in Release 1.6
	AdditionalHeader Property Added in Release 1.6
	AdditionalTrailer Property Added in Release 1.6
	AmountDecimalPlaces Property
	AsyncMode Property
	CapAdditionalHeader Property Added in Release 1.6
	CapAdditionalLines Property
	CapAdditionalTrailer Property Added in Release 1.6
	CapAmountAdjustment Property
	CapAmountNotPaid Property
	CapChangeDue Property Added in Release 1.6
	CapCheckTotal Property
	CapCoverSensor Property
	CapDoubleWidth Property
	CapDuplicateReceipt Property
	CapEmptyReceiptIsVoidable Property Added in Release 1.6
	CapFiscalReceiptStation Property Added in Release 1.6
	CapFiscalReceiptType Property Added in Release 1.6
	CapFixedOutput Property
	CapHasVatTable Property
	CapIndependentHeader Property
	CapItemList Property
	CapJrnEmptySensor Property
	CapJrnNearEndSensor Property
	CapJrnPresent Property
	CapMultiContractor Property Added in Release 1.6
	CapNonFiscalMode Property
	CapOnlyVoidLastItem Property Added in Release 1.6
	CapOrderAdjustmentFirst Property
	CapPackageAdjustment Property Added in Release 1.6
	CapPercentAdjustment Property
	CapPositiveAdjustment Property
	CapPostPreLine Property Added in Release 1.6
	CapPowerLossReport Property
	CapPredefinedPaymentLines Property
	CapReceiptNotPaid Property
	CapRecEmptySensor Property
	CapRecNearEndSensor Property
	CapRecPresent Property
	CapRemainingFiscalMemory Property
	CapReservedWord Property
	CapSetCurrency Property Added in Release 1.6
	CapSetHeader Property
	CapSetPOSID Property
	CapSetStoreFiscalID Property
	CapSetTrailer Property
	CapSetVatTable Property
	CapSlpEmptySensor Property
	CapSlpFiscalDocument Property
	CapSlpFullSlip Property
	CapSlpNearEndSensor Property
	CapSlpPresent Property
	CapSlpValidation Property
	CapSubAmountAdjustment Property
	CapSubPercentAdjustment Property
	CapSubtotal Property
	CapTotalizerType Property Added in Release 1.6
	CapTrainingMode Property
	CapValidateJournal Property
	CapXReport Property
	ChangeDue Property Added in Release 1.6
	CheckTotal Property
	ContractorId Property Added in Release 1.6
	CountryCode Property Updated in Release 1.6
	CoverOpen Property
	DateType Property Added in Release 1.6
	DayOpened Property Updated in Release 1.6
	DescriptionLength Property Updated in Release 1.6
	DuplicateReceipt Property
	ErrorLevel Property
	ErrorOutID Property Updated in Release 1.6
	ErrorState Property
	ErrorStation Property
	ErrorString Property
	FiscalReceiptStation Property Added in Release 1.6
	FiscalReceiptType Property Added in Release 1.6
	FlagWhenIdle Property
	JrnEmpty Property
	JrnNearEnd Property
	MessageLength Property
	MessageType Property Added in Release 1.6
	NumHeaderLines Property
	NumTrailerLines Property
	NumVatRates Property
	PostLine Property Added in Release 1.6
	PredefinedPaymentLines Property
	PreLine Property Added in Release 1.6
	PrinterState Property Updated in Release 1.6
	QuantityDecimalPlaces Property Updated in Release 1.6
	QuantityLength Property Updated in Release 1.6
	RecEmpty Property
	RecNearEnd Property
	RemainingFiscalMemory Property
	ReservedWord Property
	SlpEmpty Property
	SlpNearEnd Property
	SlipSelection Property
	TotalizerType Property Added in Release 1.6
	TrainingModeActive Property

	Methods (UML operations)
	beginFiscalDocument Method Updated in Release 1.6
	beginFiscalReceipt Method Updated in Release 1.6
	beginFixedOutput Method
	beginInsertion Method
	beginItemList Method
	beginNonFiscal Method
	beginRemoval Method
	beginTraining Method
	clearError Method
	endFiscalDocument Method
	endFiscalReceipt Method Updated in Release 1.6
	endFixedOutput Method
	endInsertion Method
	endItemList Method
	endNonFiscal Method
	endRemoval Method
	endTraining Method
	getData Method Updated in Release 1.6
	getDate Method Updated in Release 1.6
	getTotalizer Method Updated in Release 1.6
	getVatEntry Method
	printDuplicateReceipt Method
	printFiscalDocumentLine Method
	printFixedOutput Method
	printNormal Method
	printPeriodicTotalsReport Method
	printPowerLossReport Method
	printRecCash Method Added in Release 1.6
	printRecItem Method Updated in Release 1.6
	printRecItemAdjustment Method Updated in Release 1.6
	printRecItemFuel Method Added in Release 1.6
	printRecItemFuelVoid Method Added in Release 1.6
	printRecMessage Method Updated in Release 1.6
	printRecNotPaid Method Updated in Release 1.6
	printRecPackageAdjustment Method Added in Release 1.6
	printRecPackageAdjustVoid Method Added in Release 1.6
	printRecRefund Method Updated in Release 1.6
	printRecRefundVoid Method Added in Release 1.6
	printRecSubtotal Method Updated in Release 1.6
	printRecSubtotalAdjustment Method Updated in Release 1.6
	printRecSubtotalAdjustVoid Method Added in Release 1.6
	printRecTaxID Method Added in Release 1.6
	printRecTotal Method Updated in Release 1.6
	printRecVoid Method Updated in Release 1.6
	printRecVoidItem Method Updated in Release 1.6
	printReport Method
	printXReport Method
	printZReport Method Updated in Release 1.6
	resetPrinter Method
	setCurrency Method Added in Release 1.6
	setDate Method
	setHeaderLine Method Updated in Release 1.6
	setPOSID Method
	setStoreFiscalID Method
	setTrailerLine Method
	setVatTable Method
	setVatValue Method
	verifyItem Method

	Events (UML interfaces)
	DirectIOEvent
	ErrorEvent Updated in Release 1.6
	OutputCompleteEvent
	StatusUpdateEvent

	Chapter 8 Hard Totals
	Summary
	General Information
	Hard Totals Class Diagram

	Properties (UML attributes)
	CapErrorDetection Property
	CapSingleFile Property
	CapTransactions Property
	FreeData Property
	NumberOfFiles Property
	TotalsSize Property
	TransactionInProgress Property

	Methods (UML operations)
	beginTrans Method
	claim Method (Common)
	claimFile Method
	commitTrans Method
	create Method
	delete Method
	find Method
	findByIndex Method
	read Method
	recalculateValidationData Method
	release Method (Common)
	releaseFile Method
	rename Method
	rollback Method
	setAll Method
	validateData Method
	write Method

	Events (UML interfaces)
	DirectIOEvent
	StatusUpdateEvent

	Chapter 9 Keylock
	Summary
	General Information
	Keylock Class Diagram

	Properties (UML attributes)
	KeyPosition Property
	PositionCount Property

	Methods (UML operations)
	waitForKeylockChange Method

	Events (UML interfaces)
	DirectIOEvent
	StatusUpdateEvent

	Chapter 10 Line Display
	Summary
	General Information
	Line Display Class Diagram

	Properties (UML attributes)
	BlinkRate Property Added in Release 1.6
	CapBlink Property
	CapBlinkRate Property Added in Release 1.6
	CapBrightness Property
	CapCharacterSet Property Updated in Release 1.5
	CapCursorType Property Added in Release 1.6
	CapCustomGlyph Property Added in Release 1.6
	CapDescriptors Property
	CapHMarquee Property
	CapICharWait Property
	CapReadBack Property Added in Release 1.6
	CapReverse Property Added in Release 1.6
	CapVMarquee Property
	CharacterSet Property Updated in Release 1.5
	CharacterSetList Property
	Columns Property
	CurrentWindow Property Updated in Release 1.6
	CursorColumn Property
	CursorRow Property
	CursorType Property Added in Release 1.6
	CursorUpdate Property
	CustomGlyphList Property Added in Release 1.6
	DeviceBrightness Property
	DeviceColumns Property
	DeviceDescriptors Property
	DeviceRows Property
	DeviceWindows Property
	GlyphHeight Property Added in Release 1.6
	GlyphWidth Property Added in Release 1.6
	InterCharacterWait Property
	MarqueeFormat Property
	MarqueeRepeatWait Property
	MarqueeType Property
	MarqueeUnitWait Property
	Rows Property

	Methods (UML operations)
	clearDescriptors Method
	clearText Method
	createWindow Method Updated in Release 1.6
	defineGlyph Method Added in Release 1.6
	destroyWindow Method
	displayText Method Updated in Release 1.6
	displayTextAt Method Updated in Release 1.6
	readCharacterAtCursor Method Added in Release 1.6
	refreshWindow Method
	scrollText Method
	setDescriptor Method

	Events (UML interfaces)
	DirectIOEvent
	StatusUpdateEvent

	Chapter 11 MICR - Magnetic Ink Character Recognition Reader
	Summary
	General Information
	MICR Class Diagram
	MICR Character Substitution

	Properties (UML attributes)
	AccountNumber Property
	Amount Property
	BankNumber Property
	CapValidationDevice Property
	CheckType Property
	CountryCode Property
	EPC Property
	RawData Property
	SerialNumber Property
	TransitNumber Property

	Methods (UML operations)
	beginInsertion Method
	beginRemoval Method
	endInsertion Method
	endRemoval Method

	Events (UML interfaces)
	DataEvent
	DirectIOEvent
	ErrorEvent
	StatusUpdateEvent

	Chapter 12 MSR - Magnetic Stripe Reader
	Summary
	General Information
	MSR Class Diagram
	MSR State Diagrams
	MSR Usage Diagram

	Properties (UML attributes)
	AccountNumber Property
	CapISO Property
	CapJISOne Property
	CapJISTwo Property
	CapTransmitSentinels Property Added in Release 1.5
	DecodeData Property
	ErrorReportingType Property
	ExpirationDate Property
	FirstName Property
	MiddleInitial Property
	ParseDecodeData Property
	ServiceCode Property
	Suffix Property
	Surname Property
	Title Property
	Track1Data Property
	Track1DiscretionaryData Property
	Track2Data Property
	Track2DiscretionaryData Property
	Track3Data Property
	Track4Data Property Added in Release 1.5
	TracksToRead Property Updated in Release 1.5
	TransmitSentinels Property Added in Release 1.5

	Events (UML interfaces)
	DataEvent
	DirectIOEvent
	ErrorEvent
	StatusUpdateEvent

	Chapter 13 PIN Pad
	Summary
	General Information
	Capabilities
	PIN Pad Class Diagram
	Feature Not Supported
	Note on Terminology
	Model
	Device Sharing
	PIN Pad State Diagram

	Properties (UML attributes)
	AccountNumber Property
	AdditionalSecurityInformation Property
	Amount Property
	AvailableLanguagesList Property
	AvailablePromptsList Property
	CapDisplay Property
	CapKeyboard Property
	CapLanguage Property
	CapMACCalculation Property
	CapTone Property
	EncryptedPIN Property
	MaximumPINLength Property
	MerchantID Property
	MinimumPINLength Property
	PINEntryEnabled Property
	Prompt Property
	PromptLanguage Property
	TerminalID Property
	Track1Data Property
	Track2Data Property
	Track3Data Property
	Track4Data Property Added in Release 1.5
	TransactionType Property

	Methods (UML operations)
	beginEFTTransaction Method
	computeMAC Method
	enablePINEntry Method
	endEFTTransaction Method
	updateKey Method
	verifyMAC Method

	Events (UML interfaces)
	DataEvent
	DirectIOEvent
	ErrorEvent
	StatusUpdateEvent

	Chapter 14 Point Card Reader Writer
	Summary
	General Information
	Capabilities
	Point Card Reader Writer Class Diagram
	Model
	Input Model
	Output Model
	Card Insertion Diagram
	Printing Capability
	Cleaning Capability
	Initialization of Magnetic Stripe Data
	Device Sharing
	Data Characters and Escape Sequences
	Point Card Reader Writer State Diagram

	Properties (UML Attributes)
	CapBold Property
	CapCardEntranceSensor Property
	CapCharacterSet Property
	CapCleanCard Property
	CapClearPrint Property
	CapDhigh Property
	CapDwide Property
	CapDwideDhigh Property
	CapItalic Property
	CapLeft90 Property
	CapPrint Property
	CapPrintMode Property
	CapRight90 Property
	CapRotate180 Property
	CapTracksToRead Property
	CapTracksToWrite Property
	CardState Property
	CharacterSet Property
	CharacterSetList Property
	FontTypefaceList Property
	LineChars Property
	LineCharsList Property
	LineHeight Property
	LineSpacing Property
	LineWidth Property
	MapMode Property
	MaxLine Property
	PrintHeight Property
	ReadState1 Property
	ReadState2 Property
	RecvLength1 Property
	RecvLength2 Property
	SidewaysMaxChars Property
	SidewaysMaxLines Property
	TracksToRead Property
	TracksToWrite Property
	Track1Data Property
	Track2Data Property
	Track3Data Property
	Track4Data Property
	Track5Data Property
	Track6Data Property
	WriteState1 Property
	WriteState2 Property
	Write1Data Property
	Write2Data Property
	Write3Data Property
	Write4Data Property
	Write5Data Property
	Write6Data Property

	Methods (UML operations)
	beginInsertion Method
	beginRemoval Method
	cleanCard Method
	clearPrintWrite Method
	endInsertion Method
	endRemoval Method
	printWrite Method
	rotatePrint Method
	validateData Method

	Events (UML Interfaces)
	DataEvent
	DirectIOEvent
	ErrorEvent
	OutputCompleteEvent
	StatusUpdateEvent

	Chapter 15 POS Keyboard
	Summary
	General Information
	POS Keyboard Class Diagram

	Properties (UML attributes)
	CapKeyUp Property
	EventTypes Property
	POSKeyData Property
	POSKeyEventType Property

	Events (UML interfaces)
	DataEvent
	DirectIOEvent
	ErrorEvent
	StatusUpdateEvent

	Chapter 16 POS Power
	Summary
	General Information
	Capabilities
	Device Sharing
	Model
	POSPower Class Diagram
	POSPower State Diagram
	POSPower PowerState Diagram - part 1
	POSPower PowerState Diagram - part 2
	POSPower PowerState Diagram - part 3
	POSPower State chart Diagram for fan and temperature

	Properties (UML attributes)
	CapFanAlarm Property
	CapHeatAlarm Property
	CapQuickCharge Property
	CapShutdownPOS Property
	CapUPSChargeState Property
	EnforcedShutdownDelayTime Property
	PowerFailDelayTime Property
	QuickChargeMode Property
	QuickChargeTime Property
	UPSChargeState Property

	Methods (UML operations)
	shutdownPOS Method

	Events (UML Interfaces)
	DirectIOEvent
	StatusUpdateEvent

	Chapter 17 POS Printer
	Summary
	General Information
	Capabilities
	POS Printer Class Diagram
	POS Printer Class Diagram - Version 1.5 Updates
	Model
	Device Sharing
	POS Printer State Diagram
	“Both sides printing” sequence Diagram
	Data Characters and Escape Sequences

	POS Printer State Diagrams (Low Level)
	Properties (UML attributes)
	AsyncMode Property
	CapCharacterSet Property Updated in Release 1.5
	CapConcurrentJrnRec Property
	CapConcurrentJrnSlp Property
	CapConcurrentRecSlp Property
	CapCoverSensor Property
	CapJrn2Color Property
	CapJrnBold Property
	CapJrnCartridgeSensor Property Added in Release 1.5
	CapJrnColor Property Added in Release 1.5
	CapJrnDhigh Property
	CapJrnDwide Property
	CapJrnDwideDhigh Property
	CapJrnEmptySensor Property
	CapJrnItalic Property
	CapJrnNearEndSensor Property
	CapJrnPresent Property
	CapJrnUnderline Property
	CapRec2Color Property
	CapRecBarCode Property
	CapRecBitmap Property
	CapRecBold Property
	CapRecCartridgeSensor Property Added in Release 1.5
	CapRecColor Property Added in Release 1.5
	CapRecDhigh Property
	CapRecDwide Property
	CapRecDwideDhigh Property
	CapRecEmptySensor Property
	CapRecItalic Property
	CapRecLeft90 Property
	CapRecMarkFeed Property Added in Release 1.5
	CapRecNearEndSensor Property
	CapRecPapercut Property
	CapRecPresent Property
	CapRecRight90 Property
	CapRecRotate180 Property
	CapRecStamp Property
	CapRecUnderline Property
	CapSlp2Color Property
	CapSlpBarCode Property
	CapSlpBitmap Property
	CapSlpBold Property
	CapSlpBothSidesPrint Property Added in Release 1.5
	CapSlpCartridgeSensor Property Added in Release 1.5
	CapSlpColor Property Added in Release 1.5
	CapSlpDhigh Property
	CapSlpDwide Property
	CapSlpDwideDhigh Property
	CapSlpEmptySensor Property
	CapSlpFullslip Property
	CapSlpItalic Property
	CapSlpLeft90 Property
	CapSlpNearEndSensor Property
	CapSlpPresent Property
	CapSlpRight90 Property
	CapSlpRotate180 Property
	CapSlpUnderline Property
	CapTransaction Property
	CartridgeNotify Property Added in Release 1.5
	CharacterSet Property Updated in Release 1.5
	CharacterSetList Property
	CoverOpen Property
	ErrorLevel Property
	ErrorStation Property
	ErrorString Property
	FlagWhenIdle Property
	FontTypefaceList Property
	JrnCartridgeState Property Added in Release 1.5
	JrnCurrentCartridge Property Added in Release 1.5
	JrnEmpty Property
	JrnLetterQuality Property
	JrnLineChars Property
	JrnLineCharsList Property
	JrnLineHeight Property
	JrnLineSpacing Property
	JrnLineWidth Property
	JrnNearEnd Property
	MapMode Property
	RecBarCodeRotationList Property
	RecCartridgeState Property Added in Release 1.5
	RecCurrentCartridge Property Added in Release 1.5
	RecEmpty Property
	RecLetterQuality Property
	RecLineChars Property
	RecLineCharsList Property
	RecLineHeight Property
	RecLineSpacing Property
	RecLinesToPaperCut Property
	RecLineWidth Property
	RecNearEnd Property
	RecSidewaysMaxChars Property
	RecSidewaysMaxLines Property
	RotateSpecial Property
	SlpBarCodeRotationList Property
	SlpCartridgeState Property Added in Release 1.5
	SlpCurrentCartridge Property Added in Release 1.5
	SlpEmpty Property
	SlpLetterQuality Property
	SlpLineChars Property
	SlpLineCharsList Property
	SlpLineHeight Property
	SlpLinesNearEndToEnd Property.
	SlpLineSpacing Property
	SlpLineWidth Property
	SlpMaxLines Property
	SlpNearEnd Property
	SlpPrintSide Property Added in Release 1.5
	SlpSidewaysMaxChars Property
	SlpSidewaysMaxLines Property

	Methods (UML operations)
	beginInsertion Method
	beginRemoval Method
	changePrintSide Method Added in Release 1.5
	cutPaper Method
	endInsertion Method
	endRemoval Method
	markFeed Method Added in Release 1.5
	printBarCode Method
	printBitmap Method
	printImmediate Method
	printNormal Method
	printTwoNormal Method
	rotatePrint Method
	setBitmap Method
	setLogo Method
	transactionPrint Method
	validateData Method

	Events (UML interfaces)
	DirectIOEvent
	ErrorEvent
	OutputCompleteEvent
	StatusUpdateEvent

	Chapter 18 Remote Order Display
	Summary
	General Information
	Remote Order Display Class Diagram

	Properties (UML attributes)
	AsyncMode Property
	AutoToneDuration Property
	AutoToneFrequency Property
	CapSelectCharacterSet Property
	CapTone Property
	CapTouch Property
	CapTransaction Property
	CharacterSet Property Updated in Release 1.5
	CharacterSetList Property
	Clocks Property
	CurrentUnitID Property
	DataCount Property (Common)
	ErrorString Property
	ErrorUnits Property
	EventString Property
	EventType Property
	EventUnitID Property
	EventUnits Property
	SystemClocks Property
	SystemVideoSaveBuffers Property
	Timeout Property
	UnitsOnline Property
	VideoDataCount Property
	VideoMode Property
	VideoModesList Property
	VideoSaveBuffers Property

	Methods (UML operations)
	checkHealth Method (Common)
	clearInput Method (Common)
	clearOutput Method (Common)
	clearVideo Method
	clearVideoRegion Method
	controlClock Method
	controlCursor Method
	copyVideoRegion Method
	displayData Method
	drawBox Method
	freeVideoRegion Method
	resetVideo Method
	restoreVideoRegion Method
	saveVideoRegion Method
	selectCharacterSet Method
	setCursor Method
	transactionDisplay Method
	updateVideoRegionAttribute Method
	videoSound Method

	Events (UML interfaces)
	DataEvent
	DirectIOEvent
	ErrorEvent
	OutputCompleteEvent
	StatusUpdateEvent

	Chapter 19 Scale
	Summary
	General Information
	Scale Class Diagram

	Properties (UML attributes)
	AsyncMode Property Added in Release 1.3
	CapDisplay Property
	CapDisplayText Property Added in Release 1.3
	CapPriceCalculating Property Added in Release 1.3
	CapTareWeight Property Added in Release 1.3
	CapZeroScale Property Added in Release 1.3
	MaxDisplayTextChars Property Added in Release 1.3
	MaximumWeight Property
	SalesPrice Property Added in Release 1.3/Updated in Release 1.6
	TareWeight Property Added in Release 1.3/Updated in Release 1.6
	UnitPrice Property Added in Release 1.3/Updated in Release 1.6
	WeightUnit Property

	Methods (UML operations)
	displayText Method Added in Release 1.3
	readWeight Method
	zeroScale Method Added in Release 1.3

	Events (UML interfaces)
	DataEvent Added in Release 1.3
	DirectIOEvent
	ErrorEvent Added in Release 1.3
	StatusUpdateEvent Added in Release 1.3

	Chapter 20 Scanner (Bar Code Reader)
	Summary
	General Information
	Scanner Class Diagram

	Properties (UML attributes)
	DecodeData Property
	ScanData Property
	ScanDataLabel Property
	ScanDataType Property

	Events (UML interfaces)
	DataEvent
	DirectIOEvent
	ErrorEvent
	StatusUpdateEvent

	Chapter 21 Signature Capture
	Summary
	General Information
	Signature Capture Class Diagram

	Properties (UML attributes)
	CapDisplay Property
	CapRealTimeData Property
	CapUserTerminated Property
	DeviceEnabled Property (Common)
	MaximumX Property
	MaximumY Property
	PointArray Property
	RawData Property
	RealTimeDataEnabled Property

	Methods (UML operations)
	beginCapture Method
	endCapture Method

	Events (UML interfaces)
	DataEvent
	DirectIOEvent
	ErrorEvent
	StatusUpdateEvent

	Chapter 22 Tone Indicator
	Summary
	General Information
	Tone Indicator Class Diagram

	Properties (UML attributes)
	AsyncMode Property Updated in Release 1.6
	CapPitch Property
	CapVolume Property
	InterToneWait Property Updated in Release 1.6
	Tone1Duration Property Updated in Release 1.6
	Tone1Pitch Property Updated in Release 1.6
	Tone1Volume Property Updated in Release 1.6
	Tone2Duration Property Updated in Release 1.6
	Tone2Pitch Property Updated in Release 1.6
	Tone2Volume Property Updated in Release 1.6

	Methods (UML operations)
	sound Method Updated in Release 1.6
	soundImmediate Method

	Events (UML interfaces)
	DirectIOEvent
	ErrorEvent
	OutputCompleteEvent
	StatusUpdateEvent

	Appendix A OLE for Retail POS — OPOS Implementation Reference
	What Is “OLE for Retail POS?”
	Who Should Read This Section
	General OLE for Retail POS Control Model
	OPOS Definitions
	Device Class
	Control Object or CO
	Service Object or SO
	OPOS Control or Control

	How an Application Uses an OPOS Control
	When Methods and Properties May Be Accessed
	Methods
	Properties

	Status, Result Code, and State Model
	Status Model
	Result Code Model
	State Model

	Device Sharing Model
	Exclusive-Use Devices
	Sharable Devices

	Events
	Input Model
	Output Model
	Synchronous Output
	Asynchronous Output

	Device Power Reporting Model
	Model
	Properties
	Power Reporting Requirements for DeviceEnabled

	OPOS Component Descriptions
	Section 1: OPOS Data Types
	Section 2: OPOS Interface Descriptions
	OPOS Common Properties, Methods, and Events
	Properties
	AutoDisable Property R/W Added in Release 1.2
	BinaryConversion Property R/W Added in Release 1.2
	CapPowerReporting Property Added in Release 1.3
	CheckHealthText Property
	Claimed Property
	ControlObjectDescription Property
	ControlObjectVersion Property
	DataCount Property Added in Release 1.2
	DataEventEnabled Property R/W
	DeviceDescription Property
	DeviceEnabled Property R/W
	DeviceName Property
	FreezeEvents Property R/W
	OpenResult Property Added in Release 1.5
	OutputID Property
	PowerNotify Property R/W Added in Release 1.3
	PowerState Property Added in Release 1.3
	ResultCode Property
	ResultCodeExtended Property
	ServiceObjectDescription Property
	ServiceObjectVersion Property
	State Property

	Methods
	CheckHealth Method
	ClaimDevice Method Added in Release 1.5
	ClearInput Method
	ClearOutput Method
	Close Method
	DirectIO Method
	Open Method
	ReleaseDevice Method Added in Release 1.5

	Events
	DataEvent Event
	DirectIOEvent Event
	ErrorEvent Event
	OutputCompleteEvent Event
	StatusUpdateEvent Event

	Peripheral Interfaces
	OPOS: Cash Drawer
	Visual Basic Command Examples.
	Initializing Properties, Methods, & Events
	Capabilities, Assignments and Descriptions Properties, Methods, & Events
	Cash Drawer Operations Properties & Methods
	Terminating Methods
	Visual C++ Command Examples.
	Initializing Properties, Methods, & Events
	Capabilities, Assignments and Descriptions Properties, Methods, & Events
	Cash Drawer Operations Properties & Methods
	Terminating Methods

	OPOS: MICR
	Visual Basic Command Examples.
	Initializing Properties, Methods, & Events
	Capabilities, Assignments and Descriptions Properties, Methods, & Events
	MICR Operations Properties, Methods, & Events
	Terminating Methods
	Visual C++ Command Examples.
	Initializing Properties, Methods, & Events
	Capabilities, Assignments and Descriptions Properties, Methods, & Events
	MICR Operations Properties, Methods, & Events
	Terminating Methods

	Section 3: OPOS Registry Usage
	Section 4: OPOS Application Header Files
	Section 5: Technical Details
	System Strings (BSTR)
	System Strings and Binary Data

	Section 6: Release 1.5 API Change: ClaimDevice and ReleaseDevice

	Appendix B Java for Retail POS — JavaPOS Implementation Reference
	What Is Java for Retail POS?
	Benefits
	Dependencies
	Relationship to OPOS
	Who Should Read This Section
	Appendix Overview
	Architectural Overview
	Architectural Components

	Device Behavior Models
	Introduction to Properties, Methods, and Events
	Device Initialization and Finalization
	Initialization
	Finalization
	Summary

	Device Sharing Model
	Exclusive-Use Devices
	Sharable Devices

	Data Types
	Exceptions
	ErrorCode
	ErrorCodeExtended

	Events
	Registering for Events
	Event Delivery

	Device Input Model
	Device Output Models
	Synchronous Output
	Asynchronous Output

	Device Power Reporting Model
	Model
	Properties
	Power Reporting Requirements for DeviceEnabled

	Device States
	Threads
	Version Handling

	Classes and Interfaces
	Synopsis
	Application
	Device Control
	Device Service
	Helper Classes

	Sample Class and Interface Hierarchies
	Application Sample
	Device Control Sample
	Device Service Sample

	Sample Application Code
	Package Structure
	jpos
	jpos.events
	jpos.services

	Device Controls
	Device Control Responsibilities
	Device Service Management
	jpos.config/loader (JCL) and JavaPOS Entry Registry (JER)
	jpos.config/loader (JCL) Characteristics

	Property and Method Forwarding
	Event Handling
	Event Listeners and Event Delivery
	Event Callbacks

	Device Control Version Handling

	Device Services
	Device Service Responsibilities
	Property and Method Processing
	Event Generation
	Physical Device Access
	API Mapping Rules

	JavaPOS Component Descriptions
	Section 1: JavaPOS Data Types
	Data Types

	Section 2: JavaPOS Interface Descriptions
	JavaPOS Common Properties, Methods, and Events
	Properties
	AutoDisable Property R/W
	CapPowerReporting Property R Added in Release 1.3
	CheckHealthText Property R
	Claimed Property R
	DataCount Property R
	DataEventEnabled Property R/W
	DeviceControlDescription Property R
	DeviceControlVersion Property R
	DeviceEnabled Property R/W
	DeviceServiceDescription Property R
	DeviceServiceVersion Property R
	FreezeEvents Property R/W
	OutputID Property R
	PowerNotify Property R/W Added in Release 1.3
	PowerState Property R Added in Release 1.3
	PhysicalDeviceDescription Property R
	PhysicalDeviceName Property R
	State Property R

	Methods
	checkHealth Method
	claim Method
	clearInput Method
	clearOutput Method
	close Method
	directIO Method
	open Method
	release Method

	Events
	DataEvent
	DirectIOEvent
	ErrorEvent
	OutputCompleteEvent
	StatusUpdateEvent

	Peripheral Interfaces
	JavaPOS: Cash Drawer
	Java Command Examples.
	Initializing Properties, Methods, & Events
	Capabilities, Assignments and Descriptions Properties, Methods, & Events
	Cash Drawer Operations Properties, Methods, & Events
	Cash Drawer Terminating Methods

	JavaPOS: MICR
	Java Command Examples.
	Initializing Properties, Methods, & Events
	Capabilities, Assignments and Descriptions Properties, Methods, & Events
	MICR Operations Properties, Methods, & Events
	MICR Terminating Methods

	Section 3: Technical Details - OPOS and JavaPOS
	OPOS to JavaPOS - API Mapping Rules
	Data Types
	Property & Method Names
	Events
	Constants

	API Deviations

	Appendix C Change History
	Release Version 1.4
	Release Version 1.5
	Release Version 1.6

	Appendix D Additional Software References
	UML References

	Appendix E Additional Hardware References
	USB PlusPower Connector

