
UnifiedPOS

UnifiedPOS Retail Peripheral
Architecture

Version 1.5 September 24, 2000

International Standard

For Implementation of Point Of Service Peripherals

UnifiedPOS Technical Committee Members:

Epson, Fujitsu-ICL Systems, IBM, JC Penney, Microsoft, NCR,
PCMS Datafit, Research Computer Services, Sears Roebuck and Co.,
Sun Microsystems, Wincor-Nixdorf GmbH.

Information regarding the activities of the UnifiedPOS committee can
be viewed at the following web site:

http://www.nrf-arts.org

UnifiedPOS

UnifiedPOS Retail Peripheral Architecture

Information in this document is subject to change without notice.

JavaPOS is a trademark of Sun Microsystems, Inc.
Windows is a trademark of Microsoft Corporation.
Epson is a trademark of Seiko Epson Corporation.

http://www.nrf-arts.org
http://www.nrf-arts.org

i

Table of Contents

INTRODUCTION AND ARCHITECTURE
UNIFIEDPOS ARCHITECTURE FOR RETAIL .. 1

WHAT IS UNIFIEDPOS? ... 1

GOALS .. 2
DEPENDENCIES ... 2
UNIFIEDPOS RELATIONSHIP TO OPOS AND JAVAPOS ... 2
WHO SHOULD READ THIS DOCUMENT .. 3

ARCHITECTURAL OVERVIEW ... 4

ARCHITECTURAL COMPONENTS ... 4
USE OF UML .. 5
DATA TYPES ... 8

DEVICE BEHAVIOR MODELS .. 9

INTRODUCTION TO PROPERTIES, METHODS, AND EVENTS 9
DEVICE INITIALIZATION AND FINALIZATION ... 11
DEVICE SHARING MODEL .. 13
EVENTS ... 14
ERRORS .. 15

Error Codes ... 15
DEVICE INPUT MODEL ... 17
DEVICE OUTPUT MODELS .. 20
DEVICE POWER REPORTING MODEL .. 21

Power State Diagram ... 22
DEVICE STATES .. 25

Device State Diagram .. 26
VERSION HANDLING .. 27

CHAPTER 1
COMMON PROPERTIES, METHODS, AND EVENTS 29

SUMMARY .. 29
GENERAL INFORMATION .. 31
PROPERTIES (UML ATTRIBUTES) .. 33
METHODS (UML OPERATIONS) ... 44
EVENTS (UML INTERFACES) ... 50

CHAPTER 2
BUMP BAR ... 57

SUMMARY .. 57
GENERAL INFORMATION .. 61

Bump Bar Class Diagram .. 62
Bump Bar State Diagram ... 66

PROPERTIES (UML ATTRIBUTES) .. 67
METHODS (UML OPERATIONS) ... 73
EVENTS (UML INTERFACES) ... 78

ii
UnifiedPOS Retail Peripheral Architecture
CHAPTER 3
CASH CHANGER .. 83

SUMMARY .. 83
GENERAL INFORMATION .. 87

CashChanger Class Diagram .. 88
Cash Changer State Diagram .. 93

PROPERTIES (UML ATTRIBUTES) .. 95
METHODS (UML OPERATIONS) .. 105
EVENTS (UML INTERFACES) ... 112

CHAPTER 4
CASH DRAWER .. 115

SUMMARY .. 115
GENERAL INFORMATION .. 118
PROPERTIES (UML ATTRIBUTES) .. 119
METHODS (UML OPERATIONS) ... 121
EVENTS (UML INTERFACES) ... 122

CHAPTER 5
CAT - CREDIT AUTHORIZATION TERMINAL .. 125

SUMMARY .. 125
GENERAL INFORMATION .. 129

CAT Class Diagram ... 131
CAT State Diagram .. 136

PROPERTIES (UML ATTRIBUTES) .. 137
METHODS (UML OPERATIONS) ... 154
EVENTS (UML INTERFACES) ... 162

CHAPTER 6
COIN DISPENSER ... 167

GENERAL INFORMATION .. 167

CHAPTER 7
FISCAL PRINTER ... 169

GENERAL INFORMATION .. 169
PROPERTIES (UML ATTRIBUTES) .. 170

CHAPTER 8
HARD TOTALS ... 171

GENERAL INFORMATION .. 171

CHAPTER 9
KEYLOCK .. 173

GENERAL INFORMATION .. 173

CHAPTER 10
LINE DISPLAY .. 175

GENERAL INFORMATION .. 175
PROPERTIES (UML ATTRIBUTES) .. 176

iii
CHAPTER 11
MICR - MAGNETIC INK CHARACTER RECOGNITION READER 179

GENERAL INFORMATION .. 179

CHAPTER 12
MSR - MAGNETIC STRIPE READER .. 181

SUMMARY .. 181
GENERAL INFORMATION .. 185

MSR Class Diagram .. 186
MSR State Diagrams .. 188
MSR Usage Diagram ... 190

PROPERTIES (UML ATTRIBUTES) .. 191
EVENTS (UML INTERFACES) ... 202

CHAPTER 13
PIN PAD .. 207

SUMMARY .. 207
GENERAL INFORMATION .. 211

PINPad Class Diagram ... 212
Feature Not Supported ... 213
PINPad State Diagram .. 216

PROPERTIES (UML ATTRIBUTES) .. 217
METHODS (UML OPERATIONS) ... 228
EVENTS (UML INTERFACES) ... 232

CHAPTER 14
POINT CARD READER WRITER .. 235

SUMMARY .. 235
GENERAL INFORMATION .. 240

Point Card Reader Writer Class Diagram .. 241
Data Characters and Escape Sequences ... 247
Point Card Reader Writer State Diagram ... 249

PROPERTIES (UML ATTRIBUTES) .. 250
METHODS (UML OPERATIONS) .. 269
EVENTS (UML INTERFACES) .. 277

CHAPTER 15
POS KEYBOARD ... 281

GENERAL INFORMATION .. 281

CHAPTER 16
POS POWER ... 283

SUMMARY .. 283
GENERAL INFORMATION .. 286

POSPower Class Diagram .. 288
POSPower State Diagram ... 289
POSPower PowerState Diagram - part 1 .. 290
POSPower PowerState Diagram - part 2 .. 291
POSPower PowerState Diagram - part 3 .. 292
POSPower State chart Diagram for fan and temperature 293

iv
UnifiedPOS Retail Peripheral Architecture
PROPERTIES (UML ATTRIBUTES) .. 294
METHODS (UML OPERATIONS) ... 298
EVENTS (UML INTERFACES) .. 299

CHAPTER 17
POS PRINTER .. 301

SUMMARY .. 301
GENERAL INFORMATION .. 307

POS Printer Class Diagram .. 308
Model ... 310
POS Printer State Diagram ... 314
“Both sides printing” sequence Diagram .. 315
Data Characters and Escape Sequences ... 316
POS Printer State Diagrams (Low Level) ... 319

PROPERTIES (UML ATTRIBUTES) .. 324
METHODS (UML OPERATIONS) ... 367
EVENTS (UML INTERFACES) ... 397

CHAPTER 18
REMOTE ORDER DISPLAY ... 403

GENERAL INFORMATION .. 403
PROPERTIES (UML ATTRIBUTES) .. 404

CHAPTER 19
SCALE ... 405

GENERAL INFORMATION .. 405

CHAPTER 20
SCANNER (BAR CODE READER) ... 407

GENERAL INFORMATION .. 407

CHAPTER 21
SIGNATURE CAPTURE .. 409

GENERAL INFORMATION .. 409

CHAPTER 22
TONE INDICATOR ... 411

GENERAL INFORMATION .. 411

APPENDIX A
CHANGE HISTORY ... A-1

RELEASE VERSION 1.4 ... A-1
RELEASE VERSION 1.5 ... A-1

APPENDIX B
ADDITIONAL SOFTWARE REFERENCES ... B-1

UML REFERENCES ... B-1

APPENDIX C
ADDITIONAL HARDWARE REFERENCES ... C-1

USB PLUSPOWER CONNECTOR .. C-1

What Is UnifiedPOS?
UnifiedPOS is the acronym for Unified Point of Service. It is an architectural
specification for application interfaces to point-of-service devices that are used in
the retail environment. This standard is both operating system independent and
language neutral and defines:

• An architecture for application interface to retail devices.

• A set of retail device behaviors sufficient to support a range of POS solutions.

The UnifiedPOS standard will include:

• The UnifiedPOS Retail Peripheral Architecture overview.

• Text descriptions of the interface to the functions of the device.

• UML terminology and diagrams for each new device category, to describe:

• Relationships between classes/interfaces and objects in the system.

• Basis for creating C++, Java, IDL or other OO technology to implement the
UML design.

The UnifiedPOS standard will not include:

• Specific language API specifications.

• Complete software components. Hardware providers or third-party providers
develop and distribute these components.

• Certification mechanism; this must be handled by individual language
standard committees (such as the OPOS and JavaPOS committees).

I N T R O D U C T I O N A N D A R C H I T E C T U R E

UnifiedPOS Architecture for Retail

2
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Goals
The goals of UnifiedPOS are to provide:

• Common device architecture that is international and extends across vendors,
platforms, and retail format.

• Standards for application to device interfaces in an operating system
independent and language neutral manner.

• Reduced implementation costs for vendors to support multiple (for example,
Windows/COM and Java) platforms because they share the same architecture.
This should produce speed to market for innovation.

• An environment avoiding competition between standards while encouraging
competition among implementations.

Dependencies
Success of the goals of UnifiedPOS depends upon platform specific standard
committees (such as JavaPOS and OLE for Retail POS (OPOS) technical
committees) to advance the architecture into platform specific documentation,
API definitions and implementations.

The specific technical implementations require:

• Platform specific Programmer’s Guide.

• Source files, including:

• Definition files. Various interface and class files described in the
standard.

• Example files. These will include a set of sample Control classes, to
illustrate the interface presented to an application.

UnifiedPOS Relationship to OPOS and JavaPOS
The UnifiedPOS specification will formalize and document the underlying retail
device architecture, currently shared by both the JavaPOS and OPOS standards,
in an operating system independent and language neutral manner. The first
release of the UnifiedPOS Specification was Version 1.4.

Both the JavaPOS v1.4 and OPOS v1.4 standards are established as conformant
platform mappings of the UnifiedPOS specification. JavaPOS will be recognized
as the only UnifiedPOS conformant, operating system neutral, Java language
mapping. OPOS will be recognized as the only UnifiedPOS conformant
language neutral COM mapping. Future UnifiedPOS mappings to platforms
other than Java and COM will not be excluded however.

This acceptance of the existing standards is based on their close conformance to a
common design model. Historically, the OPOS standards provided device
interfaces for Win32-based terminals using ActiveX technologies. The OPOS
standard was used as the starting point for JavaPOS, due to:

3What Is UnifiedPOS?: Who Should Read This Document
• Similar purposes. Both standards involved developing device interfaces for
a segment of the software community.

• Reuse of device models. The majority of the OPOS documentation specifies
the properties, methods, events, and constants used to model device behavior.
These behaviors are in large part independent of programming language.

• Reduced learning curve. Many application and hardware vendors are
already familiar with using and implementing the OPOS APIs.

Therefore, retail application developers and Service writers can continue to write
their code in conformance with one or both of the JavaPOS or OPOS
specifications, with assurance that such development meets the UnifiedPOS
standard.

Who Should Read This Document
The UnifiedPOS Architecture is targeted to the standard committees that will
provide the language specific mapping and Programmer’s Guides. However, the
application developer who will use POS devices, the system developer who will
write POS device code, and the suppliers of POS devices for retail may be
interested in the device characteristics as portrayed in this document.

This guide assumes that the standard committee member is familiar with the
following:

• General characteristics of POS peripheral devices.

• UnifiedPOS terminology and architecture.

• UML for reading the design.

4
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Architectural Overview
UnifiedPOS defines a multi-layered architecture in which a POS Application
interacts with the Physical or Logical Device through the UnifiedPOS Control
layer.

Architectural Components
The POS Application (or Application) is an Application that uses one or more
UnifiedPOS devices.

UnifiedPOS Devices are divided into categories called Device Categories, such
as Cash Drawer and POS Printer.

Each UnifiedPOS Device is a combination of these components:

• Control for a device category. The Control class provides the interface
between the Application and the device category. It contains no graphical
component and is therefore invisible at runtime.

The Control has been designed so that all implementations of a device cate-
gory’s control will be compatible. Therefore, the Control can be developed
independently of the Service for the same device category (they can even be
developed by different companies).

 POS Application

 UnifiedPOS Control

 UnifiedPOS Service

 Physical (or logical) Device

UnifiedPOS Device

5Architectural Overview: Use of UML
• Service, which is a component called by the Control through the Service
Interface. The Service is used by the Control to implement UnifiedPOS-
prescribed functionality for a Physical Device. It can also call special event
methods provided by the Control to deliver events to the Application.

A set of Service classes can be implemented to support Physical Devices with
multiple Device Categories.

The Application manipulates the Physical Device (the hardware unit or
peripheral) by calling the platform specific APIs which conform to the
UnifiedPOS standard. Some Physical Devices support more than one device
category. For example, some POS Printers include a Cash Drawer kickout, and
some Bar Code Scanners include an integrated Scale. However with
UnifiedPOS, an application treats each of these device categories as if it were an
independent Physical Device. The UnifiedPOS Device standard developer is
responsible for presenting the peripheral in this way.

Note: Occasionally, a Device may be implemented in software with no user-
exposed hardware, in which case it is called a Logical Device.

Use of UML
The UnifiedPOS standard includes the use of UML terminology and diagrams to
define device categories. Following is a brief description of the extensions to
UML to make it better fit the UnifiedPOS architecture (this extension is expected
and allowed by the UML, see Booch98 reference in the “UML References” on
page B-1).

Should any discrepancies exist between the UML diagrams and the specification
text, then the text takes precedence.

6
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Table of extensions to UML for UnifiedPOS.

Name
Applies to UML

Symbol
Meaning

<<capability>> Class attribute
stereotype which flags the attribute as a
UnifiedPOS capability

<<prop>> Class attribute
stereotype which flags the attribute as a
UnifiedPOS property

<<event>> Class

stereotype to indicate that the class/
interface will be mapped to a UnifiedPOS
event which in turn is mapped to a JavaPOS
event class or a COM event for OPOS

exclusive-use Class

constraint that indicates this device service
or service object follows the exclusive-use
behavior defined in the UnifiedPOS
documentation in section “Exclusive-Use
Devices” on page 13.

sharable Class

constraint that indicates this device service
or service object follows the sharable
behavior defined in the UnifiedPOS
documentation in section “Sharable
Devices” on page 13.

read-only

read-write
Class attribute

constraint that indicates the mutability of
the attribute. For example, in JavaPOS,
read-only attributes translate to having a
getter method for the attribute and read-
write attributes have getter and setter
methods for attributes.

 access after

<open>|

<open-claim>|

<open-enable>|

<open-claim-enable>

Class attribute

constraint that indicates this attribute is
accessible when the service is in the state
indicated. For example {access after
opened-claim-enable} indicates that the
attribute is accessible when the service has
been opened, claimed and enabled in the
order indicated.

raises-exception Class operation

constraint that indicates this method can
throw an exception if the implementation
language supports exception; otherwise,
some mechanism is used to notify the
application that an invalid condition
occurred. A value is returned to indicate the
error.

 use after

<open>|

<open-claim>|

<open-enable>|

<open-claim-enable>

Class operation

constraint that indicates this operation is
accessible when the service is in the state
indicated. For example {use after open-
claim-enable} indicates that the method is
accessible when the service has been
opened, claimed and enabled in the order
indicated.

7Architectural Overview: Use of UML
Package Diagram

UnifiedPOS uses Static Structure Diagrams to define common interfaces.

Note: This package diagram is included to give some logical structure to the
interfaces in the UnifiedPOS interfaces UML diagrams. Some implementations
may have a corresponding equivalence for the packages and some may not. Also,
note that the name ‘upos’ may be replaced by an implementation specific prefix
(eg. JavaPOS uses Java packages and maps the prefix ‘upos’ to ‘jpos’).

upos events

(from upos)

8
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Data Types
UnifiedPOS uses textual references to data types which will be defined for
specific language usage:

For Java:
The convention of type[1] (an array of size 1) is used to pass a modifiable basic
type. This is required since Java’s primitive types, such as int and boolean, are
passed by value, and its primitive wrapper types, such as Integer and Boolean,
do not support modification. For strings and arrays, do not use a null value to
report no information. Instead use an empty string (““) or an empty array (zero
length). In some chapters, an integer may contain a “bit-wise mask”. That is, the
integer data may be interpreted one or more bits at a time. The individual bits are
numbered beginning with Bit 0 as the least significant bit.

UnifiedPOS JavaPOS OPOS UML UnifiedPOS text Usage
boolean boolean BOOL in

boolean
Boolean true or false.

boolean by
reference

boolean[1] BOOL* inout
boolean

Modifiable boolean.

binary byte[] BSTR in binary Array of bytes. Binary byte array,
may not be modified.

binary by
reference

byte[] BSTR* inout
binary

Array of bytes. May be modified,
but size of array cannot be changed.
Binary byte array by reference.

int32 int LONG in int32 32-bit integer.
int32 by
reference

int[1] LONG* inout
int32

Modifiable 32-bit integer.

currency long CURRENCY
or CY

in
currency

64-bit integer. Sometimes used for
currency values, where 4 decimal
places are implied. For example, if
the integer is “1234567”, then the
currency value is “123.4567”. See
footnotea

a. Six decimal place precision is required for all computation in conversion between curren-
cies but is not required for the representation of the solution.

currency by
reference

long[1] CURRENCY*
or CY*

inout
currency

64-bit integer by reference.

string String BSTR in string Text character string.
string by
reference

String[1] BSTR* inout
string

String by reference. Modifiable text
character string.

array of
points

Point[] BSTR inout
point[]

Array of points. Used by Signature
Capture.

object Object BSTR* inout
object

An object. This will usually be
subclassed to provide a Service-
specific parameter.

nls String LONG in nls Operating System National
Language data type.

9Device Behavior Models: Introduction to Properties, Methods, and Events
Device Behavior Models
Introduction to Properties, Methods, and Events

An application accesses a POS Device via platform specific APIs.

The three elements of UnifiedPOS standard for APIs are:

• Properties. Properties are device characteristics or settings. A type is
associated with each property, such as boolean or string. An application may
retrieve a property’s value, and it may set a writable property’s value.

• Methods. An application calls a method to perform or initiate some activity
at a device. Some methods require parameters of specified types for sending
and/or returning additional information.

• Events. A Device implementation may call back into the application via
events. The application must specifically register for each event type that it
needs to receive.

Properties (UML Attributes)
Note: For each interface a UML listing of the properties and methods of the
interface will be included in a table. The properties are indicated as attributes.
The generic UML naming pattern for attributes is the following:

visibility Name: type-expression = default-value { property-string }

where:

visibility in this document is always public for application visible interfaces but is
not explicitly shown.

Name is the name of the attribute

type-expression is the type of the attribute, which is one of UnifiedPOS types
defined in section “Data Types” on page 8.

default-value1 the default value of the attributes in UML, (optional)

property-string property value to apply to the element. For attributes, we define
two such strings: read-only and read-write, which indicates the mutability of the
attribute.

An example of a property attribute is as follows:

DeviceEnabled: boolean { read-write }

1.Not used by UnifiedPOS standard

10
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Methods (UML Operations)
The generic UML pattern for methods is the following:

visibility name (parameter-list): return-type-expr { property string }

where:

parameter - list is a comma separated list of formal parameters using the
following generic UML naming pattern:

kind name: type-expression (= default-value)2

where:

kind is either: ‘in’, ‘out’, or ‘inout’ with the default set to ‘in’ if absent

property-string is a property string to apply to the element. For methods an
additional property string called ‘raises-exception’ is defined which means that
this method can throw the exception if the implementation language supports
exception; otherwise, some mechanism is used to notify the application that an
invalid condition occurred.

An example of a method operation is as follows:

open (logicalDeviceName: string): void { raises-exception }

Events (UML Interfaces)
Events are being modeled as UML classes which will possibly contain attributes
stereotyped with the event stereotype. The generic UML pattern for events is a
UML box with the stereotype <<event>> (class diagram) with the event name
and a list of the properties. This representation is different from Properties and
Methods.

where:
XxxEvent stands for the UnifiedPOS event name and the second
compartment of the box would contain a list of attributes for the event.

2.default-value is not used by the UnifiedPOS standard

 << event >>
 XxxEvent

11Device Behavior Models: Device Initialization and Finalization
Device Initialization and Finalization
Initialization
The first actions that an application must take to use a Device are:

• Obtain a reference to a Control,

• Prepare Control for the events that the application needs to receive, if
necessary.

To initiate activity with the Physical Device, an application calls the Control’s
open method:

The logicalDeviceName parameter specifies a logical device to associate with the
Device. The open method performs the following steps:

• Creates and initializes an instance of the proper Service class for the specified
name.

• Initializes many of the properties, including the descriptions and version
numbers of the Device.

More than one instance of a Control may have a Physical Device open at the same
time. Therefore, after the Device is opened, an application might need to call the
claim method to gain exclusive access to it. Claiming the Device ensures that
other Control instances do not interfere with the use of the Device. An
application can release the Device to share it with another Control instance– for
example, at the end of a transaction.

Before using the Device, an application must set the DeviceEnabled property to
true. This value brings the Physical Device to an operational state, while false
disables it. For example, if a Scanner Device is disabled, the Physical Device will
be put into its non-operational state (when possible). Whether physically
operational or not, any input is discarded until the Device is enabled.

Finalization
After an application finishes using the Physical Device, it should call the close
method. If the DeviceEnabled property is true, close disables the Device. If the
Claimed property is true, close releases the claim on the device.

Before exiting, an application should close all open Devices to free device
resources in a timely manner.

12
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Summary
In general, an application follows this general sequence to open, use, and close a
Device:

Obtain a Control reference.

Prepare for events if necessary.

Call the open method to instantiate a Service and link it to the Control.

Call the claim method to gain exclusive access to the Physical
Device. Required for exclusive-use Devices; optional for some
sharable Devices. (See “Device Sharing Model” on page 13 for more
information).

Set the DeviceEnabled property to true to make the Physical
Device operational. (For sharable Devices, the Device may be
enabled without first claiming it.)

Use the device.

Set the DeviceEnabled property to false to disable the Physical
Device.

Call the release method to release exclusive access to the Physical
Device.

Call the close method to unlink the Service from the Control.

Release events receipt if necessary

Remove the reference to the Control

13Device Behavior Models: Device Sharing Model
Device Sharing Model
Devices fall into two sharing categories:

• Devices that are to be used exclusively by one Control instance.

• Devices that may be partially or fully shared by multiple Control instances.

Any Physical Device may be open by more than one Control instance at a time.
However, activities that an application can perform with a Control may be
restricted to the Control instance that has claimed access to the Physical Device.

Exclusive-Use Devices
The most common device type is called an exclusive-use device. An example is
the POS printer. Due to physical or operational characteristics, an exclusive-use
device can only be used by one Control at a time. An application must call the
Device’s claim method to gain exclusive access to the Physical Device before
most methods, properties, or events are legal. Until the Device is claimed and
enabled, calling methods or accessing properties may cause a failure condition to
occur.

An application may in effect share an exclusive-use device by calling the
Control’s claim method before a sequence of operations, and then calling the
release method when the device is no longer needed. While the Physical Device
is released, another Control instance can claim it.

When an application calls the claim method again (assuming it did not perform
the sequence of close method followed by open method on the device), some
settable device characteristics are restored to their condition at the release.
Examples of restored characteristics are the line display’s brightness, the MSR’s
tracks to read, and the printer’s characters per line. However, state characteristics
are not restored, such as the printer’s sensor properties. Instead, these are updated
to their current values.

Sharable Devices
Some devices are sharable devices. An example is the keylock. A sharable
device allows multiple Control instances to call its methods and access its
properties. Also, it may deliver its events to multiple Controls. A sharable device
may still limit access to some methods or properties to the Control that has
claimed it, or it may deliver some events only to the Control that has claimed it.

14
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Events
UnifiedPOS architecture uses events to inform the application of various
activities or changes with the Device. The five event types follow.

The Service must enqueue these events on an internally created and managed
queue. All events are delivered in a first-in, first-out manner. (The only exception
is that a special input error event is delivered early if some data events are also
enqueued. See “Device Input Model” on page 17.) Events are delivered by an
internally created and managed Service thread. The Service causes event delivery
by calling an event firing callback method in the Control, which then delivers the
event to the application.

The following conditions cause event delivery to be delayed until the condition is
corrected:

• The application has set the property FreezeEvents to true.

• The event type is a DataEvent or an input ErrorEvent, but the property
DataEventEnabled is false. (See “Device Input Model” on page 17.)

Rules for event queue management are:

• The Device may only enqueue new events while the Device is enabled.

• The Device delivers enqueued events until the application calls the release
method (for exclusive-use devices) or the close method (for any device), at
which time any remaining events are deleted.

• For input devices, the clearInput method clears data and input error events.

• For output devices, the clearOutput method clears data and output error
events.

Event Class Description
Supported When A

Device Category
Supports...

DataEvent Input data has been placed into device
class-category properties.

Event-driven input

ErrorEvent An error has occurred during event-
driven input or asynchronous output.

Event-driven input
-or-

Asynchronous
output

OutputCompleteEvent An asynchronous output has
successfully completed.

Asynchronous
output

StatusUpdateEvent A change in the Physical Device’s
status has occurred.
Devices may be able to report device
power state. See “Device Power
Reporting Model” on page 21.

Status change
notification

DirectIOEvent This event may be defined by a Service
provider for purposes not covered by
the specification.

Always, for
Service-specific

use

15Device Behavior Models: Errors
Errors
UnifiedPOS architecture deals with two kinds of errors as discussed in “Methods
(UML Operations)” on page 10 and explanation of exceptions:

• Errors that are “invalid or bad invocations” which are recognized by the
Service validation of the request. Method invocations and property accesses
may be valid or invalid. If the action is invalid, an invalid condition is set and
the application is notified in a fashion appropriate to the platform. For specific
implementations, OPOS would produce a ResultCode other than
OPOS_SUCCESS and JavaPOS would produce an exception.

• Errors that are caused by errant device behavior and produce error events.

Error Codes
This section lists the general meanings of the error code property when an invalid
condition occurs. In general, the property and method descriptions in later
chapters list error codes only when specific details or information are added to
these general meanings. In UML each error code is:

E_xxx : int32 { frozen }

The error code is set to one of the following values:

Value Meaning

E_CLOSED An attempt was made to access a closed Device.

E_CLAIMED An attempt was made to access a Physical Device that
is claimed by another Control instance. The other
Control must release the Physical Device before this
access may be made. For exclusive-use devices, the
application will also need to claim the Physical Device
before the access is legal.

E_NOTCLAIMED An attempt was made to access an exclusive-use device
that must be claimed before the method or property set
action can be used.
If the Physical Device is already claimed by another
Control instance, then the status E_CLAIMED is
returned instead.

E_NOSERVICE The Control cannot communicate with the Service,
normally because of a setup or configuration error.

E_DISABLED Cannot perform this operation while the Device is
disabled.

16
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
E_ILLEGAL An attempt was made to perform an illegal or
unsupported operation with the Device, or an invalid
parameter value was used.

E_NOHARDWARE The Physical Device is not connected to the system or
is not powered on.

E_OFFLINE The Physical Device is off-line.

E_NOEXIST The file name (or other specified value) does not exist.

E_EXISTS The file name (or other specified value) already exists.

E_FAILURE The Device cannot perform the requested procedure,
even though the Physical Device is connected to the
system, powered on, and on-line.

E_TIMEOUT The Service timed out waiting for a response from the
Physical Device, or the Control timed out waiting for a
response from the Service.

E_BUSY The current Service state does not allow this request.
For example, if asynchronous output is in progress,
certain methods may not be allowed.

E_EXTENDED A device category-specific error condition occurred.
The error condition code is held in an extended error
code.

When more than one result code is valid, the most descriptive code should be
selected. For example, the closed, claimed, not claimed, and disabled errors must
follow this order of error reporting precedence, from higher to lower:

E_CLOSED The device must be opened.

E_CLAIMED The device is opened but not claimed. Another application
has the device claimed, so it cannot be claimed at this time.

E_NOTCLAIMED The device is opened but not claimed. No other application
has the device claimed, so it can and must be claimed.

E_DISABLED The device is opened and claimed (if this is an exclusive-
use device), but not enabled.

Extended Error Code
The extended error code is set as follows:

• When the error code is E_EXTENDED, the extended error code is set to a
device category-specific value, and must match one of the values given in this
document under the appropriate device category chapter.

• When the error code is any other value, the extended error code may be set
by the Service to any Service-specific value. These values are only
meaningful if an application adds Service-specific code to handle them.

17Device Behavior Models: Device Input Model
Device Input Model
The standard UnifiedPOS input model for exclusive-use devices is event-driven
input. Event-driven input allows input data to be received after DeviceEnabled is
set to true. Received data is enqueued as a DataEvent, which is delivered to an
application.

If the AutoDisable property is true when data is received, then the Device will
automatically disable itself, setting DeviceEnabled to false. This will inhibit the
Device from enqueuing further input and, when possible, physically disable the
device.

When the application is ready to receive input from the Device, it sets the
DataEventEnabled property to true. Then, when input is received (usually as a
result of a hardware interrupt), the Device delivers a DataEvent. (If input has
already been enqueued, the DataEvent will be delivered immediately after
DataEventEnabled is set to true.) The DataEvent may include input status
information through its Status property. The Device places the input data plus
other information as needed into device category-specific properties just before
the event is delivered.

Just before delivering this event, the Device disables further data events by
setting the DataEventEnabled property to false. This causes subsequent input
data to be enqueued by the Device while an application processes the current
input and associated properties. When an application has finished the current
input and is ready for more data, it enables data events by setting
DataEventEnabled to true.

18
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Error Handling

If the Device encounters an error while gathering or processing event-driven
input, then the Device:

• Changes its State to S_ERROR.

• Enqueues an ErrorEvent with locus EL_INPUT to alert an application of the
error condition. This event is added to the end of the queue

• If one or more DataEvents are already enqueued for delivery, an additional
ErrorEvent with locus EL_INPUT_DATA is enqueued before the
DataEvents, as a pre-alert.

This event (or events) is not delivered until the DataEventEnabled property is
true, so that orderly application sequencing occurs.

ErrorLocus Description

EL_INPUT_DATA Only delivered if the error occurred when one or more
DataEvents are already enqueued.
This event gives the application the ability to immediately clear
the input, or to optionally alert the user to the error before
processing the buffered input. This error event is enqueued
before the oldest DataEvent, so that an application is alerted of
the error condition quickly.
This locus was created especially for the Scanner: When this
error event is received from a Scanner Device, the operator can
be immediately alerted to the error so that no further items are
scanned until the error is resolved. Then, the application can
process any backlog of previously scanned items before error
recovery is performed.

EL_INPUT Delivered when an error has occurred and there is no data
available.
If some input data was buffered when the error occurred, then
an ErrorEvent with the locus EL_INPUT_DATA was
delivered first, and then this error event is delivered after all
DataEvents have been delivered.
Note: This EL_INPUT event is not delivered if: an
EL_INPUT_DATA event was delivered and the application
event handler responded with an ER_CLEAR error response.

19Device Behavior Models: Device Input Model
The application can cause the ErrorResponse property to be set one of the
following:

The Device exits the Error state when one of the following occurs:

• The application returns from the EL_INPUT ErrorEvent.

• The application calls the clearInput method.

• The application returns from the EL_INPUT_DATA ErrorEvent with
ErrorResponse set to ER_CLEAR.

Miscellaneous

For some Devices, the Application must call a method to begin event driven
input. After the input is received by the Device, then typically no additional input
will be received until the method is called again to reinitiate input. Examples are
the MICR and Signature Capture devices. This variation of event driven input is
sometimes called “asynchronous input.”

The DataCount property contains the number of DataEvents enqueued by the
Device.

Calling the clearInput method deletes all input enqueued by a Device.
clearInput may be called after open for sharable devices and after claim for
exclusive-use devices.

The general event-driven input model does not specifically rule out the definition
of device categories containing methods or properties that return input data
directly. Some device categories define such methods and properties in order to
operate in a more intuitive or flexible manner. An example is the Keylock
Device. This type of input is sometimes called “synchronous input.”

ErrorResponse Description

ER_CLEAR Clear the buffered DataEvents and ErrorEvents and exit
the error state, changing State to S_IDLE.
This is the default response for locus EL_INPUT.

ER_CONTINUE_INPUT This response acknowledges the error and directs the
Device to continue processing. The Device remains in the
error state, and will deliver additional data events as
directed by the DataEventEnabled property. When all
input has been delivered and the DataEventEnabled
property is again set to true, another ErrorEvent is
delivered with locus EL_INPUT.
This is the default response when the locus is
EL_INPUT_DATA, and is legal only with this locus.

ER_RETRY This response directs the Device to retry the input. The
error state is exited, and State is changed to S_IDLE.
This response may only be selected when the device
chapter specifically allows it and when the locus is
EL_INPUT. An example is the scale.

20
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Device Output Models
The UnifiedPOS output model consists of two output types: synchronous and
asynchronous. A device category may support one or both types, or neither type.

Synchronous Output
The application calls a category-specific method to perform output. The Device
does not return until the output is completed; this means the physical device has
performed the intended operation. For example the printer has successfully
transferred all the output data as ink on the paper.

This type of output is preferred when device output can be performed relatively
quickly. Its merit is simplicity.

Asynchronous Output
The application calls a category-specific method to start the output. The Device
validates the method parameters and produces and error condition immediately if
necessary. If the validation is successful, the Device does the following:

1. Buffers the request.

2. Sets the OutputID property to an identifier for this request.

3. Returns as soon as possible.

When the Device successfully completes a request, an OutputCompleteEvent is
enqueued for delivery to the application. A property of this event contains the
output ID of the completed request. If the request is terminated before
completion, due to reasons such as the application calling the clearOutput
method or responding to an ErrorEvent with a ER_CLEAR response, then no
OutputCompleteEvent is delivered.

This type of output is preferred when device output requires slow hardware
interactions. Its merit is perceived responsiveness, since the application can
perform other work while the device is performing the output.

Note: Asynchronous output is always performed on a first-in first-out basis.

21Device Behavior Models: Device Power Reporting Model
Device Power Reporting Model
Applications frequently need to know the power state of the devices they use.
Note: This model is not intended to report Workstation or POS Terminal power
conditions (such as “on battery” and “battery low”). Reporting of these
conditions is left to power management standards and APIs.

Model
UnifiedPOS architecture segments device power into three states:

• ONLINE. The device is powered on and ready for use. This is the
“operational” state.

• OFF. The device is powered off or detached from the terminal. This is a
“non-operational” state.

• OFFLINE. The device is powered on but is either not ready or not able to
respond to requests. It may need to be placed online by pressing a button, or
it may not be responding to terminal requests. This is a “non-operational”
state.

In addition, one combination state is defined:

• OFF_OFFLINE. The device is either off or offline, and the Service cannot
distinguish these states.

Power reporting only occurs while the device is open, claimed (if the device is
exclusive-use), and enabled.

Note - Enabled/Disabled vs. Power States

These states are different and usually independent. UnifiedPOS defines “disabled” /
“enabled” as a logical state, whereas the power state is a physical state. A device may
be logically “enabled” but physically “offline”. It may also be logically “disabled” but
physically “online”. Regardless of the physical power state, UnifiedPOS only reports
the state while the device is enabled. (This restriction is necessary because a Service
typically can only communicate with the device while enabled.)
If a device is “offline”, then a Service may choose to fail an attempt to “enable” the
device. However, once enabled, the Service may not disable a device based on its power
state.

22
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Power State Diagram

PowerState Unknown

PS_UNKNOWN

Known PowerStates

PowerState Online

PS_ONLINE

Off/Offline States

PowerState Standard Off/Offline

PS_OFF_OFFLINE

Advanced Off/Offline States

 PowerState Advanced Offline

PS_OFFLINE

PowerState Advanced Off
PS_OFF

PowerState Online

PS_ONLINE

Off/Offline States

PowerState Standard Off/Offline

PS_OFF_OFFLINE

Advanced Off/Offline States

 PowerState Advanced Offline

PS_OFFLINE

PowerState Advanced Off
PS_OFF

PowerState Standard Off/Offline

PS_OFF_OFFLINE

[Device is Online]

[Device is Off or Offline]

Advanced Off/Offline States

 PowerState Advanced Offline

PS_OFFLINE

PowerState Advanced Off
PS_OFF

 PowerState Advanced Offline

PS_OFFLINE

PowerState Advanced Off
PS_OFF

[Device is Offline]

[CapPowerReporting == PR_ADVANCED]

[D evice is closed]

[Device is closed]

[Device is Off]

23Device Behavior Models: Device Power Reporting Model
Power Properties
The UnifiedPOS device power reporting model adds the following common
elements across all device classes.

• CapPowerReporting property. Identifies the reporting capabilities of the
device. The UML pattern for the property is:

PR_xxx : int32 { frozen }

 This property may be one of:

• PR_NONE. The Service cannot determine the state of the device.
Therefore, no power reporting is possible.

• PR_STANDARD. The Service can determine and report two of the
power states - OFF_OFFLINE (that is, off or offline) and ONLINE.

• PR_ADVANCED. The Service can determine and report all three power
states - ONLINE, OFFLINE, and OFF.

• PowerState property. Maintained by the Service at the current power
condition, if it can be determined. The UML pattern for the property is:

PS_xxx : int32 { frozen }

 This property may be one of:

• PS_UNKNOWN

• PS_ONLINE

• PS_OFF

• PS_OFFLINE

• PS_OFF_OFFLINE

• PowerNotify property. The application may set this property to enable power
reporting via StatusUpdateEvents and the PowerState property. This
property may only be changed while the device is disabled (that is, before
DeviceEnabled is set to true). This restriction allows simpler implementation
of power notification with no adverse effects on the application. The
application is either prepared to receive notifications or doesn't want them,
and has no need to switch between these cases. The UML pattern for the
property is:

PN_xxx : int32 { frozen }

 This property may be one of:

• PN_DISABLED

• PN_ENABLED

24
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Power Reporting Requirements for DeviceEnabled
The following semantics are added to DeviceEnabled when

CapPowerReporting is not PR_NONE, and
PowerNotify is PN_ENABLED:

• When the Control changes from DeviceEnabled false to true, then begin
monitoring the power state:

• If the Physical Device is ONLINE, then:

PowerState is set to PS_ONLINE.

A StatusUpdateEvent is enqueued with its Status property set to
SUE_POWER_ONLINE.

• If the Physical Device’s power state is OFF, OFFLINE, or
OFF_OFFLINE, then the Service may choose to fail the enable by
notifying the application with error code E_NOHARDWARE or
E_OFFLINE.

However, if there are no other conditions that cause the enable to fail, and
the Service chooses to return success for the enable, then:

PowerState is set to PS_OFF, PS_OFFLINE, or
PS_OFF_OFFLINE.

A StatusUpdateEvent is enqueued with its Status property set to
SUE_POWER_OFF, SUE_POWER_OFFLINE, or
SUE_POWER_OFF_OFFLINE.

• When the Device changes from DeviceEnabled true to false, UnifiedPOS
assumes that the Device is no longer monitoring the power state and sets the
value of PowerState to PS_UNKNOWN

25Device Behavior Models: Device States
Device States
UnifiedPOS defines a property State with the following values:

S_CLOSED
S_IDLE
S_BUSY
S_ERROR

The State property is set as follows:

• State is initially S_CLOSED.

• State is changed to S_IDLE when the open method is successfully called.

• State is set to S_BUSY when the Service is processing output. The State is
restored to S_IDLE when the output has completed.

• The State is changed to S_ERROR when an asynchronous output encounters
an error condition, or when an error is encountered during the gathering or
processing of event-driven input.

After the Service changes the State property to S_ERROR, it notifies the
application of this error. The properties of this event are the error code and
extended error code, the locus of the error, and a modifiable response to the
error.

26
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture
Device State Diagram

Opened

Idle
State == S_IDLE

Busy
State == S_BUSY

Error
State == S_ERROR

Closed
State == S_CLOSED

Idle
State == S_IDLE

Busy
State == S_BUSY

Error
State == S_ERROR

/open

/close

[input event error]

[async output in progress]

[error event done and no async output]

[error event done and async output]

[async output done]

[async output error or input event error]

27Device Behavior Models: Version Handling
Version Handling
As UnifiedPOS evolves, additional releases will introduce enhanced versions of
some Devices. UnifiedPOS imposes the following requirements on Control and
Service versions:

• Control requirements. A Control for a device category must operate with
any Service for that category, as long as its major version number matches the
Service's major version number. If they match, but the Control's minor
version number is greater than the Service’s minor version number, then the
Control may support some new methods or properties that are not supported
by the Service’s release. If an application calls one of these methods or
accesses one of these properties, the application will be notified of an error
condition (E_NO_SERVICE).

• Service requirements. A Service for a device category must operate with any
Control for that category, as long as its major version number matches the
Control's major version number. If they match, but the Service's minor
version number is greater than the Control's minor version number, then the
Service may support some methods or properties that cannot be accessed from
the Control.

When an application wishes to take advantage of the enhancements of a version,
it must first determine that the Control and Service are at the proper major version
and at or greater than the proper minor version. The versions are reported by the
properties DeviceControlVersion (see page 36) and DeviceServiceVersion (see
page 38).

28
UnifiedPOS Retail Peripheral Architecture

Introduction and Architecture

C H A P T E R 1

Common Properties, Methods, and Events

The following Properties, Methods, and Events are used for all device categories
unless noted otherwise in the Usage Notes table entry. For an overview of the
general rules and usage guidelines, see “Device Behavior Models” on page 9.

Summary

Properties (UML attributes)

Name Type Mutability Version Usage
Notes

AutoDisable: boolean { read-write } 1

CapPowerReporting: int32 { read-only }

CheckHealthText: string { read-only }

Claimed: boolean { read-only }

DataCount: int32 { read-only } 1

DataEventEnabled: boolean { read-write } 1

DeviceEnabled: boolean { read-write }

FreezeEvents: boolean { read-write }

OutputID: int32 { read-only } 2

PowerNotify: int32 { read-write }

PowerState: int32 { read-only }

State: int32 { read-only }

DeviceControlDescription: string { read-only }

DeviceControlVersion: int32 { read-only }

DeviceServiceDescription: string { read-only }

DeviceServiceVersion: int32 { read-only }

PhysicalDeviceDescription: string { read-only }

PhysicalDeviceName: string { read-only }

30
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
Usage Notes:

1. Used only with Devices that have Event Driven Input.

2. Used only with Asynchronous Output Devices.

Methods (UML operations)

Name

open (logicalDeviceName: string):
 void { raises-exception }

close ():
 void { raises-exception }

claima (timeout: int32):
 void { raises-exception }

releasea ():
 void { raises-exception }

checkHealth (level: int32):
 void { raises-exception }

clearInput ():
 void { raises-exception }

clearOutput ():
 void { raises-exception }

directIO (command: int32, inout data: int32, inout obj: object):
 void { raises-exception }

a. Note: In the OPOS environment starting with Release 1.5 the
Claim and Release methods are also defined as ClaimDevice
and ReleaseDevice due to Release being a reserved method
used by Microsoft’s Component Object Model (COM).

Events (UML interfaces)

Name Type Mutability Usage
Notes

upos::events::DataEvent
 Status: int32 { read-only }

 1

upos::events::DirectIOEvent
 EventNumber:
 Data:
 Obj:

int32
int32
object

{ read-only }
{ read-write }
{ read-write }

upos::events::ErrorEvent
 ErrorCode:
 ErrorCodeExtended:
 ErrorLocus:
 ErrorResponse:

int32
int32
int32
int32

{ read-only }
{ read-only }
{ read-only }
{ read-write }

upos::events::OutputCompleteEvent
 OutputID: int32 { read-only }

 2

upos::events::StatusUpdateEvent
 Status: int32 { read-only }

31 General Information
General Information
This section lists properties, methods, and events that are common to many of the
peripheral devices covered in this standard.

The summary section of each device category marks those common properties,
methods, and events that do not apply to that category as “Not Supported.” Items
identified in this fashion are not present in the Control’s class.

A good understanding of the features of the UnifiedPOS architecture model is
required. Please see “Device Behavior Models” on page 9 for additional
information.

32
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
The following diagram shows the relationships between the Common classes.

UposConst
(from upos)

<<utility>>

UposException
(from upos)

<<exception>>

BumpBarControl
(from upos)

<<Interface>>

POSPrinterControl
(from upos)

<<Interface>>

<DevCat> == all UnifiedPOS device
category names e.g. CashDrawer,
Scanner, MICR, ...

MSRControl
(from upos)

<<Interface>>

<DevCat>Control
(from upos)

<<Interface>>

<<uses>>
<<sends>>

<<sends>>

<<uses>>
<<uses>>

<<sends>>
<<sends>>

<<uses>>

UposEvent
(from events)

<<event>>
BaseControl

<<capability>> CapPowerReporting : int32
<<prop>> AutoDisable : boolean
<<prop>> CheckHealthText : string
<<prop>> Claimed : boolean
<<prop>> DataCount : int32
<<prop>> DataEventEnabled : boolean
<<prop>> DeviceEnabled : boolean
<<prop>> FreezeEvents : boolean
<<prop>> PowerNotify : int32
<<prop>> PowerState : int32
<<prop>> State : int32
<<prop>> DeviceControlDescription : string
<<prop>> DeviceControlVersion : int32
<<prop>> DeviceServiceDescription : string
<<prop>> DeviceServiceVersion : int32
<<prop>> PhysicalDeviceDescription : string
<<prop>> PhysicalDeviceName : string

open(logicalDeviceName : string) : void
close() : void
release() : void
claim(timeout : int32) : void
checkHealth(level : int32) : void
directIO(command : int32, inout data : int32, inout obj : object) : void

(from upos)

<<Interface>>

<<uses>>

<<sends>>

fires

33 Properties (UML attributes)
Properties (UML attributes)
AutoDisable Property

Syntax AutoDisable: boolean { read-write }

Remarks If true, the UnifiedPOS Service will set DeviceEnabled to false after it receives
and enqueues data as a DataEvent. Before any additional input can be received,
the application must set DeviceEnabled to true.

If false, the UnifiedPOS Service does not automatically disable the device when
data is received.

This property provides the application with an additional option for controlling the
receipt of input data. If an application wants to receive and process only one input,
or only one input at a time, then this property should be set to true. This property
applies only to event-driven input devices.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also “Device Input Model” on page 17.

CapPowerReporting Property

Syntax CapPowerReporting: int32 { read-only }

Remarks Identifies the reporting capabilities of the Device. It has one of the following
values:

Value Meaning

PR_NONE The UnifiedPOS Service cannot determine the state of
the device. Therefore, no power reporting is possible.

PR_STANDARD The UnifiedPOS Service can determine and report two
of the power states - OFF_OFFLINE (that is, off or
offline) and ONLINE.

PR_ADVANCED The UnifiedPOS Service can determine and report all
three power states - OFF, OFFLINE, and ONLINE.

This property is initialized by the open method.

Errors None.

See Also “Device Power Reporting Model” on page 21, PowerState Property,
PowerNotify Property.

34
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
CheckHealthText Property

Syntax CheckHealthText: string { read-only }

Remarks Holds the results of the most recent call to the checkHealth method. The
following examples illustrate some possible diagnoses:

• “Internal HCheck: Successful”

• “External HCheck: Not Responding”

• “Interactive HCheck: Complete”

This property is empty (“”) before the first call to the checkHealth method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15

See Also checkHealth Method.

Claimed Property

Syntax Claimed: boolean { read-only }

Remarks If true, the device is claimed for exclusive access. If false, the device is released
for sharing with other applications.

Many devices must be claimed before the Control will allow access to many of its
methods and properties, and before it will deliver events to the application.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also “Device Initialization and Finalization” on page 11, “Device Sharing Model” on
page 13, claim Method, release Method.

DataCount Property

Syntax DataCount: int32 { read-only }

Remarks Holds the number of enqueued DataEvents.

The application may read this property to determine whether additional input is
enqueued from a device, but has not yet been delivered because of other
application processing, freezing of events, or other causes.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also “Device Input Model” on page 17, DataEvent.

35 Properties (UML attributes)
DataEventEnabled Property

Syntax DataEventEnabled: boolean { read-write }

Remarks If true, a DataEvent will be delivered as soon as input data is enqueued. If changed
to true and some input data is already queued, then a DataEvent is delivered
immediately. (Note that other conditions may delay “immediate” delivery: if
FreezeEvents is true or another event is already being processed at the
application, the DataEvent will remain queued at the UnifiedPOS Service until
the condition is corrected.)

If false, input data is enqueued for later delivery to the application. Also, if an
input error occurs, the ErrorEvent is not delivered while this property is false.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also “Events” on page 14, DataEvent.

DeviceControlDescription Property

Syntax DeviceControlDescription: string { read-only }

Remarks Holds an identifier for the UnifiedPOS Control and the company that produced it.

A sample returned string is:

“POS Printer UnifiedPOS Compatible Control, (C) 1998
Epson”

This property is always readable.

Errors None.

See Also DeviceControlVersion Property.

36
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
DeviceControlVersion Property

Syntax DeviceControlVersion: int32 { read-only }

Remarks Holds the UnifiedPOS Control version number.

Three version levels are specified, as follows:

Version Level Description

Major The “millions” place.
A change to the UnifiedPOS major version level for a
device class reflects significant interface enhancements,
and may remove support for obsolete interfaces from
previous major version levels.

Minor The “thousands” place.
A change to the UnifiedPOS minor version level for a
device class reflects minor interface enhancements, and
must provide a superset of previous interfaces at this
major version level.

Build The “units” place.
Internal level provided by the UnifiedPOS Control
developer. Updated when corrections are made to the
UnifiedPOS Control implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major
version 1, minor version 2, build 38 of the UnifiedPOS Control.

This property is always readable.

Errors None.

See Also “Version Handling” on page 27, DeviceControlDescription Property.

37 Properties (UML attributes)
DeviceEnabled Property

Syntax DeviceEnabled: boolean { read-write }

Remarks If true, the device is in an operational state. If changed to true, then the device is
brought to an operational state.

If false, the device has been disabled. If changed to false, then the device is
physically disabled when possible, any subsequent input will be discarded, and
output operations are disallowed.

Changing this property usually does not physically affect output devices. For
consistency, however, the application must set this property to true before using
output devices.

The Device’s power state may be reported while DeviceEnabled is true; See
“Device Power Reporting Model” on page 21 for details.

This property is initialized to false by the open method. Note that an exclusive use
device must be claimed before the device may be enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also “Device Initialization and Finalization” on page 11.

DeviceServiceDescription Property

Syntax DeviceServiceDescription: string { read-only }

Remarks Holds an identifier for the UnifiedPOS Service and the company that produced it.

A sample returned string is:

“TM-U950 Printer UnifiedPOS Compatible Service Driver,
(C) 1998 Epson”

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

38
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
DeviceServiceVersion Property

Syntax DeviceServiceVersion: int32 { read-only }

Remarks Holds the UnifiedPOS Service version number.

Three version levels are specified, as follows:

Version Level Description

Major The “millions” place.
A change to the UnifiedPOS major version level for a
device class reflects significant interface enhancements,
and may remove support for obsolete interfaces from
previous major version levels.

Minor The “thousands” place.
A change to the UnifiedPOS minor version level for a
device class reflects minor interface enhancements, and
must provide a superset of previous interfaces at this
major version level.

Build The “units” place.
Internal level provided by the UnifiedPOS Service
developer. Updated when corrections are made to the
UnifiedPOS Service implementation.

A sample version number is:

1002038

This value may be displayed as version “1.2.38”, and interpreted as major version
1, minor version 2, build 38 of the UnifiedPOS Service.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also “Version Handling” on page 27, DeviceServiceDescription Property.

39 Properties (UML attributes)
FreezeEvents Property

Syntax FreezeEvents: boolean { read-write }

Remarks If true, the UnifiedPOS Control will not deliver events. Events will be enqueued
until this property is set to false.

If false, the application allows events to be delivered. If some events have been
held while events were frozen and all other conditions are correct for delivering
the events, then changing this property to false will allow these events to be
delivered. An application may choose to freeze events for a specific sequence of
code where interruption by an event is not desirable.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

OutputID Property

Syntax OutputID: int32 { read-only }

Remarks Holds the identifier of the most recently started asynchronous output.

When a method successfully initiates an asynchronous output, the Device assigns
an identifier to the request. When the output completes, an
OutputCompleteEvent will be enqueued with this output ID as a parameter.

The output ID numbers are assigned by the UnifiedPOS Service and are
guaranteed to be unique among the set of outstanding asynchronous outputs. No
other facts about the ID should be assumed.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also “Device Output Models” on page 20, OutputCompleteEvent.

40
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
PowerNotify Property

Syntax PowerNotify: int32 { read-write }

Remarks Contains the type of power notification selection made by the Application. It has
one of the following values:

Value Meaning

PN_DISABLED The UnifiedPOS Service will not provide any power
notifications to the application. No power notification
StatusUpdateEvents will be fired, and PowerState
may not be set.

PN_ENABLED The UnifiedPOS Service will fire power notification
StatusUpdateEvents and update PowerState,
beginning when DeviceEnabled is set to true. The level
of functionality depends upon CapPowerReporting.

PowerNotify may only be set while the device is disabled; that is, while
DeviceEnabled is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following occurred:

The device is already enabled.

PowerNotify = PN_ENABLED but
CapPowerReporting = PR_NONE.

See Also “Device Power Reporting Model” on page 21, CapPowerReporting Property,
PowerState Property.

41 Properties (UML attributes)
PowerState Property

Syntax PowerState: int32 { read-only }

Remarks Identifies the current power condition of the device, if it can be determined.
It has one of the following values:

Value Meaning

PS_UNKNOWN Cannot determine the device’s power state for one of the
following reasons:

CapPowerReporting = PR_NONE; the device does not
support power reporting.

PowerNotify = PN_DISABLED; power notifications
are disabled.

DeviceEnabled = false; Power state monitoring does
not occur until the device is enabled.

PS_ONLINE The device is powered on and ready for use. Can be
returned if CapPowerReporting = PR_STANDARD or
PR_ADVANCED.

PS_OFF The device is powered off or detached from the POS
terminal. Can only be returned if CapPowerReporting
= PR_ADVANCED.

PS_OFFLINE The device is powered on but is either not ready or not
able to respond to requests. Can only be returned if
CapPowerReporting = PR_ADVANCED.

PS_OFF_OFFLINE The device is either off or offline. Can only be returned
if CapPowerReporting = PR_STANDARD.

This property is initialized to PS_UNKNOWN by the open method. When
PowerNotify is set to enabled and DeviceEnabled is true, then this property is
updated as the UnifiedPOS Service detects power condition changes.

Errors None.

See Also “Device Power Reporting Model” on page 21, CapPowerReporting Property,
PowerNotify Property.

42
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
PhysicalDeviceDescription Property

Syntax PhysicalDeviceDescription: string { read-only }

Remarks Holds an identifier for the physical device.

A sample returned string is:

“NCR 7192-0184 Printer, Japanese Version”

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also PhysicalDeviceName Property.

PhysicalDeviceName Property

Syntax PhysicalDeviceName: string { read-only }

Remarks Holds a short name identifying the physical device. This is a short version of
PhysicalDeviceDescription and should be limited to 30 characters.

This property will typically be used to identify the device in an application
message box, where the full description is too verbose. A sample returned string
is:

“IBM Model II Printer, Japanese”

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also PhysicalDeviceDescription Property.

43 Properties (UML attributes)
State Property

Syntax State: int32 { read-only }

Remarks Holds the current state of the Device. It has one of the following values:

Value Meaning

S_CLOSED The Device is closed.

S_IDLE The Device is in a good state and is not busy.

S_BUSY The Device is in a good state and is busy performing
output.

S_ERROR An error has been reported, and the application must
recover the Device to a good state before normal I/O can
resume.

This property is always readable.

Errors None.

See Also “Device States” on page 25.

44
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
Methods (UML operations)

checkHealth Method

Syntax checkHealth (level: int32):
 void { raises-exception }

The level parameter indicates the type of health check to be performed on the
device. The following values may be specified:

Value Meaning

CH_INTERNAL Perform a health check that does not physically change
the device. The device is tested by internal tests to the
extent possible.

CH_EXTERNAL Perform a more thorough test that may change the
device. For example, a pattern may be printed on the
printer.

CH_INTERACTIVE Perform an interactive test of the device. The supporting
UnifiedPOS Service will typically display a modal
dialog box to present test options and results.

Remarks Tests the state of a device.

A text description of the results of this method is placed in the
CheckHealthText property. The health of many devices can only be determined
by a visual inspection of these test results.

This method is always synchronous.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The specified health check level is not supported by the
UnifiedPOS Service.

See Also CheckHealthText Property.

45 Methods (UML operations)
claim Method

Syntax claim (timeout: int32):
 void { raises-exception }

The timeout parameter gives the maximum number of milliseconds to wait for
exclusive access to be satisfied. If zero, then immediately either returns (if
successful) or throws an appropriate exception. If FOREVER (-1), the method
waits as long as needed until exclusive access is satisfied.

Remarks Requests exclusive access to the device. Many devices require an application to
claim them before they can be used.

When successful, the Claimed property is changed to true.

Errors A UposException may be thrown when this method is invoked. For further
information, “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL This device cannot be claimed for exclusive access, or
an invalid timeout parameter was specified.

E_TIMEOUT Another application has exclusive access to the device,
and did not relinquish control before timeout
milliseconds expired.

See Also “Device Sharing Model” on page 13, release Method.

clearInput Method

Syntax clearInput ():
 void { raises-exception }

Remarks Clears all device input that has been buffered.

Any data events or input error events that are enqueued – usually waiting for
DataEventEnabled to be set to true and FreezeEvents to be set to false – are also
cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

See Also “Device Input Model” on page 17.

46
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
clearOutput Method

Syntax clearOutput ():
 void { raises-exception }

Remarks Clears all device output that has been buffered. Also, when possible, halts outputs
that are in progress.

Any output error events that are enqueued – usually waiting for FreezeEvents to
be set to false – are also cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

See Also “Device Output Models” on page 20.

close Method

Syntax close ():
 void { raises-exception }

Remarks Releases the device and its resources.

If the DeviceEnabled property is true, then the device is disabled.

If the Claimed property is true, then exclusive access to the device is released.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

See Also “Device Initialization and Finalization” on page 11, open Method.

47 Methods (UML operations)
directIO Method

Syntax directIO (command: int32, inout data: int32, inout obj: object):
 void { raises-exception }

Parameter Description

command Command number whose specific values are assigned
by the UnifiedPOS Service.

data An array of one modifiable integer whose specific
values or usage vary by command and UnifiedPOS
Service.

obj Additional data whose usage varies by command and
UnifiedPOS Service.

Remarks Communicates directly with the UnifiedPOS Service.

This method provides a means for a UnifiedPOS Service to provide functionality
to the application that is not otherwise supported by the standard UnifiedPOS
Control for its device category. Depending upon the UnifiedPOS Service’s
definition of the command, this method may be asynchronous or synchronous.

Use of this method will make an application non-portable. The application may,
however, maintain portability by performing directIO calls within conditional
code. This code may be based upon the value of the DeviceServiceDescription,
PhysicalDeviceDescription, or PhysicalDeviceName property.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

See Also DirectIOEvent.

48
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
open Method

Syntax open (logicalDeviceName: string):
 void { raises-exception }

The logicalDeviceName parameter specifies the device name to open.

Remarks Opens a device for subsequent I/O.

The device name specifies which of one or more devices supported by this
UnifiedPOS Control should be used. The logicalDeviceName must exist in the
operating system’s reference locator system (such as Java’s System Database or
Window’s Registry) for this device category so that its relationship to the physical
device can be determined. Entries in the reference locator system are created by a
setup or configuration utility.

When this method is successful, it initializes the properties Claimed,
DeviceEnabled, DataEventEnabled, and FreezeEvents, as well as descriptions
and version numbers of the UnifiedPOS software layers. Additional category-
specific properties may also be initialized.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The UnifiedPOS Control is already open.

E_NOEXIST The specified logicalDeviceName was not found.

E_NOSERVICE Could not establish a connection to the corresponding
UnifiedPOS Service.

See Also “Device Initialization and Finalization” on page 11, “Version Handling” on page
27, close Method.

49 Methods (UML operations)
release Method

Syntax release ():
 void { raises-exception }

Remarks Releases exclusive access to the device.

If the DeviceEnabled property is true, and the device is an exclusive-use device,
then the device is also disabled (this method does not change the device enabled
state of sharable devices).

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The application does not have exclusive access to the
device.

See Also “Device Sharing Model” on page 13, claim Method.

50
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
Events (UML interfaces)

The UnifiedPOS standard utilizes a common UML base control structure to derive
a specific implementation case. The UML event base control model and interfaces
are shown below for the events.

upos::BaseControl

UposConst
(from upos)

<<utility>>

UposException
(from upos)

<<exception>>

BaseControl

(from upos)

<<Interface>>

UposEvent
(from events)

<<event>>
fires

<<uses>>

<<sends>>

51 Events (UML interfaces)
upos::events interfaces

UposEvent
(from events)

<<event>>

DataEvent

<<prop>> Status : int32
(from events)

<<event>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

ErrorEvent

<<prop>> ErrorCode : int32
<<prop>> ErrorCodeExtended : int32
<<prop>> ErrorLocus : int32
<<prop>> ErrorResponse : int32

(from events)

<<event>>

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

OutputCompleteEvent

<<prop>> OutputID : int32

(from events)

<<event>>

52
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
DataEvent

<<event>> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application that input data is available from the device.

Attribute This event contains the following attribute:

Attribute Type Description

Status int32 The input status with its value dependent upon the
device category; it may describe the type or qualities of
the input data.

Remarks When this event is delivered to the application, the DataEventEnabled property
is changed to false, so that no further data events will be delivered until the
application sets DataEventEnabled back to true. The actual byte array input data
is placed in one or more device-specific properties.

If DataEventEnabled is false at the time that data is received, then the data is
enqueued in an internal buffer, the device-specific input data properties are not
updated, and the event is not delivered. When DataEventEnabled is subsequently
changed back to true, the event will be delivered immediately if input data is
enqueued and FreezeEvents is false.

See Also “Events” on page 14, “Device Input Model” on page 17, DataEventEnabled
Property, FreezeEvents Property.

53 Events (UML interfaces)
DirectIOEvent

<<event>> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Description Provides UnifiedPOS Service information directly to the application. This event
provides a means for a vendor-specific UnifiedPOS Service to provide events to
the application that are not otherwise supported by the UnifiedPOS Control.

Attributes This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
UnifiedPOS Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the UnifiedPOS Service. This
attribute is settable.

Obj object Additional data whose usage varies by the EventNumber
and the UnifiedPOS Service. This attribute is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described as part of the UnifiedPOS standard. Use of this event may
restrict the application program from being used with other vendor’s devices
which may not have any knowledge of the UnifiedPOS Service’s need for this
event.

See Also “Events” on page 14, directIO Method.

54
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
ErrorEvent

<<event>> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected and a suitable response is
necessary to process the error condition.

Attributes This event contains the following attributes:

Attribute Type Description

ErrorCode int32 Error Code causing the error event. See the list of
ErrorCodes under “Error Codes” on page 15.

ErrorCodeExtended int32 Extended Error Code causing the error event. These
values are device category specific.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application (i.e., this attribute is settable). See
values below.

The ErrorLocus attribute has one of the following values:

Value Meaning

E_EL_OUTPUT Error occurred while processing asynchronous output.

E_EL_INPUT Error occurred while gathering or processing event-
driven input. No input data is available.

E_EL_INPUT_DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

The application’s error event handler can set the ErrorResponse attribute to one of
the following values:

Value Meaning

E_ER_RETRY Retry the asynchronous output. The error state is exited.
May be valid only when locus is E_EL_INPUT. Default
when locus is E_EL_OUTPUT.

E_ER_CLEAR Clear the asynchronous output or buffered input data.
The error state is exited. Default when locus is
E_EL_INPUT.

55 Events (UML interfaces)
E_ER_CONTINUEINPUT
Acknowledges the error and directs the Device to
continue input processing. The Device remains in the
error state and will deliver additional DataEvents as
directed by the DataEventEnabled property. When all
input has been delivered and DataEventEnabled is
again set to true, then another ErrorEvent is delivered
with locus E_EL_INPUT.
Use only when locus is E_EL_INPUT_DATA. Default
when locus is E_EL_INPUT_DATA.

Remarks This event is enqueued when an error is detected and the Device’s State transitions
into the error state. This event is not delivered until DataEventEnabled is true, so
that proper application sequencing occurs.

See Also “Device Input Model” on page 17, “Device States” on page 25.

OutputCompleteEvent

<<event>> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the
OutputID attribute has completed successfully.

Attribute This event contains the following attribute:

Attribute Type Description

OutputID int32 The ID number of the asynchronous output request that
is complete.

Remarks This event is enqueued after the request’s data has been both sent and the
UnifiedPOS Service has confirmation that is was processed by the device
successfully.

See Also “Device Output Models” on page 20.

56
UnifiedPOS Retail Peripheral Architecture Chapter 1

Common Properties, Methods, and Events
StatusUpdateEvent

<<event>> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when a device has detected an operation status change.

Attribute This event contains the following attribute:

Attribute Type Description

Status int32 Device category-specific status, describing the type of
status change.

Power State Reporting adds additional Status values of:

Value Meaning

SUE_POWER_ONLINE
The device is powered on and ready for use. Can be
returned if CapPowerReporting =
PR_STANDARD or PR_ADVANCED.

SUE_POWER_OFF The device is off or detached from the terminal. Can
only be returned if CapPowerReporting =
PR_ADVANCED.

SUE_POWER_OFFLINE
The device is powered on but is either not ready or not
able to respond to requests. Can only be returned if
CapPowerReporting = PR_ADVANCED.

POS_SUE_POWER_OFF_OFFLINE
The device is either off or offline. Can only be returned
if CapPowerReporting = PR_STANDARD.

The common property PowerState is also maintained at
the current power state of the device.

Remarks This event is enqueued when a Device needs to alert the application of a device
status change. Examples are a change in the cash drawer position (open vs. closed)
or a change in a POS printer sensor (form present vs. absent).

When a device is enabled, the Control may deliver this event to inform the
application of the device state. This behavior, however, is not required.

See Also “Events” on page 14, “Device Power Reporting Model” on page 21,
CapPowerReporting Property, PowerNotify Property.

C H A P T E R 2

Bump Bar

This Chapter defines the Bump Bar device category.

Summary

Properties (UML attributes)

Common Type Mutability Versiona

a. The version representation is an example. It provides the mechanism for rec-
ognizing when a change occurs to a property, method or event. This BumpBar
definition was introduced in an existing standard and was not changed for the
UnifiedPOS version 1.4 or 1.5.

May Use After

AutoDisable: boolean { read-write } 1.3 Not Supported

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.3 open

Claimed: boolean { read-only } 1.3 open

DataCount: int32 { read-only } 1.3 open

DataEventEnabled: boolean { read-write } 1.3 open

DeviceEnabled: boolean { read-write } 1.3 open & claim

FreezeEvents: boolean { read-write } 1.3 open

OutputID: int32 { read-only } 1.3 open

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.3 --

DeviceControlDescription: string { read-only } 1.3 --

DeviceControlVersion: int32 { read-only } 1.3 --

DeviceServiceDescription: string { read-only } 1.3 open

DeviceServiceVersion: int32 { read-only } 1.3 open

PhysicalDeviceDescription: string { read-only } 1.3 open

PhysicalDeviceName: string { read-only } 1.3 open

58
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
Properties (Continued)

Specific Type Mutability Version May Use After

AsyncMode: boolean { read-write } 1.3 open, claim, & enable

Timeout: int32 { read-write } 1.3 open

UnitsOnline: int32 { read-only } 1.3 open, claim, & enable

CurrentUnitID: int32 { read-write } 1.3 open, claim, & enable

CapTone: boolean { read-only } 1.3 open, claim, & enable

AutoToneDuration: int32 { read-write } 1.3 open, claim, & enable

AutoToneFrequency: int32 { read-write } 1.3 open, claim, & enable

BumpBarDataCount: int32 { read-only } 1.3 open, claim, & enable

Keys: int32 { read-only } 1.3 open, claim, & enable

ErrorUnits: int32 { read-only } 1.3 open

ErrorString: string { read-only } 1.3 open

EventUnitID: int32 { read-only } 1.3 open & claim

EventUnits: int32 { read-only } 1.3 open & claim

EventString: string { read-only } 1.3 open & claim

59 Summary
Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
 void { raises exception }

close ():
 void { raises exception, use after open }

claim (timeout: int32) :
 void { raises exception, use after open }

release ():
 void { raises exception, use after open, claim }

checkHealth (level: int32):
 void { raises exception, use after open, claim, enable }

clearInput ():
 void { raises exception, use after open, claim }

clearOutput ():
 void { raises exception, use after open, claim }

directIO (command: int32, inout data: int32, inout obj: object):
 void { raises exception, use after open }

Specific

Name

bumpBarSound (units: int32, frequency: int32, duration: int32,
 numberOfCycles: int32, interSoundWait: int32):
 void { raises exception, use after open, claim, enable }

setKeyTranslation (units: int32, scanCodes: int32, logicalKey: int32):
 void { raises exception, use after open, claim, enable }

60
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
Events (UML interfaces)

Name Type Mutability

upos::events::DataEvent

 Status: int32 { read-only }

upos::events::DirectIOEvent

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse int32 { read-write }

upos::events::OutputCompleteEvent

 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent

 Status: int32 { read-only }

61 General Information
General Information
The Bump Bar programmatic name is “BumpBar”.

Capabilities

The Bump Bar Control has the following minimal set of capabilities:

• Supports broadcast methods that can communicate with one, a range, or all
bump bar units online.

• Supports bump bar input (keys 0-255).

The Bump Bar Control may also have the following additional capabilities:

• Supports bump bar enunciator output with frequency and duration.

• Supports tactile feedback via an automatic tone when a bump bar key is
pressed.

62
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
Bump Bar Class Diagram

The following diagram shows the relationships between the Bump Bar classes.

UposConst
(from upos)

<<utility>>
BumpBarConst

(from upos)

<<utility>>
BaseControl

(from upos)

<<Interface>>

UposException
(from upos)

<<exception>>

<<uses>>

<<sends>>

DataEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

ErrorEvent
(from events)

<<event>>
StatusUpdateEvent

(from events)

<<event>>
OutputCompleteEvent

(from events)

<<event>>

BumpBarControl

<<capability>> CapTone : boolean
<<prop>> AsyncMode : boolean
<<prop>> Timeout : int32
<<prop>> UnitsOnline : int32
<<prop>> CurrentUnitID : int32
<<prop>> AutoToneDuration : int32
<<prop>> AutoToneFrequency : int32
<<prop>> BumpBarDataCount : int32
<<prop>> Keys : int32
<<prop>> ErrorUnits : int32
<<prop>> ErrorString : string
<<prop>> EventUnitID : int32
<<prop>> EventUnits : int32
<<prop>> EventString : string

bumpBarSound(units : int32, frequency : int32, duration : int32, numCycles : int32) : void
setKeyTranslation(units : int32, scanCodes : int32, logicalKey : int32) : void

(from upos)

<<Interface>>

fires

fires

fires fires

<<uses>>
<<uses>>

<<sends>>

fires

63 General Information
Model

The general model of a bump bar is:

• The bump bar device class is a subsystem of bump bar units. The initial
targeted environment is food service, to control the display of order
preparation and fulfillment information. Bump bars typically are used in
conjunction with remote order displays.

The subsystem can support up to 32 bump bar units.

One application on one workstation or POS Terminal will typically manage
and control the entire subsystem of bump bars. If applications on the same or
other workstations and POS Terminals will need to access the subsystem, then
this application must act as a subsystem server and expose interfaces to other
applications.

• All specific methods are broadcast methods. This means that the method can
apply to one unit, a selection of units or all online units. The units parameter
is an int32, with each bit identifying an individual bump bar unit. (One or more
of the constants BB_UID_1 through BB_UID_32 are bitwise ORed to form
the bitmask.) The Service will attempt to satisfy the method for all unit(s)
indicated in the units parameter. If an error is received from one or more units,
the ErrorUnits property is updated with the appropriate units in error. The
ErrorString property is updated with a description of the error or errors
received. The method will then notify the application of the error condition. In
the case where two or more units encounter different errors, the Service should
determine the most severe error to report.

• The common methods checkHealth, clearInput, and clearOutput are not
broadcast methods and use the unit ID indicated in the CurrentUnitID
property. (One of the constants BB_UID_1 through BB_UID_32 are
selected.) See the description of these common methods to understand how
the current unit ID property is used.

• When the current unit ID property is set by the application, all the
corresponding properties are updated to reflect the settings for that unit.

If the CurrentUnitID property is set to a unit ID that is not online, the depen-
dent properties will contain non-initialized values.

The CurrentUnitID uniquely represents a single bump bar unit. The defini-
tions range from BB_UID_1 to BB_UID_32. These definitions are also used
to create the bitwise parameter, units, used in the broadcast methods.

64
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
Input – Bump Bar

The Bump Bar follows the general “Device Input Model” for event-driven input
with some differences:

• When input is received, a DataEvent is enqueued.

• This device does not support the AutoDisable property, so the device will not
automatically disable itself when a DataEvent is enqueued.

• An enqueued DataEvent can be delivered to the application when the
DataEventEnabled property is true and other event delivery requirements are
met. Just before delivering this event, data is copied into corresponding
properties, and further data events are disabled by setting the
DataEventEnabled property to false. This causes subsequent input data to be
enqueued while the application processes the current input and associated
properties. When the application has finished the current input and is ready for
more data, it reenables events by setting DataEventEnabled to true.

• An ErrorEvent or events are enqueued if an error is encountered while
gathering or processing input, and are delivered to the application when the
DataEventEnabled property is true and other event delivery requirements are
met.

• The BumpBarDataCount property may be read to obtain the number of
bump bar DataEvents for a specific unit ID enqueued. The DataCount
property can be read to obtain the total number of data events enqueued.

• Queued input may be deleted by calling the clearInput method. See
clearInput method description for more details.

The Bump Bar Service provider must supply a mechanism for translating its inter-
nal key scan codes into user-defined codes which are returned by the data event.
Note that this translation must be end-user configurable. The default translated
key value is the scan code value.

65 General Information
Output – Tone

The bump bar follows the general “Device Output Model,” with some enhance-
ments:

• The bumpBarSound method is performed either synchronously or
asynchronously, depending on the value of the AsyncMode property.

• When AsyncMode is false, then this method operates synchronously and the
Device returns to the application after completion. When operating
synchronously, the application is notified of an error if the method could not
complete successfully.

• When AsyncMode is true, then this method operates as follows:

• The Device buffers the request, sets the OutputID property to an
identifier for this request, and returns as soon as possible. When the
device completes the request successfully, the EventUnits property is
updated and an OutputCompleteEvent is enqueued. A property of this
event contains the output ID of the completed request.

• If an error occurs while performing an asynchronous request, an
ErrorEvent is enqueued. The EventUnits property is set to the unit or
units in error. The EventString property is also set.
Note: ErrorEvent updates EventUnits and EventString. If an error is
reported by a broadcast method, then ErrorUnits and ErrorString are
set instead.

The event handler may call synchronous bump bar methods (but not asynchronous
methods), then can either retry the outstanding output or clear it.

• Asynchronous output is performed on a first-in first-out basis.

• All output buffered may be deleted by setting the CurrentUnitID
property and calling the clearOutput method. An
OutputCompleteEvent will not be enqueued for cleared output. This
method also stops any output that may be in progress (when possible).

Device Sharing

The bump bar is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many
bump bar specific properties.

• The application must claim and enable the device before calling methods that
manipulate the device.

• When a claim method is called again, settable device characteristics are
restored to their condition at release.

• See the “Summary” table for precise usage prerequisites.

66
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
Bump Bar State Diagram

Closed
Opened

Claimed

/claim

Enabled

Normal Busy

Error

/close

/open

/release/close

/setDeviceEnabled(false)

/release
/close

Normal Busy

Error

/setDeviceEnabled(true)

[error event done and no async requests]

[async request I/O error or bump bar input error]

[AsyncMode == true]/bumpBarSound

[bump bar input error]

[async requests done]

[error event done and async requests]

67 Properties (UML attributes)
Properties (UML attributes)
AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open-claim-enable }

Remarks If true, then the bumpBarSound method will be performed asynchronously.
If false, tones are generated synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also bumpBarSound Method, “Device Output Models” on page 20.

AutoToneDuration Property

Syntax AutoToneDuration: int32 { read-write, access after open-claim-enable }

Remarks Holds the duration (in milliseconds) of the automatic tone for the bump bar unit
specified by the CurrentUnitID property.

This property is initialized to the default value for each online bump bar unit when
the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CurrentUnitID Property.

AutoToneFrequency Property

Syntax AutoToneFrequency: int32 { read-write, access after open-claim-enable }

Remarks Holds the frequency (in Hertz) of the automatic tone for the bump bar unit
specified by the CurrentUnitID property.

This property is initialized to the default value for each online bump bar unit when
the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CurrentUnitID Property.

68
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
BumpBarDataCount Property

Syntax BumpBarDataCount: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of DataEvents enqueued for the bump bar unit specified by the
CurrentUnitID property.

The application may read this property to determine whether additional input is
enqueued from a bump bar unit, but has not yet been delivered because of other
application processing, freezing of events, or other causes.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CurrentUnitID Property, DataEvent.

CapTone Property

Syntax CapTone: boolean { read-only, access after open-claim-enable }

Remarks If true, the bump bar unit specified by the CurrentUnitID property supports an
enunciator.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CurrentUnitID Property.

69 Properties (UML attributes)
CurrentUnitID Property

Syntax CurrentUnitID: int32 { read-write, access after open-claim-enable }

Remarks Holds the current bump bar unit ID. Up to 32 units are allowed for one bump bar
device. The unit ID definitions range from BB_UID_1 to BB_UID_32.

Setting this property will update other properties to the current values that apply to
the specified unit.The following properties and methods apply only to the selected
bump bar unit ID:

• Properties: AutoToneDuration, AutoToneFrequency, BumpBarDataCount,
CapTone, and Keys.

• Methods: checkHealth, clearInput, clearOutput.

This property is initialized to BB_UID_1 when the device is first enabled
following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

DataCount Property
Syntax DataCount: int32 { read-only, access after open }

Remarks Holds the total number of DataEvents enqueued. All units online are included in
this value. The number of enqueued events for a specific unit ID is stored in the
BumpBarDataCount property.

The application may read this property to determine whether additional input is
enqueued, but has not yet been delivered because of other application processing,
freezing of events, or other causes.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also BumpBarDataCount Property, DataEvent Event, “Device Input Model” on
page 17.

70
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
ErrorString Property

Syntax ErrorString: string { read-only, access after open }

Remarks Holds a description of the error which occurred on the unit(s) specified by the
ErrorUnits property, when an error occurs for any method that acts on a bitwise
set of bump bar units.

If an error occurs during processing of an asynchronous request, the ErrorEvent
updates the property EventString instead.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also ErrorUnits Property.

ErrorUnits Property

Syntax ErrorUnits: int32 { read-only, access after open }

Remarks Holds a bitwise mask of the unit(s) that encountered an error, when an error occurs
for any method that acts on a bitwise set of bump bar units.

If an error occurs during processing of an asynchronous request, the ErrorEvent
updates the property EventUnits instead.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also ErrorString Property.

EventString Property

Syntax EventString: string { read-only, access after open-claim }

Remarks Holds a description of the error which occurred to the unit(s) specified by the
EventUnits property, when an ErrorEvent is delivered.

This property is initialized to an empty string by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also EventUnits Property, ErrorEvent.

71 Properties (UML attributes)
EventUnitID Property

Syntax EventUnitID: int32 { read-only, access after open-claim }

Remarks Holds the bump bar unit ID causing a DataEvent. This property is set just before
a DataEvent is delivered. The unit ID definitions range from BB_UID_1 to
BB_UID_32.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also DataEvent.

EventUnits Property

Syntax EventUnits: int32 { read-only, access after open-claim }

Remarks Holds a bitwise mask of the unit(s) when an OutputCompleteEvent,
ErrorEvent, or StatusUpdateEvent is delivered.

This property is initialized to zero by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also OutputCompleteEvent, ErrorEvent, StatusUpdateEvent.

Keys Property

Syntax Keys: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of keys on the bump bar unit specified by the CurrentUnitID
property.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CurrentUnitID Property.

72
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
Timeout Property

Syntax Timeout: int32 { read-write, access after open }

Remarks Holds the timeout value in milliseconds used by the bump bar device to complete
all output methods supported. If the device cannot successfully complete an
output method within the timeout value, then the method notifies the application
of the error.

This property is initialized to a Service dependent timeout following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also AsyncMode Property, ErrorString Property, bumpBarSound Method.

UnitsOnline Property

Syntax UnitsOnline: int32 { read-only, access after open-claim-enable }

Remarks Bitwise mask indicating the bump bar units online, where zero or more of the unit
constants BB_UID_1 (bit 0 on) through BB_UID_32 (bit 31 on) are bitwise ORed.
32 units are supported.

This property is initialized when the device is first enabled following the open
method. This property is updated as changes are detected, such as before a
StatusUpdateEvent is enqueued and during the checkHealth method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also checkHealth Method, StatusUpdateEvent.

73 Methods (UML operations)
Methods (UML operations)
bumpBarSound Method

Syntax bumpBarSound (units: int32, frequency: int32, duration: int32,
numberOfCycles: int32, interSoundWait: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which bump bar unit(s) to
operate on.

frequency Tone frequency in Hertz.

duration Tone duration in milliseconds.

numberOfCycles If FOREVER, then start bump bar sounding and, repeat
continuously. Else perform the specified number of
cycles.

interSoundWait When numberOfCycles is not one, then pause for
interSoundWait milliseconds before repeating the tone
cycle (before playing the tone again)

Remarks Sounds the bump bar enunciator for the bump bar(s) specified by the units
parameter.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

The duration of a tone cycle is:

duration parameter + interSoundWait parameter (except on the last tone cycle)

After the bump bar has started an asynchronous sound, then the sound may be
stopped by using the clearOutput method. (When a numberOfCycles value of
FOREVER was used to start the sound, then the application must use clearOutput
to stop the continuous sounding of tones.)

74
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:

numberOfCycles is neither a positive, non-zero value
nor FOREVER.

numberOfCycles is FOREVER when AsyncMode is
false.

A negative interSoundWait was specified.

units is zero or a non-existent unit was specified.

A unit in units does not support the CapTone capability.

The ErrorUnits and ErrorString properties may be
updated before the exception is thrown.

E_FAILURE An error occurred while communicating with one of the
bump bar units specified by the units parameter. The
ErrorUnits and ErrorString properties are updated
before the exception is thrown. (Can only occur if
AsyncMode is false.)

See Also AsyncMode Property, ErrorUnits Property, ErrorString Property, CapTone
Property, clearOutput Method.

75 Methods (UML operations)
checkHealth Method (Common)

Syntax checkHealth (level: int32):
void { raises-exception, use after open-claim-enable }

The level parameter indicates the type of health check to be performed on the
device. The following values may be specified:

Value Meaning

 CH_INTERNAL Perform a health check that does not physically change
the device. The device is tested by internal tests to the
extent possible.

 CH_EXTERNAL Perform a more thorough test that may change the
device.

 CH_INTERACTIVE Perform an interactive test of the device. The Device
Service will typically display a modal dialog box to
present test options and results.

Remarks When CH_INTERNAL or CH_EXTERNAL level is requested, the method will
check the health of the bump bar unit specified by the CurrentUnitID property.
When the current unit ID property is set to a unit that is not currently online, the
device will attempt to check the health of the bump bar unit and report a
communication error if necessary. The CH_INTERACTIVE health check
operation is up to the Service designer.

A text description of the results of this method is placed in the CheckHealthText
property.

The UnitsOnline property will be updated with any changes before returning to
the application.

This method is always synchronous.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_FAILURE An error occurred while communicating with the bump
bar unit specified by the CurrentUnitID property.

See Also CurrentUnitID Property, UnitsOnline Property.

76
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
clearInput Method (Common)

Syntax clearInput ():
void { raises-exception, use after open-claim }

Remarks Clears the device input that has been buffered for the unit specified by the
CurrentUnitID property.

Any data events that are enqueued – usually waiting for DataEventEnabled to be
set to true and FreezeEvents to be set to false – are also cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

See Also CurrentUnitID Property, “Device Input Model” on page 17.

clearOutput Method (Common)

Syntax clearOutput ():
void { raises-exception, use after open-claim }

Remarks Clears the tone outputs that have been buffered for the unit specified by the
CurrentUnitID property.

Any output complete and output error events that are enqueued – usually waiting
for DataEventEnabled to be set to true and FreezeEvents to be set to false – are
also cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

See Also CurrentUnitID Property, “Device Output Models” on page 20.

77 Methods (UML operations)
setKeyTranslation Method

Syntax setKeyTranslation (units: int32, scanCode: int32, logicalKey: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

units Bitwise mask indicating which bump bar unit(s) to set
key translation for.

scanCode The bump bar generated key scan code. Valid values 0-
255.

logicalKey The translated logical key value. Valid values 0-255.

Remarks Assigns a logical key value to a device-specific key scan code for the bump bar
unit(s) specified by the units parameter. The logical key value is used during
translation during the DataEvent.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:

scanCode or logicalKey are out of range.

units is zero or a non-existent unit was specified.

The ErrorUnits and ErrorString properties are
updated prior to notifying the application of the error.

See Also ErrorUnits Property, ErrorString Property, DataEvent.

78
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
Events (UML interfaces)

DataEvent

<< event >> upos::events::DataEvent
Status: int32 {read-only }

Description Notifies the application when status from the bump bar is available.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 See below.

The Status property is divided into four bytes. Depending on the Event Type,
located in the low word, the remaining 2 bytes will contain additional data. The
diagram below indicates how the Status property is divided:

Remarks Enqueued to present input data from a bump bar unit to the application. The low
word contains the Event Type. The high word contains additional data depending
on the Event Type. When the Event Type is BB_DE_KEY, the low byte of the
high word contains the LogicalKeyCode for the key pressed on the bump bar unit.
The LogicalKeyCode value is device independent. It has been translated by the
Service from its original hardware specific value. Valid ranges are 0-255.

The EventUnitID property is updated before delivering the event.

See Also “Device Input Model” on page 17, EventUnitID Property, DataEventEnabled
Property, FreezeEvents Property.

High Word Low Word (Event Type)

High Byte Low Byte

Unused. Always zero. LogicalKeyCode BB_DE_KEY

79 Events (UML interfaces)
DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific Bump Bar Service to provide events to the application
that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Device Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Device Service. This property is
settable.

Obj object Additional data whose usage varies by the EventNumber
and Device Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Bump Bar devices which may not have any
knowledge of the Device Service’s need for this event.

See Also “Events” on page 14, directIO Method.

80
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a Bump Bar error has been detected and a suitable
response by the application is necessary to process the error condition.

Attributes This event contains the following properties:

Attributes Type Description

ErrorCode int32 Result code causing the error event. See a list of Error
Codes on page 15.

ErrorCodeExtended int32 Extended Error code causing the error event. If
ErrorCode is E_EXTENDED, then see values below.
Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application (i.e., this property is settable). See
values below.

The ErrorLocus property may be one of the following:

Value Meaning

 EL_OUTPUT Error occurred while processing asynchronous output.

 EL_INPUT Error occurred while gathering or processing event-
driven input. No input data is available.

 EL_INPUT_DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

81 Events (UML interfaces)
The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error event listener may change ErrorResponse
to one of the following values:

Value Meaning

 ER_RETRY Use only when locus is EL_OUTPUT.
Retry the asynchronous output. The error state is exited.
Default when locus is EL_OUTPUT.

 ER_CLEAR Clear the buffered input data. The error state is exited.
Default when locus is EL_INPUT.

 ER_CONTINUEINPUT
Use only when locus is EL_INPUT_DATA.
Acknowledges the error and directs the Device to
continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and the DataEventEnabled property is
again set to true, then another ErrorEvent is delivered
with locus EL_INPUT.
Default when locus is EL_INPUT_DATA.

Remarks Enqueued when an error is detected while gathering data from or processing
asynchronous output for the bump bar.

Input error events are not delivered until the DataEventEnabled property is true,
so that proper application sequencing occurs.

The EventUnits and EventString properties are updated before the event is
delivered.

See Also “Device Output Models” on page 20, “Device States” on page 25,
DataEventEnabled Property, EventUnits Property, EventString Property.

82
UnifiedPOS Retail Peripheral Architecture Chapter 2

Bump Bar
OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the
OutputID attribute has completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description

OutputID int32 The ID number of the asynchronous output request that
is complete. The EventUnits property is updated before
delivering.

Remarks Enqueued when a previously started asynchronous output request completes
successfully.

See Also EventUnits Property, “Device Output Models” on page 20.

.

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that the bump bar has had an operation status change.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Reports a change in the power state of a bump bar unit.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on page 56.

Remarks Enqueued when the bump bar device detects a power state change.

Deviation from the standard StatusUpdateEvent (See “StatusUpdateEvent”
description on page 56)

• Before delivering the event, the EventUnits property is set to the units for
which the new power state applies.

• When the bump bar device is enabled, then a StatusUpdateEvent is enqueued
to specify the bitmask of online units.

• While the bump bar device is enabled, a StatusUpdateEvent is enqueued
when the power state of one or more units change. If more than one unit
changes state at the same time, the Service may choose to either enqueue
multiple events or to coalesce the information into a minimal number of events
applying to EventUnits.

See Also EventUnits Property.

C H A P T E R 3

Cash Changer

This Chapter defines the Cash Changer device category.

Summary

Properties (UML attributes)

Common Type Mutability Versiona

a. The version representation provides the mechanism for recognizing when a change
occurs to a property, method or event. This CashChanger definition was introduced
in an existing standard and was not changed for the UnifiedPOS version 1.4.

May Use After

AutoDisable: boolean {read-write} 1.2 Not Supported

CapPowerReporting: int32 {read-only} 1.3 open

CheckHealthText: string {read-only} 1.2 open

Claimed: boolean {read-only} 1.2 open

DataCount: int32 {read-only} 1.5 open

DataEventEnabled: boolean {read-write} 1.5 open

DeviceEnabled: boolean {read-write} 1.2 open & claim

FreezeEvents: boolean {read-write} 1.2 open

OutputID: int32 {read-only} 1.2 Not Supported

PowerNotify: int32 {read-write} 1.3 open

PowerState: int32 {read-only} 1.3 open

State: int32 {read-only} 1.2 --

DeviceControlDescription: string {read-only} 1.2 --

DeviceControlVersion: int32 {read-only} 1.2 --

DeviceServiceDescription: string {read-only} 1.2 open

DeviceServiceVersion: int32 {read-only} 1.2 open

PhysicalDeviceDescription: string {read-only} 1.2 open

PhysicalDeviceName: string {read-only} 1.2 open

84
UnifiedPOS Retail Peripheral Architecture Chapter 3

Cash Changer
Properties (Continued)
Specific (continued) Type Mutability Version May Use After

CapDeposit: boolean {read-only} 1.5 open

CapDepositDataEvent: boolean {read-only} 1.5 open

CapDiscrepancy: boolean {read-only} 1.2 open

CapEmptySensor: boolean {read-only} 1.2 open

CapFullSensor: boolean {read-only} 1.2 open

CapNearEmptySensor: boolean {read-only} 1.2 open

CapNearFullSensor: boolean {read-only} 1.2 open

CapPauseDeposit: boolean {read-only} 1.5 open

CapRepayDeposit: boolean {read-only} 1.5 open

AsyncMode: boolean {read-write} 1.2 open

AsyncResultCode: int32 {read-only} 1.2 open, claim, & enable

AsyncResultCodeExtended: int32 {read-only} 1.2 open, claim, & enable

CurrencyCashList: string {read-only} 1.2 open

CurrencyCode: string {read-write} 1.2 open

CurrencyCodeList: string {read-only} 1.2 open

CurrentExit: int32 {read-write} 1.2 open

DepositAmount: int32 {read-only} 1.5 open

DepositCashList: string {read-only} 1.5 open

DepositCodeList: string {read-only} 1.5 open

DepositCounts: string {read-only} 1.5 open

DepositStatus: int32 {read-only} 1.5 open, claim, & enable

DeviceExits: int32 {read-only} 1.2 open

DeviceStatus: int32 {read-only} 1.2 open, claim, & enable

ExitCashList: string {read-only} 1.2 open

FullStatus: int32 {read-only} 1.2 open, claim, & enable

85 Summary
Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
 void { raises exception }

close ():
 void { raises exception, use after open }

claim (timeout: int32):
 void { raises exception, use after open }

release ():
 void { raises exception, use after open, claim }

checkHealth (level: int32):
 void { raises exception, use after open, claim, enable }

clearInput ():
 void { raises exception, use after open, claim }

clearOutput (): Not supported
 void { }

directIO (command: int32, inout data: int32, inout obj: object):
 void { raises exception, use after open }

Specific

beginDeposit ():
void { raises exception, use after open, claim, enable }

dispenseCash (cashCounts: string):
void { raises exception, use after open, claim, enable }

dispenseChange (amount: int32):
void { raises exception, use after open, claim, enable }

endDeposit (success: int32):
void { raises exception, use after open, claim, enable }

fixDeposit ():
void { raises exception, use after open, claim, enable }

pauseDeposit (control: int32):
void { raises exception, use after open, claim, enable }

readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises exception, use after open, claim, enable }

86
UnifiedPOS Retail Peripheral Architecture Chapter 3

Cash Changer
Events (UML interfaces)
Name Type Mutability

upos::events::DataEvent

 Status: int32 { read-only }

upos::events::DirectIOEvent

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::StatusUpdateEvent

 Status: int32 { read-only }

87 General Information
General Information

The Cash Changer programmatic name is “CashChanger”.

Capabilities
The Cash Changer has the following capabilities:

• Reports the cash units and corresponding unit counts available in the Cash
Changer.

• Dispenses a specified amount of cash from the device in either bills, coins, or
both into a user-specified exit.

• Dispenses a specified number of cash units from the device in either bills,
coins, or both into a user-specified exit.

• Reports jam conditions within the device.

• Supports more than one currency.

The Cash Changer may also have the following additional capabilities:

• Reporting the fullness levels of the Cash Changer’s cash units. Conditions
which may be indicated include empty, near empty, full, and near full states.

• Reporting of a possible (or probable) cash count discrepancy in the data
reported by the readCashCounts method.

Release 1.5 and later – Support for the cash acceptance is added
as an option.

• The money (bills and coins) which is deposited into the device between the
start and end of cash acceptance is reported to the application. The contents of
the report are cash units and cash counts.

88
UnifiedPOS Retail Peripheral Architecture Chapter 3

Cash Changer
CashChanger Class Diagram

The following diagram shows the relationships between the CashChanger classes.

CashChangerConst

(from upos)

<<utility>>
UposConst

(from upos)

<<utility>>

UposException
(from upos)

<<exception>>
BaseControl

(from upos)

<<Interface>>

<<uses>>

<<sends>>

DataEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

CashChangerControl

<<capability>> CapDeposit : boolean
<<capability>> CapDepositDataEvent : boolean
<<capability>> CapDiscrepancy : boolean
<<capability>> CapEmptySensor : boolean
<<capability>> CapFullSensor : boolean
<<capability>> CapNearEmptySensor : boolean
<<capability>> CapNearFullSensor : boolean
<<capability>> CapPauseDeposit : boolean
<<capability>> CapRepayDeposit : boolean
<<prop>> AsyncMode : boolean
<<prop>> AsyncResultCode : int32
<<prop>> AsyncResultCodeExtended : int32
<<prop>> CurrencyCashList : string
<<prop>> CurrencyCode : string
<<prop>> CurrencyCodeList : string
<<prop>> CurrentExit : int32
<<prop>> DepositCashList : string
<<prop>> DepositCodeList : string
<<prop>> DepositCounts : string
<<prop>> DepositAmount : int32
<<prop>> DeviceExits : int32
<<prop>> ExitCashList : string
<<prop>> DepositStatus : int32
<<prop>> DeviceStatus : int32
<<prop>> FullStatus : int32

beginDeposit()
dispenseCash(cashCounts : string)
dispenseChange(amount : int32)
endDeposit(success : int32)
fixDeposit()
pauseDeposit(control : int32)
readCashCounts(cashCounts : string, discrepancy : boolean)

(from upos)

<<Interface>>

fires

fires

fires

ErrorEvent
(from events)

<<event>> fires

<<uses>>

<<sends>><<uses>>

89 General Information
Model

The general model of a Cash Changer is:

• Supports several cash types such as coins, bills, and combinations of coins and
bills. The supported cash type for a particular currency is noted by the list of
cash units in the CurrencyCashList property.

• Consists of any combination of features to aid in the cash processing functions
such as a cash entry holding bin, a number of slots or bins which can hold the
cash, and cash exits.

• Prior to Release 1.5 this specification provides programmatic control only for
the dispensing of cash. The accepting of cash by the device (for example, to
replenish cash) cannot be controlled by the APIs provided in this model. The
application can call readCashCounts to retrieve the current unit count for
each cash unit, but cannot control when or how cash is added to the device.

• May have multiple exits. The number of exits is specified in the DeviceExits
property. The application chooses a dispensing exit by setting the
CurrentExit property. The cash units which may be dispensed to the current
exit are indicated by the ExitCashList property. When CurrentExit is 1, the
exit is considered the “primary exit” which is typically used during normal
processing for dispensing cash to a customer following a retail transaction.
When CurrentExit is greater than 1, the exit is considered an “auxiliary exit.”
An “auxiliary exit” typically is used for special purposes such as dispensing
quantities or types of cash not targeted for the “primary exit.”

• Dispenses cash into the exit specified by CurrentExit when either
dispenseChange or dispenseCash is called. With dispenseChange, the
application specifies a total amount to be dispensed, and it is the responsibility
of the Cash Changer device or the Control to dispense the proper amount of
cash from the various slots or bins. With dispenseCash, the application
specifies a count of each cash unit to be dispensed.

• Dispenses cash either synchronously or asynchronously, depending on the
value of the AsyncMode property.

When AsyncMode is false, then the cash dispensing methods are performed
synchronously and the dispense method returns the completion status to the
application.

When AsyncMode is true and no exception is thrown by either
dispenseChange or dispenseCash, then the method is performed
asynchronously and its completion is indicated by a StatusUpdateEvent with
its Data property set to CHAN_STATUS_ASYNC. The request’s completion
status is set in the AsyncResultCode and AsyncResultCodeExtended
properties.

The values of AsyncResultCode and AsyncResultCodeExtended are the
same as those for the ErrorCode and ErrorCodeExtended properties of a
UposException when an error occurs during synchronous dispensing.

Nesting of asynchronous Cash Changer operations is illegal; only one
asynchronous method can be processed at a time.

90
UnifiedPOS Retail Peripheral Architecture Chapter 3

Cash Changer
The readCashCounts method may not be called while an asynchronous
method is being performed since doing so could likely report incorrect cash
counts.

• May support more than one currency. The CurrencyCode property may be
set to the currency, selecting from a currency in the list CurrencyCodeList.
CurrencyCashList, ExitCashList, dispenseCash, dispenseChange and
readCashCounts all act upon the current currency only.

• Sets the cash slot (or cash bin) conditions in the DeviceStatus property to
show empty and near empty status, and in the FullStatus property to show full
and near full status. If there are one or more empty cash slots, then
DeviceStatus is CHAN_STATUS_EMPTY, and if there are one or more full
cash slots, then FullStatus is CHAN_STATUS_FULL.

• After Release 1.5 — Support for cash acceptance is added as an
option.

• The cash acceptance model is as follows:

• Note that the AsyncMode property has no affect on methods that have been
added for cash acceptance, since these are treated as input methods.

• The dispensing of change function of this device is not dependent upon the
availability of a “cash acceptance” function option. Dispensing of change and
collection of money are two independent functions.

• Receipt of cash (cash acceptance function) is an option that may be provided
by the Cash Changer device. Cash acceptance into the “cash acceptance
mechanism” is started by invoking the beginDeposit method. The previous
values of the properties DepositCounts and DepositAmount are initialized to
zero.

• The total amount of cash placed into the device continues to be accumulated
until either the fixDeposit method or the pauseDeposit method is executed.
When the fixDeposit method is executed, the total amount of accumulated
cash is stored in the DepositCounts and DepositAmount properties. If the
CapDepositDataEvent capability was previously set to true, then a
DataEvent is generated to inform the application that cash has been collected.
If the pauseDeposit method is executed with a parameter value of
CHAN_DEPOSIT_PAUSE, then the counting of the deposited cash is
suspended and the current amount of accumulated cash is also updated to the
DepositCounts and DepositAmount properties. When pauseDeposit
method is executed with a parameter value of CHAN_DEPOSIT_RESTART,
counting of deposited cash is resumed and added to the accumulated totals.
When the fixDeposit method is executed, the current amount of accumulated
cash is updated in the DepositCounts and DepositAmount properties, and the
process remains static until an endDeposit method is executed. At this point
the “cash acceptance” mechanism is notified to stop accepting cash. If
endDeposit method receives a CHAN_DEPOSIT_CHANGE parameter, then
the mechanism will dispense cash change back to the user. If endDeposit is
invoked with a CHAN_DEPOSIT_NOCHANGE parameter, then the
mechanism will not dispense cash change back to the user. Finally, if
endDeposit is invoked with a CHAN_DEPOSIT_REPAY parameter, then all
collected cash is returned back to the user by the mechanism.

91 General Information
• Two types of Cash Changer mechanisms are covered by this standard. In one
case where CapRepayDeposit is true, the bins that are used for collecting the
cash are the same bins that are used for dispensing the cash as change. In the
other case where CapRepayDeposit is false, the bins that are used for
collecting the cash are different from the bins that are used for dispensing the
change. In the first case, if a transaction is aborted for any reason, the same
cash the user input to the mechanism will be returned to the user. In the second
case, it is up to the application to dispense an equivalent amount of cash (not
the same physical cash collected) back to the user for an aborted transaction.

• The Cash Changer mechanisms can only be used in one mode at a time. While
the mechanism is collecting deposited cash, it can not dispense change at the
same time. Therefore, while beginDeposit method is being executed, no
payment of change can occur. Only after an endDeposit method call can the
proper amount of change be determined (either by the application or by a
“smart” Cash Changer) and dispensed to the user. Each Cash Changer
manufacturer must determine the amount of time it takes to process the
received cash and place in storage bins before it completes the endDeposit
method.

• When the clearInput method is executed, the queued DataEvent associated
with the receipt of cash is cleared. The DepositCounts and DepositAmount
properties remain set and are not cleared.

92
UnifiedPOS Retail Peripheral Architecture Chapter 3

Cash Changer
• The processing flow of cash acceptance is shown in the following diagram.

beginDeposit ()

DepositCounts Property value &
DepositAmount Property value
are initialized.

pauseDeposit (Pause)

pauseDeposit (Restart)

fixDeposit ()

endDeposit (Change/Nochange/Repayment)

dispenseChange () or dispenseCash ()

DataEvent DepositCounts Property value &
DepositAmount Property value
are updated.

DepositCounts Property value &
DepositAmount Property value
are finalized.

If there is change, then this is
dispensed as follows

Dispense bills & coins.

Pause of cash acceptance.
(If CapPauseDeposit == true)

cash acceptance
(option)

Accepting cash

Application Cash Changer

No

Yes

Read amount of cash accepted
through the DepositAmount
Property. Check amount accepted
is > amount of sale.Compare

93 General Information
Cash Changer State Diagram

94
UnifiedPOS Retail Peripheral Architecture Chapter 3

Cash Changer
Device Sharing

The Cash Changer is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing some of the
properties, dispensing or collecting, or receiving events.

• See the “Summary” table for precise usage prerequisites.

95 Properties (UML attributes)
Properties (UML attributes)
AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, the dispenseCash and dispenseChange methods will be performed
asynchronously. If false, these methods will be performed synchronously.
This property is initialized to false by the Open method.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

See Also AsyncResultCode Property, AsyncResultCodeExtended Property,
dispenseChange Method, dispenseCash Method.

AsyncResultCode Property

Syntax AsyncResultCode: int32 { read-only, access after open-claim-enable }

Remarks Holds the completion status of the last asynchronous dispense request (i.e., when
dispenseCash or dispenseChange was called with AsyncMode true).
This property is set before a StatusUpdateEvent event is delivered with a Status
value of CHAN_STATUS_ASYNC.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also AsyncMode Property, dispenseCash Method, dispenseChange Method.

AsyncResultCodeExtended Property

Syntax AsyncResultCodeExtended: int32 { read-only, access after open-claim-
enable}

Remarks Holds the completion status of the last asynchronous dispense request (i.e., when
dispenseCash or dispenseChange was called with AsyncMode true).
This property is set before a StatusUpdateEvent event is delivered with a Status
value of CHAN_STATUS_ASYNC.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also AsyncMode Property, dispenseCash Method, dispenseChange Method.

96
UnifiedPOS Retail Peripheral Architecture Chapter 3

Cash Changer
CapDeposit Property Added in Release 1.5

Syntax CapDeposit: boolean { read-only, access after open }

Remarks If true, the Cash Changer supports cash acceptance.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also beginDeposit Method, endDeposit Method, fixDeposit Method, pauseDeposit
Method.

CapDepositDataEvent Property Added in Release 1.5

Syntax CapDepositDataEvent: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report a cash acceptance event.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also beginDeposit Method, endDeposit Method, fixDeposit Method, pauseDeposit
Method.

CapDiscrepancy Property

Syntax CapDiscrepancy: boolean { read-only, access after open }

Remarks If true, the readCashCounts method can report effective discrepancy values.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also readCashCounts Method.

CapEmptySensor Property

Syntax CapEmptySensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report the condition that some cash slots are empty.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also DeviceStatus Property, StatusUpdateEvent.

97 Properties (UML attributes)
CapFullSensor Property

Syntax CapFullSensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report the condition that some cash slots are full.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also FullStatus Property, StatusUpdateEvent.

CapNearEmptySensor Property

Syntax CapNearEmptySensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report the condition that some cash slots are nearly
empty.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also DeviceStatus Property, StatusUpdateEvent.

CapNearFullSensor Property

Syntax CapNearFullSensor: boolean { read-only, access after open }

Remarks If true, the Cash Changer can report the condition that some cash slots are nearly
full.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also FullStatus Property, StatusUpdateEvent.

CapPauseDeposit Property Added in Release 1.5

Syntax CapPauseDeposit: boolean { read-only, access after open }

Remarks If true, the Cash Changer has the capability to suspend cash acceptance processing
temporarily.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also pauseDeposit Method.

98
UnifiedPOS Retail Peripheral Architecture Chapter 3

Cash Changer
CapRepayDeposit Property Added in Release 1.5

Syntax CapRepayDeposit: boolean { read-only, access after open }

Remarks If true, the Cash Changer has the capability to return money that was deposited.
This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also endDeposit Method.

CurrencyCashList Property

Syntax CurrencyCashList: string { read-only, access after open }

Remarks Holds the cash units supported in the Cash Changer for the currency represented
by the CurrencyCode Property.

The string consists of ASCII numeric comma delimited values which denote the
units of coins, then the ASCII semicolon character (“;”) followed by ASCII
numeric comma delimited units of bills that can be used with the Cash Changer. If
a semicolon (“;”) is absent, then all units represent coins.

Below are sample CurrencyCashList values in Japan.
• “1,5,10,50,100,500” ---

1, 5, 10, 50, 100, 500 yen coin.

• “1,5,10,50,100,500;1000,5000,10000” ---
1, 5, 10, 50, 100, 500 yen coin and 1000, 5000, 10000 yen bill.

• “;1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when
CurrencyCode is set.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CurrencyCode Property.

99 Properties (UML attributes)
CurrencyCode Property

Syntax CurrencyCode: string { read-write, access after open }

Remarks Contains the active currency code to be used by Cash Changer operations. This
property is initialized to an appropriate value by the open method. This value is
guaranteed to be one of the set of currencies specified by the CurrencyCodeList
property.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL A value was specified that is not within
CurrencyCodeList.

See Also CurrencyCodeList Property.

CurrencyCodeList Property

Syntax CurrencyCodeList: string { read-only, access after open }

Remarks Holds a list of ASCII three-character ISO 4217 currency codes separated by
commas. For example, if the string is “JPY,USD”, then the Cash Changer supports
both Japanese and U.S. monetary units.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CurrencyCode Property.

100
UnifiedPOS Retail Peripheral Architecture Chapter 3

Cash Changer
CurrentExit Property

Syntax CurrentExit: int32 { read-write, access after open }

Remarks Holds the current cash dispensing exit. The value 1 represents the primary exit (or
normal exit), while values greater then 1 are considered auxiliary exits. Legal
values range from 1 to DeviceExits.

Below are examples of typical property value sets in Japan. CurrencyCode is
“JPY” and CurrencyCodeList is “JPY”.

• Cash Changer supports coins; only one exit supported :
CurrencyCashList = “1,5,10,50,100,500”
DeviceExits = 1
CurrentExit = 1 : ExitCashList = “1,5,10,50,100,500”

• Cash Changer supports both coins and bills; an auxiliary exit is used for
larger quantities of bills :
CurrencyCashList = “1,5,10,50,100,500;1000,5000,10000”
DeviceExits = 2
When CurrentExit = 1 : ExitCashList =
“1,5,10,50,100,500;1000,5000”
When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

• Cash Changer supports bills; an auxiliary exit is used for larger quantities
of bills :
CurrencyCashList = “;1000,5000,10000”
DeviceExits = 2
When CurrentExit = 1 : ExitCashList = “;1000,5000”
When CurrentExit = 2 : ExitCashList = “;1000,5000,10000”

This property is initialized to 1 by the open method.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid CurrentExit value was specified.

See Also CurrencyCashList Property, DeviceExits Property, ExitCashList Property.

101 Properties (UML attributes)
DepositAmount Property Added in Release 1.5

Syntax DepositAmount: int32 { read-only, access after open }

Remarks The total amount of deposited cash.

For example, if the currency is Japanese yen and DepositAmount is set to 18057,
after the call to the beginDeposit method, there would be 18,057 yen in the Cash
Changer.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CurrencyCode Property.

DepositCashList Property Added in Release 1.5

Syntax DepositCashList: string { read-only, access after open }

Remarks Holds the cash units supported in the Cash Changer for the currency represented
by the CurrencyCode property. It is set to null when the cash acceptance process
is not supported.

It consists of ASCII numeric comma delimited values which denote the units of
coins, then the ASCII semicolon character (“;”) followed by ASCII numeric
comma delimited values for the bills that can be used with the Cash Changer. If
the semicolon (“;”) is absent, then all units represent coins.

Below are sample DepositCashList values in Japan.
• “1,5,10,50,100,500” ---

1, 5, 10, 50, 100, 500 yen coin.

• “1,5,10,50,100,500;1000,5000,10000” ---
1, 5, 10, 50, 100, 500 yen coin and 1000, 5000, 10000 yen bill.

• “;1000,5000,10000” ---
1000, 5000, 10000 yen bill.

This property is initialized by the open method, and is updated when
CurrencyCode is set.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CurrencyCode Property.

102
UnifiedPOS Retail Peripheral Architecture Chapter 3

Cash Changer
DepositCodeList Property Added in Release 1.5

Syntax DepositCodeList: string { read-only, access after open }

Remarks Holds the currency code indicators for cash accepted. It is set to null when the cash
acceptance process is not supported.

 It is a list of ASCII three-character ISO 4217 currency codes separated by com-
mas. For example, if the string is “JPY,USD”, then the Cash Changer supports
both Japanese and U.S. monetary units.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CurrencyCode Property.

DepositCounts Property Added in Release 1.5

Syntax DepositCounts: string { read-only, access after open }

Remarks Holds the total of the cash accepted by the cash units. The format of the string is
the same as cashCounts in the dispenseCash method. Cash units inside the string
are the same as the DepositCashList property, and are in the same order. It is set
to null when the cash acceptance function is not supported.

For example if the currency is Japanese yen and string of the DepositCounts
property is set to

1:80,5:77,10:0,50:54,100:0,500:87

After the call to the beginDeposit method, there would be 80 one yen coins, 77
five yen coins, 54 fifty yen coins, and 87 five hundred yen coins in the Cash
Changer.

This property is initialized by the open method
.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CurrencyCode Property.

103 Properties (UML attributes)
DepositStatus Property Added in Release 1.5

Syntax DepositStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current status of the cash acceptance operation. It may be one of the
following values:

Value Meaning

CHAN_STATUS_DEPOSIT_START
Cash acceptance started.

CHAN_STATUS_DEPOSIT_END
Cash acceptance stopped.

CHAN_STATUS_DEPOSIT_NONE
Cash acceptance not supported.

CHAN_STATUS_DEPOSIT_COUNT
Counting or repaying the deposited money.

CHAN_STATUS_DEPOSIT_JAM
A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. This
property is set to CHAN_STATUS_DEPOSIT_END after initialization, or to
CHAN_STATUS_DEPOSIT_NONE if the device does not support cash
acceptance.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

DeviceExits Property

Syntax DeviceExits: int32 { read-only, access after open }

Remarks The number of exits for dispensing cash.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CurrentExit Property.

104
UnifiedPOS Retail Peripheral Architecture Chapter 3

Cash Changer
DeviceStatus Property

Syntax DeviceStatus: int32 { read-only, access after open-claim-enable }

Remarks Holds the current status of the Cash Changer. It may be one of the following:

Value Meaning

CHAN_STATUS_OK The current condition of the Cash Changer is
satisfactory.

CHAN_STATUS_EMPTY
Some cash slots are empty.

CHAN_STATUS_NEAREMPTY
Some cash slots are nearly empty.

CHAN_STATUS_JAM A mechanical fault has occurred.

This property is initialized and kept current while the device is enabled. If more
than one condition is present, then the order of precedence starting at the highest
is: fault, empty, and near empty.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

ExitCashList Property

Syntax ExitCashList: string { read-only, access after open }

Remarks Holds the cash units which may be dispensed to the exit which is denoted by
CurrentExit property. The supported cash units are either the same as
CurrencyCashList, or a subset of it. The string format is identical to that of
CurrencyCashList.
This property is initialized by the open method, and is updated when
CurrencyCode or CurrentExit is set.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CurrencyCode Property, CurrencyCashList Property, CurrentExit Property.

FullStatus Property

Syntax FullStatus: int32 { read-only, access after open }

Remarks Holds the current full status of the cash slots. It may be one of the following:

Value Meaning

CHAN_STATUS_OK All cash slots are neither nearly full nor full.
CHAN_STATUS_FULL Some cash slots are full.
CHAN_STATUS_NEARFULL

Some cash slots are nearly full.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

105 Methods (UML operations)
Methods (UML operations)

beginDeposit Method Added in Release 1.5

Syntax beginDeposit ():
void { raises-exception, use after open-claim-enable }

Remarks Cash acceptance is started.

The following property values are initialized by the call to this method:
• The value of each cash unit of the DepositCounts property is set to zero.

• The DepositAmount property is set to zero.

After calling this method, if CapDepositDataEvent is true, cash acceptance is
reported by DataEvents until fixDeposit is called while the deposit process is not
paused.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL Either the Cash Changer does not support cash
acceptance, or the call sequence is not correct.

See Also DepositCounts Property, DepositAmount Property, CapDepositDataEvent
Property, endDeposit Method, fixDeposit Method, pauseDeposit Method.

106
UnifiedPOS Retail Peripheral Architecture Chapter 3

Cash Changer
dispenseCash Method

Syntax dispenseCash (cashCounts: string):
void { raises-exception, use after open-claim-enable }

The cashCounts parameter contains the dispensing cash units and counts,
represented by the format of “cash unit:cash counts, ..;.., cash unit:cash counts”.
Units before “;” represent coins, and units after “;” represent bills. If “;” is absent,
then all units represent coins.

Remarks Dispenses the cash from the Cash Changer into the exit specified by CurrentExit.
The cash dispensed is specified by pairs of cash units and counts.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Some cashCounts examples, using Japanese yen as the currency, are shown below.

• “10:5,50:1,100:3,500:1”
Dispense 5 ten yen coins, 1 fifty yen coins, 3 one hundred yen coins, 1 five
hundred yen coins.

• “10:5,100:3;1000:10”
Dispense 5 ten yen coins, 3 one hundred yen coins, and 10 one thousand
yen bills.

• “;1000:10,10000:5”
Dispense 10 one thousand yen bills and 5 ten thousand yen bills.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cash cannot be dispensed because an asynchronous
method is in progress.

E_ILLEGAL One of the following errors occurred:
• The cashCounts parameter value was illegal for the

current exit.
• Cash could not be dispensed because cash

acceptance was in progress.

E_EXTENDED ErrorCodeExtended = ECHAN_OVERDISPENSE:
The specified cash cannot be dispensed because of a
cash shortage.

See Also AsyncMode Property, CurrentExit Property.

107 Methods (UML operations)
dispenseChange Method

Syntax dispenseChange (amount: int32):
void { raises-exception, use after open-claim-enable }

The amount parameter contains the amount of change to be dispensed. It is up to
the Cash Changer to determine what combination of bills and coins will satisfy the
tender requirements from its available supply of cash.

Remarks Dispenses the specified amount of cash from the Cash Changer into the exit
represented by CurrentExit.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY The specified change cannot be dispensed because an
asynchronous method is in progress.

E_ILLEGAL One of the following errors occurred:
• A negative or zero amount was specified.
• The amount could not be dispensed based on the

values specified in ExitCashList for the current
exit.

• Change could not be dispensed because cash
acceptance was in progress.

E_EXTENDED ErrorCodeExtended = ECHAN_OVERDISPENSE :
The specified change can not be dispensed because of a
cash shortage.

See Also AsyncMode Property, CurrentExit Property.

108
UnifiedPOS Retail Peripheral Architecture Chapter 3

Cash Changer
endDeposit Method Added in Release 1.5

Syntax endDeposit (success: int32):
void { raises-exception, use after open-claim-enable }

The success parameter holds the value of how to deal with the cash that was
deposited. Contains one of the following values:

Parameter Description

CHAN_DEPOSIT_CHANGE The deposit is accepted and the deposited
amount is greater than the amount required.

CHAN_DEPOSIT_NOCHANGE The deposit is accepted and the deposited
amount is equal to or less than the amount
required.

CHAN_DEPOSIT_REPAY The deposit is to be repaid through the cash
deposit exit or the cash payment exit.

Remarks Cash acceptance is completed.

Before calling this method, the application must calculate the difference between
the amount of the deposit and the amount required.

If the deposited amount is greater than the amount required then success is set to
CHAN_DEPOSIT_CHANGE. If the deposited amount is equal to or less than the
amount required then success is set to CHAN_DEPOSIT_NOCHANGE.

If success is set to CHAN_DEPOSIT_REPAY then the deposit is repaid through
either the cash deposit exit or the cash payment exit without storing the actual
deposited cash.

When the deposit is repaid, it is repaid in the exact cash unit quantities that were
deposited. Depending on the actual device, the cash repaid may be the exact same
bills and coins that were deposited, or it may not.

The application must call the fixDeposit method before calling this method.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:
• Cash acceptance is not supported.
• The call sequence is invalid. beginDeposit and

fixDeposit must be called in sequence before
calling this method.

See Also DepositCounts Property, DepositAmount Property, CapDepositDataEvent
Property, beginDeposit Method, fixDeposit Method, pauseDeposit Method.

109 Methods (UML operations)
fixDeposit Method Added in Release 1.5

Syntax fixDeposit ():
void { raises-exception, use after open-claim-enable }

Remarks When this method is called, all property values are updated to reflect the current
values in the Cash Changer.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:
• Cash acceptance is not supported.
• The call sequence is invalid. beginDeposit must be

called before calling this method.

See Also DepositCounts Property, DepositAmount Property, beginDeposit Method,
endDeposit Method, pauseDeposit Method.

110
UnifiedPOS Retail Peripheral Architecture Chapter 3

Cash Changer
pauseDeposit Method Added in Release 1.5

Syntax pauseDeposit (control: int32):
void { raises-exception, use after open-claim-enable }

The control parameter contains one of the following values:

Parameter Description

CHAN_DEPOSIT_PAUSE Cash acceptance is paused.

CHAN_DEPOSIT_RESTART Cash acceptance is resumed.

Remarks Called to suspend or resume the process of depositing cash.

If control is CHAN_DEPOSIT_PAUSE, the cash acceptance operation is paused.
The deposit process will remain paused until this method is called with control set
to CHAN_DEPOSIT_RESTART. It is valid to call fixDeposit then endDeposit
while the deposit process is paused.

When the deposit process is paused, the depositCounts and depositAmount
properties are updated to reflect the current state of the Cash Changer. The
property values are not changed again until the deposit process is resumed.

If control is CHAN_DEPOSIT_RESTART, the deposit process is resumed.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:
• Cash acceptance is not supported.
• The call sequence is invalid. beginDeposit must be

called before calling this method.
• The deposit process is already paused and control is

set to CHAN_DEPOSIT_PAUSE, or the deposit
process is not paused and control is set to
CHAN_DEPOSIT_RESTART.

See Also DepositCounts Property, DepositAmount Property, CapDepositDataEvent
Property, CapPauseDeposit Property, beginDeposit Method, endDeposit
Method, fixDeposit Method.

111 Methods (UML operations)
readCashCounts Method

Syntax readCashCounts (inout cashCounts: string, inout discrepancy: boolean):
void { raises-exception, use after open-claim-enable }

Parameter Description

cashCounts The cash count data is placed into the string cashCounts.

discrepancy If discrepancy is set to true by this method, then there is
some cash which was not able to be included in the
counts reported in cashCounts; otherwise it is set false.

Remarks The format of the string cashCounts is the same as cashCounts in the
dispenseCash method. Each unit in cashCounts matches a unit in the
CurrencyCashList property, and is in the same order.

For example if the currency is Japanese yen and string returned in cashCounts is
set to:

1:80,5:77,10:0,50:54,100:0,500:87
as a result of calling the readCashCounts method, then there would be 80 one
yen coins, 77 five yen coins, 54 fifty yen coins, and 87 five hundred yen coins in
the Cash Changer.

If CapDiscrepancy property is false, then discrepancy is always false.

Usually, the cash total calculated by cashCounts parameter is equal to the cash
total in a Cash Changer. There are some cases where a discrepancy may occur
because of existing uncountable cash in a Cash Changer. An example would be
when a cash slot is “overflowing” such that the device has lost its ability to
accurately detect and monitor the cash.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cash units and counts can not be read because an
asynchronous method is in process.

See Also dispenseCash Method, CapDiscrepancy Property, CurrencyCashList Property.

112
UnifiedPOS Retail Peripheral Architecture Chapter 3

Cash Changer
Events (UML interfaces)
DataEvent Added in Release 1.5

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when the Cash Changer has a status change.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 The Status parameter contains zero.

DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific Cash Changer Service to provide events to the
application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Device Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Device Service. This property is
settable.

Obj object Additional data whose usage varies by the EventNumber
and Device Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Cash Changer devices which may not have
any knowledge of the Device Service’s need for this event.

See Also “Events” on page 14, directIO Method.

113 Events (UML interfaces)
StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the Cash
Changer device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the status of the unit. See values
below.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on pa ge56.

The Status parameter contains the Cash Changer status condition:

Value Meaning

CHAN_STATUS_EMPTY Some cash slots are empty.

CHAN_STATUS_NEAREMPTY Some cash slots are nearly empty.

CHAN_STATUS_EMPTYOK No cash slots are either empty or nearly
empty.

CHAN_STATUS_FULL Some cash slots are full.

CHAN_STATUS_NEARFULL Some cash slots are nearly full.

CHAN_STATUS_FULLOK No cash slots are either full or nearly full.

CHAN_STATUS_JAM A mechanical fault has occurred.

CHAN_STATUS_JAMOK A mechanical fault has recovered.

CHAN_STATUS_ASYNC Asynchronously performed method has
completed.

Remarks Fired when the Cash Changer detects a status change.

For changes in the fullness levels, the Cash Changer is only able to fire
StatusUpdateEvents when the device has a sensor capable of detecting the full,
near full, empty, and/or near empty states and the corresponding capability
properties for these states are set.

Jam conditions may be reported whenever this condition occurs; likewise for
asynchronous method completion.

The completion statuses of asynchronously performed methods are placed in the
AsyncResultCode and AsyncResultCodeExtended properties.

See Also AsyncResultCode Property, AsyncResultCodeExtended Property, “Events” on
page 14.

114
UnifiedPOS Retail Peripheral Architecture Chapter 3

Cash Changer

C H A P T E R 4

Cash Drawer

This Chapter defines the Cash Drawer device category.

Summary

Properties (UML attributes)

Common Type Mutability Versiona

a. The version representation provides the mechanism for recognizing when a change
occurs to a property, method or event. This POS Printer definition was introduced
in an existing standard and was not changed for the UnifiedPOS version 1.4.

May Use After

AutoDisable: boolean { read-write } 1.4 Not Supported

CapPowerReporting: int32 { read-only } 1.4 open

CheckHealthText: string { read-only } 1.4 open

Claimed: boolean { read-only } 1.4 open

DataCount: int32 { read-only } 1.4 Not Supported

DataEventEnabled: boolean { read-write } 1.4 Not Supported

DeviceEnabled: boolean { read-write } 1.4 open

FreezeEvents: boolean { read-write } 1.4 open

OutputID: int32 { read-only } 1.4 Not Supported

PowerNotify: int32 { read-write } 1.4 open

PowerState: int32 { read-only } 1.4 open

State: int32 { read-only } 1.4 --

DeviceControlDescription: string { read-only } 1.4 --

DeviceControlVersion: int32 { read-only } 1.4 --

DeviceServiceDescription: string { read-only } 1.4 open

DeviceServiceVersion: int32 { read-only } 1.4 open

PhysicalDeviceDescription: string { read-only } 1.4 open

PhysicalDeviceName: string { read-only } 1.4 open

116
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Drawer
Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
 void { raises exception }

close ():
 void { raises exception, use after open }

claim (timeout: int32):
 void { raises exception, use after open }

release ():
 void { raises exception, use after open, claim }

checkHealth (level: int32):
 void { raises exception, use after open, enable } Note

clearInput (): Not supported
 void { }

clearOutput (): Not supported
 void { }

directIO (command: int32, inout data: int32, inout obj: object):
 void { raises exception, use after open }

Specific

openDrawer (timeout: int32):
void { raises exception, use after open, enable } Note

waitForDrawerClose (timeout: int32):
void { raises exception, use after open, enable } Note

Note: Also requires that no other application has claimed the cash drawer.

Properties (Continued)
Specific Type Mutability Version May Use After

CapStatus: boolean { read-only } 1.4 open

CapStatusMultiDrawerDetect: boolean { read-only } 1.5 open

DrawerOpened: boolean { read-only } 1.4 open & enable

117 Summary
Events (UML interfaces)
Name Type Mutability

upos::events::DirectIOEvent

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::StatusUpdateEvent

 Status: int32 { read-only }

118
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Drawer
General Information

The Cash Drawer programmatic name is “CashDrawer”.

Capabilities

The Cash Drawer Control has the following capability:

• Supports a command to “open” the cash drawer.

The cash drawer may have the following additional capability:

• Drawer status reporting of such a nature that the service can determine
whether a particular drawer is open or closed in environments where the
drawer is the only drawer accessible via a hardware port.

• Drawer unique status reporting of such a nature that the service can determine
whether a particular drawer is open or closed in environments where more
than one drawer is accessible via the same hardware port.

Device Sharing

The cash drawer is a sharable device. Its device sharing rules are:

• After opening and enabling the device, the application may access all
properties and methods and will receive status update events.

• If more than one application has opened and enabled the device, each of these
applications may access its properties and methods. Status update events are
delivered to all of these applications.

• If one application claims the cash drawer, then only that application may call
openDrawer and waitForDrawerClose. This feature provides a degree of
security, such that these methods may effectively be restricted to the main
application if that application claims the device at startup.

• See the “Summary” table for precise usage prerequisites.

119 Properties (UML attributes)
Properties (UML attributes)
CapStatus Property

Syntax CapStatus: boolean { read-only, access after open }

Remarks If true, the drawer can report status. If false, the drawer is not able to determine
whether the cash drawer is open or closed.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapStatusMultiDrawerDetect Property Added in Release 1.5

Syntax CapStatusMultiDrawerDetect: boolean { read-only, access after open }

Remarks If true, the status unique to each drawer in a multiple cash drawer configuration1
can be reported.

If false, the following possibilities exist:

DrawerOpened: value of false indicates that there are no drawers open.

DrawerOpened: value of true indicates that at least one drawer is open and it
might be the particular drawer in question. This case can occur in multiple cash
drawer configurations where only one status is reported indicating either a) all
drawers are closed, or b) one or more drawers are open.

Note: A multiple cash drawer configuration is defined as one where a terminal or
printer supports opening more than one cash drawer independently via the same
channel or hardware port. A typical example is a configuration where a “Y” cable,
connected to a single hardware printer port, has separate drawer open signal lines
but the drawer open status from each of the drawers is “wired-or” together. It is not
possible to determine which drawer is open.

This property is only meaningful if CapStatus is true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CapStatus Property, DrawerOpened Property.

1. Multiple cash drawer configuration -- A hardware configuration where a printer or terminal
controls more than one cash drawer independently via the same channel or hardware port. A
typical example is a configuration with a “Y” cable connected to a single hardware port that
controls two cash drawers.

120
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Drawer
DrawerOpened Property

Syntax DrawerOpened: boolean { read-only, access after open }

Remarks If true, the drawer is open. If false, the drawer is closed.

If the capability CapStatus is false, then the device does not support status
reporting, and this property is always false.

Note: If the capability CapStatusMultiDrawerDetect is false, then a
DrawerOpened value of true indicates at least one drawer is open, and it might be
the particular drawer in question in a multiple cash drawer configuration. See
CapStatusMultiDrawerDetect for further clarification.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CapStatus Property, CapStatusMultiDrawerDetect Property.

121 Methods (UML operations)
Methods (UML operations)
openDrawer Method

Syntax openDrawer ():
void { raises-exception, use after open-claim-enable }

Remarks Opens the drawer.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

waitForDrawerClose Method

Syntax waitForDrawerClose (beepTimeout: int32, beepFrequency: int32,
beepDuration: int32, beepDelay: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

beepTimeout Number of milliseconds to wait before starting an alert
beeper.

beepFrequency Audio frequency of the alert beeper in hertz.

beepDuration Number of milliseconds that the beep tone will be
sounded.

beepDelay Number of milliseconds between the sounding of beeper
tones.

Remarks Waits until the cash drawer is closed. If the drawer is still open after beepTimeout
milliseconds, then the system alert beeper is started.

Not all POS implementations may support the typical PC speaker system alert
beeper. However, by setting these parameters the application will insure that the
system alert beeper will be utilized if it is present.

Unless a UposException is thrown, this method will not return to the application
while the drawer is open. In addition, in a multiple cash drawer configuration
where the CapStatusMultiDrawerDetect property is false, this method will not
return to the application while any of the drawers are open. When all drawers are
closed, the beeper is turned off.

If CapStatus is false, then the device does not support status reporting, and this
method will return immediately.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

See Also CapStatus Property, CapStatusMultiDrawerDetect Property.

122
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Drawer
Events (UML interfaces)

DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific Cash Drawer Service to provide events to the
application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s Cash Drawer devices which may not have any
knowledge of the Service’s need for this event.

See Also “Events” on page 14, directIO Method.

123 Events (UML interfaces)
StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application when the status of the Cash Drawer changes.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 The status reported from the Cash Drawer.

The Status property has one of the following values:

Value Meaning

CASH_SUE_DRAWERCLOSED The drawer is closed.

CASH_SUE_DRAWEROPEN The drawer is open.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” on page 56.

Remarks If CapStatus is false, then the device does not support status reporting, and this
event will never be delivered to report status changes.

If CapStatusMultiDrawerDetect is false, then a CASH_SUE_DRAWEROPEN
value indicates that at least one cash drawer is open and it might be the particular
drawer in question for multiple cash drawer configurations.

See Also “Events” on page 14, CapStatus Property, CapStatusMultiDrawerDetect
Property.

124
UnifiedPOS Retail Peripheral Architecture Chapter 4

Cash Drawer

C H A P T E R 5

CAT - Credit Authorization Terminal

This Chapter defines the Credit Authorization Terminal device category.

Summary

Properties (UML attributes)

Common Type Mutability Versiona

a. The version representation provides the mechanism for recognizing when a change
occurs to a property, method or event. The CAT device was introduced in an
existing standard and was added for the UnifiedPOS version 1.5.

May Use After

AutoDisable: boolean { read-write } 1.4 Not Supported

CapPowerReporting: int32 { read-only } 14 open

CheckHealthText: string { read-only } 1.4 open

Claimed: boolean { read-only } 1.4 open

DataCount: int32 { read-only } 1.4 Not Supported

DataEventEnabled: boolean { read-write } 1.4 Not Supported

DeviceEnabled: boolean { read-write } 1.4 open & claim

FreezeEvents: boolean { read-write } 1.4 open

OutputID: int32 { read-only } 1.4 open

PowerNotify: int32 { read-write } 1.4 open

PowerState: int32 { read-only } 1.4 open

State: int32 { read-only } 1.4 --

DeviceControlDescription: string { read-only } 1.4 --

DeviceControlVersion: int32 { read-only } 1.4 --

DeviceServiceDescription: string { read-only } 1.4 open

DeviceServiceVersion: int32 { read-only } 1.4 open

PhysicalDeviceDescription: string { read-only } 1.4 open

PhysicalDeviceName: string { read-only } 1.4 open

126
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
Properties (Continued)
Specific Type Mutability Version May Use After

AccountNumber: string { read-only } 1.4 open

AdditionalSecurityInformation: string { read-write } 1.4 open

ApprovalCode: string { read-only } 1.4 open

AsyncMode:

CapAdditionalSecurityInformation:

boolean

boolean

{ read-write }

{ read-only }

1.4

1.4

open

open

CapAuthorizeCompletion:

CapAuthorizePreSales:

CapAuthorizeRefund:

CapAuthorizeVoid:

CapAuthorizeVoidPreSales:

CapCenterResultCode:

CapCheckCard:

CapDailyLog:

CapInstallments:

CapPaymentDetail:

CapTaxOthers:

CapTransactionNumber:

CapTrainingMode:

CardCompanyID:

CenterResultCode:

DailyLog:

PaymentCondition:

PaymentDetail:

PaymentMedia:

SequenceNumber:

SlipNumber:

TrainingMode:

TransactionNumber:

TransactionType:

boolean

boolean

boolean

boolean

boolean

boolean

boolean

int32

boolean

boolean

boolean

boolean

boolean

string

string

string

int32

string

int32

int32

string

boolean

string

int32

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-write }

{ read-only }

{ read-only }

{ read-write }

{ read-only }

{ read-only }

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.5

1.4

1.4

1.4

1.4

1.4

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

127 Summary
Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
 void { raises exception }

close ():
 void { raises exception, use after open }

claim (timeout: int32):
 void { raises exception, use after open }

release ():
 void { raises exception, use after open, claim }

checkHealth (level: int32):
 void { raises exception, use after open, claim, enable }

clearInput (): Not supported
 void { }

clearOutput ():
 void { raises exception, use after open, claim }

directIO (command: int32, inout data: int32, inout obj: object):
 void { raises exception, use after open }

Specific

Name

accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32):
 void { raises exception, use after open, claim, enable }

authorizeCompletion (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):

 void { raises exception, use after open, claim, enable }

authorizePreSales (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):

 void { raises exception, use after open, claim, enable }

authorizeRefund (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):

 void { raises exception, use after open, claim, enable }

authorizeSales (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):

 void { raises exception, use after open, claim, enable }

authorizeVoid (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):

 void { raises exception, use after open, claim, enable }

128
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
authorizeVoidPreSales (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):

 void { raises exception, use after open, claim, enable }

checkCard (sequenceNumber: int32, timeout: int32):
 void { raises exception, use after open, claim, enable }

Events (UML interfaces)
Name Type Mutability

upos::events::DirectIOEvent

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse int32 { read-write }

upos::events::OutputCompleteEvent

 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent

 Status: int32 { read-only }

129 General Information
General Information

The CAT programmatic name is “CAT”.

Description of terms
• Authorization method

Methods defined by this device class that have the Authorize prefix in their
name. These methods require communication with an approval agency.

• Authorization operation

The period from the invocation of an authorization method until the
authorization is completed. This period differs depending upon whether
operating in synchronous or asynchronous mode.

• Credit Authorization Terminal (CAT) Device

A CAT device typically consists of a display, keyboard, magnetic stripe card
reader, receipt printing device, and a communications device. CAT devices
are predominantly used in Japan where they are required by law. Essentially a
CAT device can be considered a device that shields the encryption, message
formatting, and communication functions of an electronic funds transfer
(EFT) operation from an application.

• Purchase

The transaction that allows credit card or debit card payment at the POS. It is
independent of payment methods (for example, lump-sum payment, payment
in installments, revolving payment, etc.).

• Cancel Purchase

The transaction to request voiding a purchase on the date of purchase.

• Refund Purchase

The transaction to request voiding a purchase after the date of purchase. This
differs from cancel purchase in that a cancel purchase operation can often be
handled by updating the daily log at the CAT device, while the refund
purchase operation typically requires interaction with the approval agency.

• Authorization Completion

The state of a purchase when the response from the approval agency is
“suspended”. The purchase is later completed after a voice approval is
received from the card company.

• Pre-Authorization

The transaction to reserve an estimated amount in advance of the actual
purchase with customer's credit card presentation and card entry at CAT.

• Cancel Pre-Authorization

The transaction to request canceling pre-authorization.

130
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
• Card Check

The transaction to perform a negative card file validation of the card presented
by the customer. Typically negative card files contain card numbers that are
known to fail approval. Therefore the Card Check operation removes then
need for communication to the approval agency in some instances.

• Daily log

The daily log of card transactions that have been approved by the card
companies.

• Payment condition

Condition of payment such as lump-sum payment, payment by bonus,
payment in installments, revolving payment, and the combination of those
payments. Debit payment is also available. See the PaymentCondition,
PaymentMedia, and PaymentDetail properties for details.

• Approval agency

The agency to decide whether or not to approve the purchase based on the card
information, the amount of purchase, and payment type. The approval agency
is generally the card company.

Capabilities
The CAT control is capable of the following general mode of operation:

• This standard defines the application interface with the CAT control and does
not depend on the CAT device hardware implementation. Therefore, the
hardware implementation of a CAT device may be as follows:

• Separate type (POS interlock)

The dedicated CAT device is externally connected to the POS (for
instance, via an RS-232 connection).

• Built-in type

The hardware structure is the same as the separate type but is installed
within the POS housing.

• The CAT device receives each authorization request containing a purchase
amount and tax from CAT control.

• The CAT device generally requests the user to swipe a magnetic card when it
receives an authorization request from CAT control.

• Once a magnetic card is swiped at the CAT device, the device sends the
purchase amount and tax to the approval agency using the communications
device.

• The CAT device returns the result from the approval agency to the CAT
control. The returned data will be stored in the authorization properties by the
CAT control for access by applications.

131 General Information
CAT Class Diagram

UposConst
(from upos)

<<utility>>

UposException
(from upos)

<<exception>>

BaseControl
(from upos)

<<Interface>>
<<uses>> <<sends>>

CATConst
(from upos)

<<utility>>

ErrorEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

OutputCompleteEvent
(from events)

<<event>>

CATControl

<<capability>> CapAdditionalSecurityInformation : boolean
<<capability>> CapAuthorizeCompletion : boolean
<<capability>> CapAuthorizePreSales : boolean
<<capability>> CapAuthorizeRefund : boolean
<<capability>> CapAuthorizeVoidPreSales : boolean
<<capability>> CapCenterResultCode : boolean
<<capability>> CapCheckCard : boolean
<<capability>> CapDailyLog : int32
<<capability>> CapInstallments : boolean
<<capability>> CapPaymentDetail : boolean
<<capability>> CapTaxOthers : boolean
<<capability>> CapTransactionNumber : boolean
<<capability>> CapTrainingMode : boolean
<<prop>> AccountNumber : string
<<prop>> AdditionalSecurityInformation : string
<<prop>> ApprovalCode : string
<<prop>> AsyncMode : boolean
<<prop>> CardCompanyID : string
<<prop>> CenterResultCode : string
<<prop>> DailyLog : string
<<prop>> PaymentCondition : int32
<<prop>> PaymentDetail : string
<<prop>> PaymentMedia : int32
<<prop>> SequenceNumber : int32
<<prop>> SlipNumber : int32
<<prop>> TrainingMode . BOOLEAN
<<prop>> TransactionNumber : string
<<prop>> TransactionType : int32

accessDailyLog()
authorizeCompletion()
authorizePreSales()
authorizeRefund()
authorizeSales()
authorizeVoid()
authorizeVoidPreSales()
checkCard()

(from upos)

<<Interface>>

<<uses>>

fires

fires

fires

<<sends>><<uses>>

fires

132
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
Model
The general models for the CAT control are shown below:

• The CAT control basically follows the output device model. However,
multiple methods cannot be issued for asynchronous output; only 1
outstanding asynchronous request is allowed.

• The CAT control issues requests to the CAT device for different types of
authorization by invoking the following methods.

• The CAT control issues requests to the CAT device for special processing
local to the CAT device by invoking the following methods.

• The CAT control stores the authorization results in the following properties
when an authorization operation successfully completes:

Function Method name Corresponding Cap property

Purchase authorizeSales None

Cancel Purchase authorizeVoid CapAuthorizeVoid

Refund Purchase authorizeRefund CapAuthorizeRefund

Authorization Completion authorizeCompletion CapAuthorizeCompletion

Pre-Authorization authorizePreSales CapAuthorizePreSales

Cancel Pre-Authorization authorizeVoidPreSales CapAuthorizeVoidPreSales

Function Method name Corresponding Cap property

Card Check checkCard CapCheckCard

Daily log accessDailyLog CapDailyLog

Description Property Name Corresponding Cap Property

Credit Account number AccountNumber None

Additional information AdditionalSecurityIn-
formation

CapAdditionalSecurityInfor-
mation

Approval code ApprovalCode None

Card company ID CardCompanyID None

Code from the approval
agency

CenterResultCode CapCenterResultCode

Payment condition PaymentCondition None

Payment detail PaymentDetail CapPaymentDetail

Sequence number SequenceNumber None

Slip number SlipNumber None

Center transaction number TransactionNumber CapTransactionNumber

Transaction type TransactionType None

133 General Information
• The accessDailyLog method sets the following property

• Sequence numbers are used to validate that the properties set at completion of
a method are indeed associated with the completed method. An incoming
SequenceNumber argument for each method is compared with the resulting
SequenceNumber property after the operation associated with the method
has completed. If the numbers do not match, or if an application fails to
identify the number, there is no guarantee that the values of the properties
listed in the two tables correspond to the completed method.

• The AsyncMode property determines if methods are run synchronously or
asynchronously.

• When AsyncMode is false, methods will be executed synchronously and their
corresponding properties will contain data when the method returns.

• When AsyncMode is true, methods will return immediately to the application.
When the operation associated with the method completes, each
corresponding property will be updated by the CAT control prior to an
OutputCompleteEvent. When AsyncMode is true, methods cannot be
issued immediately after issuing a prior method; only one outstanding
asynchronous method is allowed at a time. However, clearOutput is an
exception because its purpose is to cancel an outstanding asynchronous
method.

The methods supported and their corresponding properties vary depending on
the CAT control implementation. Applications should verify that particular
Cap properties are supported before utilizing the capability dependent
methods and properties.

• Results of synchronous calls to methods and writable properties will be stored
in ErrorCode. Results of asynchronous processing will be indicated by an
OutputCompleteEvent or returned in the Errorcode argument of an
ErrorEvent. If ErrorCode or the ErrorCode argument is E_EXTENDED,
detailed device specific information may be stored to ErrorCodeExtended in
synchronous mode and stored to ErrorEvent argument ErrorCodeExtended
in asynchronous mode. The result code from the approval agency will be
stored in CenterResultCode in either mode.

• Training mode occurs continually when TrainingMode is true. To
discontinue training mode, set TrainingMode to false.

• An outstanding asynchronous method can be canceled via the clearOutput
method.

• The Daily log can be collected by the accessDailyLog method. Collection will
be run either synchronously or asynchronously according to the value of
AsyncMode.

Description Property Name Corresponding Cap Property

Daily log DailyLog CapDailyLog

134
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
• Following is the general usage sequence of the CAT control.

Synchronous Mode:

- open

- claim

- setDeviceEnabled (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()

- Check UposException of the authorizeSales method

- Verify that the SequenceNumber property matches the value of the
authorizeSales() sequenceNumber argument

- Access the properties set by authorizeSales()

- setDeviceEnabled (false)

- release

- Close

Asynchronous Mode:

- open

- claim

- setDeviceEnabled (true)

- setAsyncMode (true)

- Definition of the argument SequenceNumber

- Set PaymentMedia Added in Version 1.5

- authorizeSales()

- Check UposException of the authorizeSales method

- Wait for OutputCompleteEvent

- Check the argument ErrorCode

- Verify that the SequenceNumber property matches the value of the
authorizeSales() SequenceNumber argument

- Access the properties set by authorizeSales()

- setDeviceEnabled (false)

- release

- close

135 General Information
Device Sharing

The CAT is an exclusive-use device, as follows:

• After opening the device, properties are readable.

• The application must claim the device before enabling it.

• The application must claim and enable the device before calling methods that
manipulate the device.

• See the “Summary” table for precise usage prerequisites.

136
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
CAT State Diagram

The following diagram depicts the CAT states.

open()

close()

claim()

release()

close()

clearOutput()/set DeviceEnabled (false)

/set DeviceEnabled (true)

accessDailyLog()

authorizeXyz(),
checkCard()Synchronous

Mode

authorizeXyz(),
checkCard()

release()

close()

Async Mode

Closed Opened Claimed

EnabledLogging
Processing

Clear Output
Processing

Done delivering event

Method processing

ErrorEvent
Processing

OutputCompleteEvent
Processing

137 Properties (UML attributes)
Properties (UML attributes)
AccountNumber Property

Syntax AccountNumber: string { read-only, access after open }

Remarks This property is initialized to NULL by the open method and is updated when an
authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

AdditionalSecurityInformation Property

Syntax AdditionalSecurityInformation: string { read-write, access after open }

Remarks An application can send data to the CAT device by setting this property before
issuing an authorization method. Also, data obtained from the CAT device and not
stored in any other property as the result of an authorization operation (for
example, the account code for a loyalty program) can be provided to an application
by storing it in this property. Since the data stored here is device specific, this
should not be used for any development that requires portability.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CapAdditionalSecurityInformation Property.

ApprovalCode Property

Syntax ApprovalCode: string { read-only, access after open }

Remarks This property is initialized to NULL by the open method and is updated when an
authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, the authorization methods will run asynchronously.

If false, the authorization methods will run synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also Authorization Methods.

138
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
CapAdditionalSecurityInformation Property

Syntax CapAdditionalSecurityInformation: boolean { read-only, access after open }

Remarks If true, the AdditionalSecurityInformation property may be utilized; otherwise
it is false.

This property is initialized by open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also AdditionalSecurityInformation Property.

CapAuthorizeCompletion Property

Syntax CapAuthorizeCompletion: boolean { read-only, access after open }

Remarks If true, the authorizeCompletion method has been implemented; otherwise it is
false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also authorizeCompletion Method.

CapAuthorizePreSales Property

Syntax CapAuthorizePreSales: boolean { read-only, access after open }

Remarks If true, the authorizePreSales method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also authorizePreSales Method.

CapAuthorizeRefund Property

Syntax CapAuthorizeRefund: boolean { read-only, access after open }

Remarks If true, the authorizeRefund method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also authorizeRefund Method.

139 Properties (UML attributes)
CapAuthorizeVoid Property

Syntax CapAuthorizeVoid: boolean { read-only, access after open }

Remarks If true, the authorizeVoid method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also authorizeVoid Method.

CapAuthorizeVoidPreSales Property

Syntax CapAuthorizeVoidPreSales: boolean { read-only, access after open }

Remarks If true, the authorizeVoidPreSales method has been implemented; otherwise it is
false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also authorizeVoidPreSales Method.

CapCenterResultCode Property

Syntax CapCenterResultCode: boolean { read-only, access after open }

Remarks If true, the CenterResultCode property has been implemented; otherwise it is
false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CenterResultCode Property.

CapCheckCard Property

Syntax CapCheckCard: boolean { read-only, access after open }

Remarks If true, the checkCard method has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also checkCard Method.

140
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
CapDailyLog Property

Syntax CapDailyLog: int32 { read-only, access after open }

Remarks Shows the daily log ability of the device.

Value Meaning

CAT_DL_NONE The CAT device does not have the daily log functions.

CAT_DL_REPORTING The CAT device only has an intermediate total function
which reads the daily log but does not erase the log.

CAT_DL_SETTLEMENT The CAT device only has the “final total” and “erase
daily log” functions.

CAT_DL_REPORTING_SETTLEMENT
The CAT device has both the intermediate total function
and the final total and erase daily log function.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also DailyLog Property, accessDailyLog Method.

CapInstallments Property

Syntax CapInstallments: boolean { read-only, access after open }

Remarks If true, the item “Installments” which is stored in the DailyLog property as the
result of accessDailyLog will be provided; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also DailyLog Property.

CapPaymentDetail Property

Syntax CapPaymentDetail: boolean { read-only, access after open }

Remarks If true, the PaymentDetail property has been implemented; otherwise it is false.

This property is initialized by open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also PaymentDetail Property.

141 Properties (UML attributes)
CapTaxOthers Property

Syntax CapTaxOthers: boolean { read-only, access after open }

Remarks If true, the item “TaxOthers” which is stored in the DailyLog property as the result
of access DailyLog will be provided; otherwise it is false.

Note that this property is not related to the “TaxOthers” argument used with the
authorization methods.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also DailyLog Property.

CapTransactionNumber Property

Syntax CapTransactionNumber: boolean { read-only, access after open }

Remarks If true, the TransactionNumber property has been implemented; otherwise it is
false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also TransactionNumber Property.

CapTrainingMode Property

Syntax CapTrainingMode: boolean { read-only, access after open }

Remarks If true, the TrainingMode property has been implemented; otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also TrainingMode Property.

CardCompanyID Property

Syntax CardCompanyID: string { read-only, access after open }

Remarks This property is updated when an authorization operation successfully completes.
It shows credit card company ID.

The length of the ID string varies depending upon the CAT device.

This property is initialized to NULL by the open method

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

142
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
CenterResultCode Property

Syntax CenterResultCode: string { read-only, access after open }

Remarks Contains the code from the approval agency. Check the approval agency for the
actual codes to be stored.

This property is initialized to NULL by the open method and is updated when an
authorization operation successfully completes

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

DailyLog Property

Syntax DailyLog: string { read-only, access after open }

Remarks Stores the result of the accessDailyLog method. The data is delimited by
CR(13)+LF(10) for each transaction and is stored in ASCII code. The detailed data
of each transaction is comma separated [i.e. delimited by “,” (44)].

The details of one transaction are shown as follows:

No Item Property Corresponding Cap Property

1 Card company ID CardCompanyID None

2 Transaction type TransactionType None

3 Transaction date
Note 1)

None None

4 Transaction number
Note 3)

TransactionNumber CapTransactionNumber

5 Payment condition PaymentCondition None

6 Slip number SlipNumber None

7 Approval code ApprovalCode None

8 Purchase date
Note 5)

None None

9 Account number AccountNumber None

10 Amount
Note 4)

The argument Amount of the
authorization method or the
amount actually approved.

None

11 Tax/others
Note 3)

The argument TaxOthers of the
authorization method.

CapTaxOthers

12 Installments
Note 3)

None CapInstallments

13 Additional data
Note 2)

AdditionalSecurityInformation CapAdditionalSecurityInfor-
mation

143 Properties (UML attributes)
Notes from the previous table:

1) Format

Some CAT devices may not support seconds by the internal clock. In that
case, the seconds field of the transaction date is filled with “00”

2) Additional data

The area where the CAT device stores the vendor specific data. This enables
an application to receive data other than that defined in this specification. The
data stored here is vendor specific and should not be used for development
which places an importance on portability.

3) If the corresponding Cap property is false

Cap property is set to false if the CAT device provides no corresponding data.
In such instances, the item can't be displayed so the next comma delimiter
immediately follows. For example, if “Amount” is 1234 yen and “Tax/others”
is missing and “Installments” is 2, the description will be “1234,,2”. This
makes the description independent of Cap property and makes the position of
each data item consistent.

4) Amount

Amount always includes “Tax/others” even if item 11 is present.

5) Purchase date

The date manually entered for the purchase transaction after approval.

Item Format

Transaction date YYYYMMDDHHMMSS

Purchase date MMDD

144
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
Example An example of daily log content is shown below.

The actual data stored in DailyLog will be as follows:

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CapDailyLog Property, accessDailyLog Method.

Item Description Meaning

Card company ID 102 JCB

Transaction type CAT_TRANSACTION_S
ALES

Purchase

Transaction date 19980116134530 1/16/199813:45:30

Transaction number 123456 123456

Payment condition CAT_PAYMENT_INSTA
LLMENT_1

Installment 1

Slip number 12345 12345

Approval code 0123456 0123456

Purchase date None None

Account number 1234123412341234 1234-1234-1234-1234

Amount 12345 12345JPY

Tax/others None None

Number of
payments

2 2

Additional data 12345678 Specific information

102,10,19980116134530,123456,61,12345,0123456,,12341234123
41234,12345,,2,12345678[CR][LF]

145 Properties (UML attributes)
PaymentCondition Property

Syntax PaymentCondition: int32 { read-only, access after open }

Remarks Holds the payment condition of the most recent successful authorization
operation.

This property will be set to one of the following values. See PaymentDetail for the
detailed payment string that correlates to the following PaymentCondition values.

Value Meaning

CAT_PAYMENT_LUMP Lump-sum

CAT_PAYMENT_BONUS_1 Bonus 1

CAT_PAYMENT_BONUS_2 Bonus 2

CAT_PAYMENT_BONUS_3 Bonus 3

CAT_PAYMENT_BONUS_4 Bonus 4

CAT_PAYMENT_BONUS_5 Bonus 5

CAT_PAYMENT_INSTALLMENT_1 Installment 1

CAT_PAYMENT_INSTALLMENT_2 Installment 2

CAT_PAYMENT_INSTALLMENT_3 Installment 3

CAT_PAYMENT_BONUS_COMBINATION_1
Bonus combination payments 1

CAT_PAYMENT_BONUS_COMBINATION_2
Bonus combination payments 2

CAT_PAYMENT_BONUS_COMBINATION_3
Bonus combination payments 3

CAT_PAYMENT_BONUS_COMBINATION_4
Bonus combination payments 4

CAT_PAYMENT_ REVOLVING Revolving

CAT_PAYMENT_DEBIT Debit card

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also PaymentDetail Property.

146
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
PaymentDetail Property

Syntax PaymentDetail: string { read-only, access after open }

Remarks Contains payment condition details as the result of an authorization operation.
Payment details vary depending on the value of PaymentCondition. The data will
be stored as comma separated ASCII code. NULL means that no data is stored and
represents a string with zero length data.

*Maximum 6 installments

PaymentCondition PaymentDetail

CAT_PAYMENT_LUMP NULL

CAT_PAYMENT_BONUS_1 NULL

CAT_PAYMENT_BONUS_2 Number of bonus payments

CAT_PAYMENT_BONUS_3 1st bonus month

CAT_PAYMENT_BONUS_4* Number of bonus payments, 1st bonus month, 2nd bo-
nus month, 3rd bonus month, 4th bonus month, 5th bo-
nus month, 6th bonus month

CAT_PAYMENT_BONUS_5* Number of bonus payments, 1st bonus month, 1st bo-
nus amount, 2nd bonus month, 2nd bonus amount, 3rd
bonus month, 3rd bonus amount, 4th bonus month, 4th
bonus amount, 5th bonus month, 5th bonus amount, 6th
bonus month, 6th bonus amount

CAT_PAYMENT_INSTALLMENT_1 1st billing month, Number of payments

CAT_PAYMENT_INSTALLMENT_2* 1st billing month, Number of payments, 1st amount,
2nd amount, 3rd amount, 4th amount, 5th amount, 6th
amount

CAT_PAYMENT_INSTALLMENT_3 1st billing month, Number of payments, 1st amount

CAT_PAYMENT_BONUS_COMBINATION_1 1st billing month, Number of payments

CAT_PAYMENT_BONUS_COMBINATION_2 1st billing month, Number of payments, bonus amount

CAT_PAYMENT_BONUS_COMBINATION_3* 1st billing month, Number of payments, number of bo-
nus payments, 1st bonus month, 2nd bonus month, 3rd
bonus month, 4th bonus month, 5th bonus month, 6th
bonus month

CAT_PAYMENT_BONUS_COMBINATION_4* 1st billing month, Number of payments, number of bo-
nus payments, 1st bonus month, 1st bonus amount, 2nd
bonus month, 2nd bonus amount, 3rd bonus month, 3rd
bonus amount, 4th bonus month, 4th bonus amount, 5th
bonus month, 5th bonus amount, 6th bonus month, 6th
bonus amount

CAT_PAYMENT_REVOLVING NULL

CAT_PAYMENT_DEBIT NULL

147 Properties (UML attributes)
The payment types and names vary depending on the CAT device. The following
are the payment types and terms available for CAT devices. Note that there are
some differences between UnifiedPOS terms and those used by the CAT devices.
The goal of this table is to synchronize these terms.

G
en

er
al

 P
ay

m
en

t C
at

eg
or

y

E
nt

ry
 it

em

P
ay

m
en

tC
on

di
ti

on
 V

al
ue

CAT
Name

CAT
(Old CAT)

G-CAT JET-S SG-CAT Master-T

Credit
Card

Not
specified

Not
specified

JCB VISA MASTER

Unified
OPOS
Term

Card Company Terms

Lump-
sum

(None) 10 Lump-sum Lump-sum Lump-sum Lump-sum Lump-sum Lump-sum

Bonus (None) 21 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1 Bonus 1

Number of
bonus
payments

22 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2 Bonus 2

Bonus
month(s)

23 Bonus 3 Bonus 3 Does not ex-
ist.

Does not ex-
ist.

Bonus 3 Bonus 3

Number of
bonus
payments

Bonus
month (1)

Bonus
month (2)

Bonus
month (3)

Bonus
month (4)

Bonus
month (5)

Bonus
month (6)

24 Bonus 4 Bonus 4 Bonus 3 Bonus 3 Bonus 4
(Up to two
entries for
bonus
month)

Bonus 4

148
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
Number of
bonus
payments

Bonus
month (1)

Bonus
amount
(1)

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

25 Bonus 5 Bonus 5 Does not
 exist.

Does not
 exist.

Does not
 exist.

Bonus 5

Installm
ent

Payment
start
month

Number of
payments

61 Installment 1 Installment 1 Installment 1 Installment 1 Installment 1 Installment 1

149 Properties (UML attributes)
Payment
start
month

Number of
payments

Install-
ment
amount(1)

Install-
ment
amount(2)

Install-
ment
amount(3)

Install-
ment
amount(4)

Install-
ment
amount(5)

Install-
ment
amount(6)

62 Installment 2 Installment 2 Does not
 exist.

Does not
 exist.

Does not
 exist.

Does not
 exist.

Payment
start
month

Number of
payments

Initial
amount

63 Installment 3 Installment 3 Installment 2 Installment 2 Does not
 exist.

Installment 2

Combi-
nation

Payment
start
month

Number of
payments

31 Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Bonus Com-
bination 1

Payment
start
month

Number of
payments

Bonus
amount

32 Bonus Com-
bination 2

Bonus Com-
bination 2

Does not
 exist.

Does not
 exist.

Bonus Com-
bination 2

Bonus Com-
bination 2

150
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
month (2)

Bonus
month (3)

Bonus
month (4)

Bonus
month (5)

Bonus
month (6)

33 Bonus Com-
bination 3

Bonus Com-
bination 3

Does not
 exist.

Does not
 exist.

Bonus Com-
bination 3
(Up to two
entries for
bonus
month)

Bonus Com-
bination 3

151 Properties (UML attributes)
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CapPaymentDetail Property.

Payment
start
month

Number of
payments

Number of
bonus
payments

Bonus
month (1)

Bonus
amount(1)

Bonus
month (2)

Bonus
amount(2)

Bonus
month (3)

Bonus
amount(3)

Bonus
month (4)

Bonus
amount(4)

Bonus
month (5)

Bonus
amount(5)

Bonus
month (6)

Bonus
amount(6)

34 Bonus Com-
bination 4

Bonus Com-
bination 4

Bonus Com-
bination 2

Bonus Com-
bination 2

Bonus Com-
bination 4
(Up to two
entries for
bonus month
and amount)

Bonus Com-
bination 4

Revolvi
ng

(None) 80 Revolving Revolving Revolving Revolving Revolving Revolving

Debit (None) 110 Debit (Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

(Support
depends on
the actual
device)

152
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
PaymentMedia Property Added in Release 1.5

Syntax PaymentMedia: int32 { read-write, access after open }

Remarks Holds the payment media type that the approval method should approve.

The application sets this property to one of the following values before issuing an
approval method call. “None specified” means that payment media will be
determined by the CAT device, not by the POS application.

Value Meaning

CAT_MEDIA_UNSPECIFIED None specified.

CAT_MEDIA_CREDIT Credit card.

CAT_MEDIA_DEBIT Debit card.

This property is initialized to CAT_MEDIA_UNSPECIFIED by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

SequenceNumber Property

Syntax SequenceNumber: int32 { read-only, access after open }

Remarks Stores a “sequence number” as the result of each method call. This number needs
to be checked by an application to see if it matches with the argument
sequenceNumber of the originating method.

If the “sequence number” returned from the CAT device is not numeric, the CAT
control set this property to zero.

This property is initialized to zero by the open method and is updated when an
authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

SlipNumber Property

Syntax SlipNumber: int32 { read-only, access after open }

Remarks Stores a “slip number” as the result of each authorization operation.

This property is initialized to NULL by the open method and is updated when an
authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

153 Properties (UML attributes)
TrainingMode Property

Syntax TrainingMode: boolean { read-write, access after open }

Remarks If true, each operation will be run in training mode; otherwise each operation will
be run in normal mode.

TrainingMode needs to be explicitly set to false by an application to exit from
training mode, because it will not automatically be set to false after the completion
of an operation.

This property will be initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL CapTrainingMode is false.

TransactionNumber Property

Syntax TransactionNumber: string { read-only, access after open }

Remarks Stores a “transaction number” as the result of each authorization operation.

This property is initialized to NULL by the open method and is updated when an
authorization operation successfully completes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

TransactionType Property

Syntax TransactionType: int32 { read-only, access after open }

Remarks Stores a “transaction type” as the result of each authorization operation.

This property is initialized to zero by the open method and is updated when an
authorization operation successfully completes.

This property will be set to one of the following values.

Value Meaning

CAT_TRANSACTION_SALES Sales
CAT_TRANSACTION_VOID Cancellation
CAT_TRANSACTION_REFUND Refund purchase
CAT_TRANSACTION_COMPLETION Purchase after approval
CAT_TRANSACTION_PRESALES Pre-authorization
CAT_TRANSACTION_VOIDPRESALES Cancel pre-authorization approval

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

154
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
Methods (UML operations)
accessDailyLog Method

Syntax accessDailyLog (sequenceNumber: int32, type: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber The sequence number to get daily log.

type Specify whether the daily log is intermediate total or
final total and erase.

timeout The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Gets daily log from CAT.

Daily log will be retrieved and stored in DailyLog as specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Application must specify one of the following values for type for daily log type
(either intermediate total or adjustment). Legal values depend upon the
CapDailyLog value.

Value Meaning

CAT_DL_REPORTING Intermediate total.

CAT_DL_SETTLEMENT Final total and erase.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E_ILLEGAL Invalid or unsupported type or timeout parameter was
specified, or CapDailyLog is false.

E_TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapDailyLog Property, DailyLog Property.

155 Methods (UML operations)
authorizeCompletion Method

Syntax authorizeCompletion (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Purchase after approval is intended.

Sales after approval for amount and taxOthers is intended as the approval specified
by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E_ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeCompletion is false.

E_TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeCompletion Property.

156
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
authorizePreSales Method

Syntax authorizePreSales (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Makes a pre-authorization.

Pre-authorization for amount and taxOthers is made as the approval specified by
sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E_ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizePreSales is false.

E_TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizePreSales Property.

157 Methods (UML operations)
authorizeRefund Method

Syntax authorizeRefund (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Refund purchase approval is intended.

Refund purchase approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E_ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeRefund is false.

E_TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeRefund Property.

158
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
authorizeSales Method

Syntax authorizeSales (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Normal purchase approval is intended.

Normal purchase approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

 Some possible values of the exception's ErrorCode property are:

Value Meaning

E_ILLEGAL Invalid timeout parameter was specified.

E_TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

159 Methods (UML operations)
authorizeVoid Method

Syntax authorizeVoid (sequenceNumber: int32, amount: currency, taxOthers:
currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Purchase cancellation approval is intended.

Cancellation approval for amount and taxOthers is intended as the approval
specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E_ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeVoid is false.

E_TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeVoid Property.

160
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
authorizeVoidPreSales Method

Syntax authorizeVoidPreSales (sequenceNumber: int32, amount: currency,
taxOthers: currency, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

amount Purchase amount for approval.

taxOthers Tax and other amounts for approval.

timeout The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Pre-authorization cancellation approval is intended.

Pre-authorization cancellation approval for amount and taxOthers is intended as
the approval specified by sequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Normal cancellation could be used for CAT control and CAT devices which have
not implemented the pre-authorization approval cancellation. Refer to the
documentation supplied with CAT device and / or CAT control.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E_ILLEGAL Invalid timeout parameter was specified, or
CapAuthorizeVoidPreSales is false.

E_TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapAuthorizeVoidPreSales Property.

161 Methods (UML operations)
checkCard Method

Syntax checkCard (sequenceNumber: int32, timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

sequenceNumber Sequence number for approval.

timeout The maximum waiting time (in milliseconds) until the
response is received from the CAT device. FOREVER
(-1), 0 and positive values can be specified.

Remarks Card Check is intended.

Card Check will be made as specified by SequenceNumber.

When timeout is FOREVER (-1), timeout never occurs and the device waits until
it receives response from the CAT.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception's ErrorCode property are:

Value Meaning

E_ILLEGAL Invalid timeout parameter was specified, or
CapCheckCard is false.

E_TIMEOUT No response was received from CAT during the
specified timeout time in milliseconds.

E_EXTENDED The detail code has been stored in ErrorCodeExtended.

E_BUSY The CAT device cannot accept any commands now.

See Also CapCheckCard Property.

162
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
Events (UML interfaces)

DirectIOEvent

<<event>> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific CAT Service to provide events to the application that
are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This attribute is settable.

Obj object Additional data whose usage varies by the EventNumber
and the Service. This attribute is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s CAT devices which may not have any
knowledge of the Service’s need for this event.

See Also “Events” on page 14, directIO Method

163 Events (UML interfaces)
ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-only }

Description Notifies the application that a CAT error has been detected and suitable response
by the application is necessary to process the error condition.

Attributes This event contains the following properties:

Attributes Type Description

ErrorCode int32 The code which caused the error event. Remarks
ErrorCode for the value below for the value.

ErrorCodeExtended int32 The extended code which caused the error event.
Remarks the value below for the value.

ErrorLocus int32 EL_OUTPUT is specified. An error occurred during
asynchronous action.

ErrorResponse int32 Pointer to the error event response. See values below.

If ErrorCode is E_EXTENDED, ErrorCodeExtended will be set to one of the
following values:

Value Meaning

ECAT_CENTERERROR

An error was returned from the approval agency. The
detail error code is defined in CenterResultCode.

ECAT_COMMANDERROR
The command sent to CAT is wrong. This error is never
returned so long as CAT control is working correctly.

ECAT_RESET CAT was stopped during processing by CAT reset key
(stop key) and so on.

ECAT_COMMUNICATIONERROR
Communication error has occurred between the
approval agency and CAT.

ECAT_DAILYLOGOVERFLOW
Daily log was too big to be stored. Keeping daily log has
been stopped and the value of DailyLog property is
uncertain.

164
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT
The content of the position specified by ErrorResponse will be preset to the default
value of ER_RETRY. An application sets one of the following values.

Value Meaning

ER_RETRY Retries the asynchronous processing. The error state is
exited.

ER_CLEAR Clear the asynchronous processing. The error state is
exited.

Remarks Fired when an error is detected while processing an asynchronous authorize group
method or the accessDailyLog method. The control's State transitions into the
error state.

See Also “Device Output Models” on page 20, Device States on page 25.

OutputCompleteEvent

<<event>> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the
OutputID attribute has completed successfully.

Attribute This event contains the following attribute:

Attribute Type Description

OutputID int32 The ID number of the asynchronous output request that
is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service
has confirmation that is was processed by the device successfully.

See Also “Device Output Models” on page 20.

165 Events (UML interfaces)
StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the CAT
device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the power status of the unit.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on page 56.

Remarks Enqueued when the CAT device detects a power state change.

See Also “Events” on page 14.

166
UnifiedPOS Retail Peripheral Architecture Chapter 5

CAT

C H A P T E R 6

Coin Dispenser

This Chapter defines the Coin Dispenser device category.

General Information
The Coin Dispenser programmatic name is “CoinDispenser”.

This chapter is grandfathered in based on the OPOS and JavaPOS Version 1.4
specifications.

168
UnifiedPOS Retail Peripheral Architecture Chapter 6

Coin Dispenser

C H A P T E R 7

Fiscal Printer

This Chapter defines the Fiscal Printer device category.

General Information
The Fiscal Printer programmatic name is “FiscalPrinter”.

This chapter is grandfathered in based on the OPOS and JavaPOS Version 1.4
specifications.

This device had minor revisions for Version 1.5, and only the changes are included
in this specification.

170
UnifiedPOS Retail Peripheral Architecture Chapter 7

Fiscal Printer
Properties (UML attributes)

CountryCode Property Updated in Release 1.5

Syntax CountryCode: int32 { read-only, access after open }

Remarks Holds a value identifying which countries are supported by the printer. It can
contain any of the following values logically ORed together:

Value Meaning

FPTR_CC_BRAZIL The printer supports Brazil’s fiscal rules.

FPTR_CC_GREECE The printer supports Greece’s fiscal rules.

FPTR_CC_HUNGARY The printer supports Hungary’s fiscal rules.

FPTR_CC_ITALY The printer supports Italy’s fiscal rules.

FPTR_CC_POLAND The printer supports Poland’s fiscal rules.

FPTR_CC_TURKEY The printer supports Turkey’s fiscal rules.

FPTR_CC_RUSSIA The printer supports Russia’s fiscal rules.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

C H A P T E R 8

Hard Totals

This Chapter defines the Hard Totals device category.

General Information
The Hard Totals programmatic name is “HardTotals”.

This chapter is grandfathered in based on the OPOS and JavaPOS Version 1.4
specifications.

172
UnifiedPOS Retail Peripheral Architecture Chapter 8

Hard Totals

C H A P T E R 9

Keylock

This Chapter defines the Keylock device category.

General Information
The Keylock programmatic name is “Keylock”.

This chapter is grandfathered in based on the OPOS and JavaPOS Version 1.4
specifications.

174
UnifiedPOS Retail Peripheral Architecture Chapter 9

Keylock

C H A P T E R 1 0

Line Display

This Chapter defines the Line Display device category.

General Information
The Line Display programmatic name is “LineDisplay”.

This chapter is grandfathered in based on the OPOS and JavaPOS Version 1.4
specifications.

This device had minor revisions for Version 1.5, and only the changes are included
in this specification.

176
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display
Properties (UML attributes)

CapCharacterSet Property Updated in Release 1.5

Syntax CapCharacterSet: int32 { read-only, access after open }

Remarks Holds the default character set capability. It has one of the following values:

Value Meaning

DISP_CCS_ALPHA The default character set supports uppercase alphabetic
plus numeric, space, minus, and period.

DISP_CCS_ASCII The default character set supports all ASCII characters
0x20 through 0x7F.

DISP_CCS_KANA The default character set supports partial code page 932,
including ASCII characters 0x20 through 0x7F and the
Japanese Kana characters 0xA1 through 0xDF, but
excluding the Japanese Kanji characters.

DISP_CCS_KANJI The default character set supports code page 932,
including the Shift-JIS Kanji characters, Levels 1 and 2.

DISP_CCS_UNICODE The default character set supports UNICODE.

The default character set may contain a superset of these ranges. The initial
CharacterSet property may be examined for additional information.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CharacterSet Property.

177 Properties (UML attributes)
CharacterSet Property Updated in Release 1.5

Syntax CharacterSet: int32 { read-write, access after open-claim-enable }

Remarks Holds the character set for displaying characters. It has one of the following
values:

Value Meaning

Range 101 - 199 Device-specific character sets that do not match a code
page or the ASCII or ANSI character sets.

Range 400 - 990 Code page; matches one of the standard values.

DISP_CS_UNICODE The character set supports UNICODE. The value of this
constant is 997.

DISP_CS_ASCII The ASCII character set, supporting the ASCII
characters 0x20 through 0x7F. The value of this
constant is 998.

DISP_CS_ANSI The ANSI character set. The value of this constant is
999.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CharacterSetList Property.

178
UnifiedPOS Retail Peripheral Architecture Chapter 10

Line Display

C H A P T E R 1 1

MICR - Magnetic Ink Character Recognition

Reader

This Chapter defines the MICR - Magnetic Ink Character Recognition Reader
device category.

General Information
The MICR - Magnetic Ink Character Recognition Reader programmatic name is
“MICR”.

This chapter is grandfathered in based on the OPOS and JavaPOS Version 1.4
specifications.

180
UnifiedPOS Retail Peripheral Architecture Chapter 11

MICR Magnetic Ink Character Recognition

C H A P T E R 1 2

MSR - Magnetic Stripe Reader

This Chapter defines the Magnetic Stripe Reader device category.

Summary

Properties (UML attributes)

Common Type Mutability Versiona

a. The version representation provides the mechanism for recognizing when a
change occurs to a property, method or event. This MSR definition was intro-
duced in an existing standard and was not changed for the UnifiedPOS version
1.4.

May Use After

AutoDisable: boolean { read-write } 1.3 open

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.3 open

Claimed: boolean { read-only } 1.3 open

DataCount: int32 { read-only } 1.3 open

DataEventEnabled: boolean { read-write } 1.3 open

DeviceEnabled: boolean { read-write } 1.3 open & claim

FreezeEvents: boolean { read-write } 1.3 open

OutputID: int32 { read-only } 1.3 Not Supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.3 --

DeviceControlDescription: string { read-only } 1.3 --

DeviceControlVersion: int32 { read-only } 1.3 --

DeviceServiceDescription: string { read-only } 1.3 open

DeviceServiceVersion: int32 { read-only } 1.3 open

PhysicalDeviceDescription: string { read-only } 1.3 open

PhysicalDeviceName: string { read-only } 1.3 open

182
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
Properties (Continued)
Specific Type Mutability Version May Use After

CapISO: boolean { read-only } 1.3 open

CapJISOne: boolean { read-only } 1.3 open

CapJISTwo: boolean { read-only } 1.3 open

CapTransmitSentinels: boolean { read-only } 1.5 open

AccountNumber: string { read-only } 1.3 open

DecodeData: boolean { read-write } 1.3 open

ErrorReportingType: int32 { read-write } 1.3 open

ExpirationDate: string { read-only } 1.3 open

FirstName: string { read-only } 1.3 open

MiddleInitial: string { read-only } 1.3 open

ParseDecodeData: boolean { read-write } 1.3 open

ServiceCode: string { read-only } 1.3 open

Suffix: string { read-only } 1.3 open

Surname: string { read-only } 1.3 open

Title: string { read-only } 1.3 open

Track1Data: binary { read-only } 1.3 open

Track1DiscretionaryData: binary { read-only } 1.3 open

Track2Data: binary { read-only } 1.3 open

Track2DiscretionaryData: binary { read-only } 1.3 open

Track3Data: binary { read-only } 1.3 open

Track4Data: binary { read-only } 1.5 open

TracksToRead: int32 { read-write } 1.3 open

TransmitSentinels: boolean { read-write } 1.5 open

183 Summary
Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
 void { raises exception }

close ():
 void { raises exception, use after open }

claim (timeout: int32):
 void { raises exception, use after open }

release ():
 void { raises exception, use after open, claim }

checkHealth (level: int32):
 void { raises exception, use after open, claim, enable }

clearInput ():
 void { raises exception, use after open, claim }

clearOutput (): Not supported
 void { }

directIO (command: int32, inout data: int32, inout obj: object):
 void { raises exception, use after open, claim }

Specific

None

184
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
Events (UML interfaces)
Name Type Mutability

upos::events::DataEvent

 Status: int32 { read-only }

upos::events::DirectIOEvent

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::StatusUpdateEvent

 Status: int32 { read-only }

185 General Information
General Information
The Magnetic Stripe Reader programmatic name is “MSR”.

Capabilities

The MSR device class supports attachment of a card reader to provide input to the
application from a card inserted (swiped) through the reader. The targeted
environment is electronic funds data such as an account number, customer name,
etc. from a magnetically encoded credit and/or debit card.

There are no specific methods for this device category.

The MSR Control has the following minimal set of capabilities:

• Reads encoded data from a magnetic stripe. Data is obtainable from any
combination of ISO or JIS-I tracks 1,2, 3, and JIS-II.

• Supports decoding of the alphanumeric data bytes into their corresponding
alphanumeric codes. Furthermore, this decoded alphanumeric data may be
divided into specific fields accessed as device properties.

The MSR Control may have the following additional capabilities:

• Support for specific card types: ISO, JIS Type I and/or JIS Type II. Note: for
the purpose of this standard, the following convention is assumed:

• Track 1 is ISO or JIS-I Track 1

• Track 2 is ISO or JIS-I Track 2

• Track 3 is ISO or JIS-I Track 3

• Track 4 is JIS-II data

• Determination of the type of card is based on the type of content the card
tracks are expected to hold.

• Support for optionally returning the track sentinels with track data.

Clarifications for JIS-II data handling

Prior to Version 1.5 of this specification, it was not clearly stated how the Control
should treat JIS-II data and into which of the TracknData properties the data
should be stored. This version of the specification defines Track4Data, which the
Control should use to store JIS-II data. However, in order to maintain application
backward compatibility with previous versions, the Control may also store the JIS-
II data into the previously used TracknData property. In such cases, the
DataEvent Status and the ErrorEvent ErrorCodeExtended attributes should be
set to reflect both Track4Data and TracknData. Note that applications that use
this particular method of accessing JIS-II data may not be portable across Controls.

186
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
MSR Class Diagram

The following diagram shows the relationships between the MSR classes.

UposException
(from upos)

<<exception>>

UposConst
(from upos)

<<utility>>

MSRConst
(from upos)

<<utility>>
BaseControl

(from upos)

<<Interface>>

<<uses>>

<<sends>>

DataEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

ErrorEvent
(from events)

<<event>>

MSRControl

<<capability>> CapISO : boolean
<<capability>> CapJISOne : boolean
<<capability>> CapJISTwo : boolean
<<capability>> CapTransmitSentinels : boolean
<<prop>> AccountNumber : string
<<prop>> DecodeData : boolean
<<prop>> ErrorReportingType : int32
<<prop>> ExpirationDate : string
<<prop>> FirstName : string
<<prop>> MiddleInitial : string
<<prop>> ParseDecodeData : boolean
<<prop>> ServiceCode : string
<<prop>> Suffix : string
<<prop>> Surname : string
<<prop>> Title : string
<<prop>> Track1Data : binary
<<prop>> Track1DiscretionaryData : binary
<<prop>> Track2Data : binary
<<prop>> Track2DiscretionaryData : binary
<<prop>> Track3Data : binary
<<prop>> Track4Data : binary
<<prop>> TracksToRead : int32
<<prop>> TransmitSentinels : boolean

(from upos)

<<Interface>>fires

fires

fires

StatusUpdateEvent
(from events)

<<event>> fires

<<uses>>
<<sends>>

<<uses>>

187 General Information
Device Behavior Model

The general device behavior model of the MSR is:

• Four unique writable properties control MSR data handling:

• The TracksToRead property controls which combination of the tracks
should be read. It is not an error to swipe a card containing less than this
set of tracks. Rather, this property should be set to the set of tracks that the
application may need to process.

• The DecodeData property controls decoding of track data from raw into
displayable data.

• The ParseDecodeData property controls parsing of decoded data into
fields, based on common MSR standards.

• The ErrorReportingType property controls the type of handling that
occurs when a track containing invalid data is read.

Input – MSR

The MSR follows the general “Device Input Model” for event-driven input:

• When input is received from the card reader generated by the card swipe, a
DataEvent is enqueued.

• If the AutoDisable property is true, the device will automatically disable itself
when a DataEvent is enqueued.

• An enqueued DataEvent can be delivered to the application when the
DataEventEnabled property is true and other event delivery requirements are
met. Just before delivering this event, data is copied into corresponding
properties, and further data events are disabled by setting the
DataEventEnabled property to false. This causes subsequent input data to be
enqueued while the application processes the current input and associated
properties. When the application has finished the current input and is ready for
more data, it re-enables events by setting DataEventEnabled to true.

• An ErrorEvent or events are enqueued if an error is encountered while
gathering or processing input, and are delivered to the application when the
DataEventEnabled property is true and other event delivery requirements are
met.

• The DataCount property can be read to obtain the total number of data events
enqueued.

• Queued input may be deleted by calling the clearInput method. See the
clearInput method description for more details.

Device Sharing

The MSR is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins
reading input, or before calling methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.

188
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
MSR State Diagrams

The following state diagrams depict the MSR Control device model.

Error Occurred

entry/ { DataEventEnabled = false, enqueue ErrorEvent, State = UPOS_S_ERROR }

open, claim &
enable

ClearInput Processing

entry/ { DataCount = 0, empty data queue }

done clearing input

Event Processing

done delivering error event

user input[DeviceEnabled == true]

user input[DeviceEnabled == false]

clearInput()

error

The details of
the "Event
Processing"

state are
describe in a
separate

diagram below

189 General Information
Event Processing

Processing input

enqueue DataEvent

entry/ { increase DataCount }

Disable

entry/ {DeviceEnabled = false}

Event Delivering

Pre-processing

entry/ {DataEventEnabled = false}

Process Data

Parse Data
Deliver DataEvent to Listeners

entry/ [decrement DataCount]

Processing input

enqueue DataEvent

entry/ { increase DataCount }

Disable

entry/ {DeviceEnabled = false}

Event Delivering

Pre-processing

entry/ {DataEventEnabled = false}

Process Data

Parse Data
Deliver DataEvent to Listeners

entry/ [decrement DataCount]

enqueue DataEvent

entry/ { increase DataCount }

Disable

entry/ {DeviceEnabled = false}

Pre-processing

entry/ {DataEventEnabled = false}

Process Data

Parse Data
Deliver DataEvent to Listeners

entry/ [decrement DataCount]

Parse Data

[DataEventEnabled == false and DataCount > 0]

[DataCount > 0 and DataEventEnabled == true]

[Auto Disable == true]

[DecodeData == true]

done processing

[DecodeData == false]

[ParseDecodeData == true]

190
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
MSR Usage Diagram
The following diagram is a representation of the typical usage of an MSR device.

:Application :MSRControl :MSRService:Human Actor

new

open(logicalName)

bind control to service

start app

claim(timeoutValue)

register to receive DataEvent

register to receive ErrorEvent

This registration process
is platform specific. It
may involve a simple
message or creating a
special listener instance
for callback

Binding the control to its service

depends on platform specific

loader/configurator which

matches the logical name to

the correct service

setAutoDisable(true)
setAutoDisable(true)

claim(timeoutValue)

try to claim for exclusive use

If timeoutValue expires then
raise a UposException with
UPOS_TIMEOUT error code

setDeviceEnabled(true) setDeviceEnabled(true)

be ready for input from device

Valid card swipe

input received

data decoding

If DecodeData is true
then decode the raw
track data into
displayable data.

setDataEventEnabled(true) setDataEventEnabled(true)

If ParseDecodeData is
true then further parse
data into specific
properties...

create DataEvent

disable device (DeviceEnabled == false)

increase DataCount and enqueue event for delivery

deliver new DataEvent via the EventCallback object delivery mechanism

deliver DataEvent to all registered event handlers

After receiving DataEvent

application must re-enable the

device (i.e. DeviceEnabled =

true) in order to receive other

inputs

When delivery criteria are
met, decrement DataCount
and deliver event

191 Properties (UML attributes)
Properties (UML attributes)

AccountNumber Property

Syntax AccountNumber: string { read-only, access after open }

Remarks Holds the account number obtained from the most recently swiped card.

This property is initialized to the empty string if:

• The field was not included in the track data obtained, or,

• The track data format was not one of those listed in the ParseDecodeData
property description, or,

• ParseDecodeData is false.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also ParseDecodeData Property.

CapISO Property

Syntax CapISO: boolean { read-only, access after open }

Remarks If true, the MSR device supports ISO cards.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapJISOne Property

Syntax CapJISOne: boolean { read-only, access after open }

Remarks If true, the MSR device supports JIS Type-I cards.

JIS-I cards are a superset of ISO cards. Therefore, if CapJISOne is true, then it is
implied that CapISO is also true.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapJISTwo Property

Syntax CapJISTwo: boolean { read-only, access after open }

Remarks If true, the MSR device supports JIS type-II cards.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

192
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
CapTransmitSentinels Property Added in Release 1.5

Syntax CapTransmitSentinels: boolean { read-only, access after open }

Remarks If true, the device is able to transmit the start and end sentinels.
If false, these characters cannot be returned to the application.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also TransmitSentinels Property.

DecodeData Property

Syntax DecodeData: boolean { read-write, access after open }

Remarks If false, the Track1Data, Track2Data, Track3Data, and Track4Data properties
contain the original encoded bit sequences, known as “raw data format.”

If true, each byte of track data contained within the Track1Data, Track2Data,
Track3Data, and Track4Data, properties is mapped from its original encoded bit
sequence (as it exists on the magnetic card) to its corresponding decoded ASCII
bit sequence. This conversion is mainly of relevance for data that is NOT of the 7-
bit format, since 7-bit data needs no decoding to decipher its corresponding
alphanumeric and/or Katakana characters.

The decoding that takes place is as follows for each card type, track, and track data
format:

This property is initialized to true by the open method.

Setting this property to false automatically sets ParseDecodeData to false.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also ParseDecodeData Property.

Card Type
Track Data

Property
Raw Data

Format
Raw Bytes Decoded Values

Track1Data 6-Bit 0x00 - 0x3F 0x20 through 0x5F

ISO Track2Data 4-Bit 0x00 - 0x0F 0x30 through 0x3F

Track3Data 4-Bit 0x00 - 0x0F 0x30 through 0x3F

Track1Data 6-Bit 0x00 - 0x3F 0x20 through 0x5F

Track1Data 7-Bit 0x00 - 0x7F Data Unaltered

JIS-I Track2Data 4-Bit 0x00 - 0x0F 0x20 through 0x3F

Track3Data 4-Bit 0x00 - 0x0F 0x20 through 0x3F

Track3Data 7-Bit 0x00 - 0x7F Data Unaltered

JIS-II Track4Data 7-Bit 0x00 - 0x7F Data Unaltered

193 Properties (UML attributes)
ErrorReportingType Property

Syntax ErrorReportingType: int32 { read-write, access after open }

Remarks Holds the type of errors to report via ErrorEvents. This property has one of the
following values:

Value Meaning

MSR_ERT_CARD Report errors at a card level.

MSF_ERT_TRACK Report errors at the track level

An error is reported by an ErrorEvent when a card is swiped, and one or more of
the tracks specified by the TracksToRead property contains data with errors.
When the ErrorEvent is delivered to the application, two types of error reporting
are supported:

• Card level: A general error status is given, with no data returned. This level
should be used when a simple pass/fail of the card data is sufficient.

• Track level: The control can return an extended status with a separate status
for each of the tracks. Also, for those tracks that contain valid data or no data,
the track’s properties are updated as with a DataEvent. For those tracks that
contain invalid data, the track’s properties are set to empty. This level should
be used when the application may be able to utilize a successfully read track
or tracks when another of the tracks contains errors. For example, suppose
TracksToRead is MSR_TR_1_2_3, and a swiped card contains good track 1
and 2 data, but track 3 contains “random noise” that is flagged as an error by
the MSR. With track level error reporting, the ErrorEvent sets the track 1 and
2 properties with the valid data, sets the track 3 properties to empty, and re-
turns an error code indicating the status of each track.

This property is initialized to MSR_ERT_CARD by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also ErrorEvent

194
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
ExpirationDate Property
Syntax ExpirationDate: string { read-only, access after open }

Remarks Holds the expiration date obtained from the most recently swiped card.

This property is initialized to the empty string if:

• The field was not included in the track data obtained, or,

• The track data format was not one of those listed in the ParseDecodeData
property description, or,

• ParseDecodeData is false.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also ParseDecodeData Property.

FirstName Property

Syntax FirstName: string { read-only, access after open }

Remarks Holds the first name obtained from the most recently swiped card.

This property is initialized to an empty string if:

• The field was not included in the track data obtained, or,

• The track data format was not one of those listed in the ParseDecodeData
property description, or,

• ParseDecodeData is false.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also ParseDecodeData Property.

MiddleInitial Property

Syntax MiddleInitial: string { read-only, access after open }

Remarks Holds the middle initial obtained from the most recently swiped card. This
property is initialized to the empty string if:

• The field was not included in the track data obtained, or,

• The track data format was not one of those listed in the ParseDecodeData
property description, or,

• ParseDecodeData is false.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also ParseDecodeData Property.

195 Properties (UML attributes)
ParseDecodeData Property

Syntax ParseDecodeData: boolean { read-write, access after open }

Remarks When true, the decoded data contained within the Track1Data and Track2Data
properties is further separated into fields for access via various other properties.
Track3Data is not parsed because its data content is of an open format defined by
the card issuer. JIS-I Track 1 Format C and ISO Track 1 Format C data are not
parsed for similar reasons. Track4Data is also not parsed.

The parsed data properties are the defined possible fields for cards with data
consisting of the following formats:

• JIS-I / ISO Track 1 Format A

• JIS-I / ISO Track 1 Format B

• JIS-I / ISO Track 1 VISA Format (a defacto standard)

• JIS-I / ISO Track 2 Format

This property is initialized to true by the open method.

Setting this property to true automatically sets DecodeData to true.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also DecodeData Property, Surname Property, Suffix Property, AccountNumber
Property, FirstName Property, MiddleInitial Property, Title Property,
ExpirationDate Property, ServiceCode Property, Track1DiscretionaryData
Property, Track2DiscretionaryData Property.

ServiceCode Property

Syntax ServiceCode: string { read-only, access after open }

Remarks Holds the service code obtained from the most recently swiped card.

This property is initialized to the empty string if:

• The field was not included in the track data obtained, or,

• The track data format was not one of those listed in the ParseDecodeData
property description, or,

• ParseDecodeData is false.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also ParseDecodeData Property.

196
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
Suffix Property

Syntax Suffix: string { read-only, access after open }

Remarks Holds the suffix obtained from the most recently swiped card.

This property is initialized to the empty string if:

• The field was not included in the track data obtained, or,

• The track data format was not one of those listed in the ParseDecodeData
property description, or,

• ParseDecodeData is false.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also ParseDecodeData Property.

Surname Property

Syntax Surname: string { read-only, access after open }

Remarks Holds the surname obtained from the most recently swiped card.

This property is initialized to the empty string if:

• The field was not included in the track data obtained, or,

• The track data format was not one of those listed in the ParseDecodeData
property description, or,

• ParseDecodeData is false.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also ParseDecodeData Property.

Title Property

Syntax Title: string { read-only, access after open }

Remarks Holds the title obtained from the most recently swiped card.

This property is initialized to the empty string if:

• The field was not included in the track data obtained, or,

• The track data format was not one of those listed in the ParseDecodeData
property description, or,

• ParseDecodeData is false.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also ParseDecodeData Property.

197 Properties (UML attributes)
Track1Data Property

Syntax Track1Data: binary { read-only, access after open }

Remarks Holds the track 1 data obtained from the most recently swiped card.

If TransmitSentinels is false, this property contains track data between but not
including the start and end sentinels. If TransmitSentinels is true, then the start
and end sentinels are included.

If DecodeData is true, then the data returned by this property has been decoded
from the “raw” format. The data may also be parsed into other properties when the
ParseDecodeData property is set.

A zero length array indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also TracksToRead Property, TransmitSentinels Property, ParseDecodeData
Property.

Track1DiscretionaryData Property

Syntax Track1DiscretionaryData: binary { read-only, access after open }

Remarks Holds the track 1 discretionary data obtained from the most recently swiped card.

The array will be zero length if:

• The field was not included in the track data obtained, or,

• The track data format was not one of those listed in the ParseDecodeData
property description, or,

• ParseDecodeData is false.

The amount of data contained in this property varies widely depending upon the
format of the track 1 data.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also ParseDecodeData Property.

198
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
Track2Data Property

Syntax Track2Data: binary { read-only, access after open }

Remarks Holds the track 2 data obtained from the most recently swiped card.

If TransmitSentinels is false, this property contains track data between but not
including the start and end sentinels. If TransmitSentinels is true, then the start
and end sentinels are included.

If DecodeData is true, then the data returned by this property has been decoded
from the “raw” format. The data may also be parsed into other properties when the
ParseDecodeData property is set.

A zero length array indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also TracksToRead Property, TransmitSentinels Property, ParseDecodeData
Property.

Track2DiscretionaryData Property

Syntax Track2DiscretionaryData: binary { read-only, access after open }

Remarks Holds the track 2 discretionary data obtained from the most recently swiped card.

The array will be zero length if:

• The field was not included in the track data obtained, or,

• The track data format was not one of those listed in the ParseDecodeData
property description, or,

• ParseDecodeData is false.

The amount of data contained in this property varies widely depending upon the
format of the track 2 data.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also ParseDecodeData Property.

199 Properties (UML attributes)
Track3Data Property

Syntax Track3Data: binary { read-only, access after open }

Remarks Holds the track 3 data obtained from the most recently swiped card.

If TransmitSentinels is false, this property contains track data between but not
including the start and end sentinels. If TransmitSentinels is true, then the start
and end sentinels are included.

If DecodeData is true, then the data returned by this property has been decoded
from the “raw” format. The data may also be parsed into other properties when the
ParseDecodeData property is set.

A zero length array indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also TracksToRead Property, TransmitSentinels Property, ParseDecodeData
Property.

Track4Data Property Added in Release 1.5

Syntax Track4Data: binary { read-only, access after open }

Remarks Holds the track 4 data (JIS-II) obtained from the most recently swiped card.

If TransmitSentinels is false, this property contains track data between but not
including the start and end sentinels. If TransmitSentinels is true, then the start
and end sentinels are included.

If DecodeData is true, then the data returned by this property has been decoded
from the “raw” format.

A zero length array indicates that the track was not accessible.

To maintain compatibility with previous versions, the Control may also continue
to store the JIS-II data in another TracknData property. However, it should be
noted that to ensure application portability, Track4Data should be used to access
JIS-II data.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also Track1Data Property, Track2Data Property, Track3Data Property,
TransmitSentinels Property.

200
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
TracksToRead Property Updated in Release 1.5

Syntax TracksToRead: int32 { read-write, access after open }

Remarks Holds the track data that the application wishes to have placed into Track1Data,
Track2Data, Track3Data, and Track4Data properties following a card swipe.
This property has one of the following values:

Value Meaning

MSR_TR_1 Obtain track 1.

MSR_TR_2 Obtain track 2.

MSR_TR_3 Obtain track 3.

MSR_TR_1_2 Obtain tracks 1 and 2.

MSR_TR_1_3 Obtain tracks 1 and 3.

MSR_TR_2_3 Obtain tracks 2 and 3.

MSR_TR_1_2_3 Obtain tracks 1, 2, and 3.

MSR_TR_4 Obtain track 4.

MSR_TR_1_4 Obtain tracks 1 and 4.

MSR_TR_2_4 Obtain tracks 2 and 4.

MSR_TR_3_4 Obtain tracks 3 and 4.

MSR_TR_1_2_4 Obtain tracks 1, 2, and 4.

MSR_TR_1_3_4 Obtain tracks 1, 3, and 4.

MSR_TR_2_3_4 Obtain tracks 2, 3, and 4.

MSR_TR_1_2_3_4 Obtain tracks 1, 2, 3, and 4.

Decreasing the required number of tracks may provide a greater swipe success rate
and somewhat greater responsiveness by removing the processing for unaccessed
data.

TracksToRead does not indicate a capability of the MSR hardware unit but
instead is an application configurable property representing which track(s) will
have their data obtained, potentially decoded, and returned if possible. Cases such
as an ISO card being swiped through a JIS-II read head, cards simply not having
data for particular tracks, and other factors may preclude the desired data from
being obtained.

This property is initialized to MSR_TR_1_2_3 by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

201 Properties (UML attributes)
TransmitSentinels Property Added in Release 1.5

Syntax TransmitSentinels: boolean { read-write, access after open }

Remarks If true, the Track1Data, Track2Data, Track3Data, and Track4Data properties
contain start and end sentinel values.

If false, then these properties contain only the track data between these sentinels.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The CapTransmitSentinels property is false.

See Also CapTransmitSentinels Property, Track1Data Property, Track2Data Property,
Track3Data Property, Track4Data Property.

202
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
Events (UML interfaces)

DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when input data from the MSR device is available.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 See below.

The Status property is divided into four bytes representing information on up to
four tracks of data. The diagram below indicates how the Status property is
divided:

A value of zero for a track byte means that no data was obtained from the swipe
for that particular track. This might be due to the hardware device simply not
having a read head for the track, or perhaps the application intentionally precluded
incoming data from the track via the TracksToRead property.

A value greater than zero indicates the length in bytes of the corresponding
TrackxData Property.

Remarks Before this event is delivered, the swiped data is placed into Track1Data,
Track2Data, Track3Data, and Track4Data. If DecodeData is true, then this
track is decoded. If ParseDecodeData is true, then the data is parsed into several
additional properties.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Track 4 Track 3 Track 2 Track 1

203 Events (UML interfaces)
DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific MSR Service to provide events to the application that
are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Device Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Device Service. This property is
settable.

Obj object Additional data whose usage varies by the EventNumber
and Device Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s MSR devices which may not have any
knowledge of the Device Service’s need for this event.

See Also “Events” on page 14, directIO Method.

204
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that an error has been detected at the MSR device and a
suitable response by the application is necessary to process the error condition.

Attributes This event contains the following properties:

Attributes Type Description

ErrorCode int32 Result code causing the error event. See a list of Error
Codes on page 15.

ErrorCodeExtended int32 Extended Error code causing the error event. If
ErrorCode is E_EXTENDED, then see values below.
Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application. (i.e., this property is settable). See
values below.

If the ErrorReportingType property is MSR_ERT_TRACK, and ErrorCode is
E_EXTENDED, then ErrorCodeExtended contains Track-level status, broken
down as follows:

Where each of the track status bytes has one of the following values:

Value Meaning

SUCCESS No error occurred.

EMSR_START Start sentinel error.

EMSR_END End sentinel error.

EMSR_PARITY Parity error.

EMSR_LRC LRC error.

E_FAILURE Other or general error.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Track 4 Track 3 Track 2 Track 1

205 Events (UML interfaces)
The ErrorLocus property may be one of the following:

Value Meaning

EL_INPUT Error occurred while gathering or processing event-
driven input. No input data is available.

EL_INPUT_DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER_CLEAR Clear the buffered input data. The error state is exited.
Default when locus is EL_INPUT.

ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA.
Acknowledges the error and directs the Device to
continue processing. The Device remains in the error
state, and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and the DataEventEnabled property is
again set to true, then another ErrorEvent is delivered
with locus EL_INPUT.
Default when locus is EL_INPUT_DATA.

Remarks Enqueued when an error is detected while trying to read MSR data. This error
event is not delivered until the DataEventEnabled property is true, so that proper
application sequencing occurs.

If the ErrorReportingType property is MSR_ERT_CARD, then the track that
caused the fault cannot be determined. The track data properties are not changed.

If the ErrorReportingType property is MSR_ERT_TRACK then the ErrorCode
and the ErrorCodeExtended properties may indicate the track-level status. Also,
the track data properties are updated as with DataEvent, with the properties for
the track or tracks in error set to empty strings.

Unlike DataEvent, individual track lengths are not reported. However, the
application can determine their lengths by getting the length of each of the
TrackxData properties.

Also, since this is an ErrorEvent (even though it is reporting partial data), the
DataCount property is not incremented and the Control remains enabled,
regardless of the AutoDisable property value.

See Also “Device Behavior Models” on page 9 and ErrorReportingType Property.

206
UnifiedPOS Retail Peripheral Architecture Chapter 12

Magnetic Stripe Reader
StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of the MSR
device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the power status of the unit.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on page 56.

Remarks Enqueued when the magnetic stripe reader device detects a power state change.

See Also “Events” on page 14.

C H A P T E R 1 3

PIN Pad

This Chapter defines the PIN Pad device category.

Summary

Properties (UML attributes)

Common Type Mutability Versiona

a. The version representation provides the mechanism for recognizing when a change
occurs to a property, method or event. This PIN Pad definition was introduced in an
existing standard and was not changed for the UnifiedPOS version 1.4.

May Use After

AutoDisable: boolean { read-write } 1.3 Not Supported

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.3 open

Claimed: boolean { read-only } 1.3 open

DataCount: int32 { read-only } 1.3 open

DataEventEnabled: boolean { read-write } 1.3 open

DeviceEnabled: boolean { read-write } 1.3 open & claim

FreezeEvents: boolean { read-write } 1.3 open

OutputID: int32 { read-only } 1.3 Not Supported

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.3 --

DeviceControlDescription: string { read-only } 1.3 --

DeviceControlVersion: int32 { read-only } 1.3 --

DeviceServiceDescription: string { read-only } 1.3 open

DeviceServiceVersion: int32 { read-only } 1.3 open

PhysicalDeviceDescription: string { read-only } 1.3 open

PhysicalDeviceName: string { read-only } 1.3 open

208
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
Properties (Continued)
Specific Type Mutability Version May Use After

CapDisplay: int32 { read-only } 1.3 open

CapKeyboard: boolean { read-only } 1.3 open

CapLanguage: int32 { read-only } 1.3 open

CapMACCalculation: boolean { read-only } 1.3 open

CapTone: boolean { read-only } 1.3 open

AccountNumber: string { read-write } 1.3 open

AdditionalSecurityInformation: string { read-only } 1.3 open

Amount: int32 { read-write } 1.3 open

AvailableLanguagesList: string { read-only } 1.3 open

AvailablePromptsList: string { read-only } 1.3 open

EncryptedPIN: string { read-only } 1.3 open

MaximumPINLength: int32 { read-write } 1.3 open

MerchantID: string { read-write } 1.3 open

MinimumPINLength: int32 { read-write } 1.3 open

PINEntryEnabled: boolean { read-only } 1.3 open

Prompt: int32 { read-write } 1.3 open

PromptLanguage: nls { read-write } 1.3 open

TerminalID: string { read-write } 1.3 open

Track1Data: binary { read-write } 1.3 open

Track2Data: binary { read-write } 1.3 open

Track3Data: binary { read-write } 1.3 open

Track4Data: binary { read-write } 1.5 open

TransactionType: string { read-write } 1.3 open

209 Summary
Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
 void { raises exception }

close ():
 void { raises exception, use after open }

claim (timeout: int32):
 void { raises exception, use after open }

release ():
 void { raises exception, use after open, claim }

checkHealth (level: int32):
 void { raises exception, use after open, claim, enable }

clearInput ():
 void { raises exception, use after open, claim }

clearOutput (): Not supported
 void { }

directIO (command: int32, inout data: int32, inout obj: object):
 void { raises exception, use after open }

Specific

beginEFTTransaction (PINPadSystem: string, transactionHost: int32):
void { raises exception, use after open, claim, enable }

computeMAC (inMsg: string, outMsg: object):
void { raises exception, use after beginEFTTransaction }

enablePINEntry():
void { raises exception, use after beginEFTTransaction }

endEFTTransaction (completionCode: int32):
void { raises exception, use after beginEFTTransaction }

updateKey (keyNum: int32, key: string):
void { raises exception, use after beginEFTTransaction }

verifyMAC (message: string):
void { raises exception, use after beginEFTTransaction }

210
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
Events (UML interfaces)
Name Type Mutability

upos::events::DataEvent

 Status: int32 { read-only }

upos::events::DirectIOEvent

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse int32 { read-write }

upos::events::StatusUpdateEvent

 Status: int32 { read-only }

211 General Information
General Information

The PIN Pad programmatic name is “PINPad”.

A PIN Pad:

• Provides a mechanism for customers to perform PIN Entry.

• Acts as a cryptographic engine for communicating with an EFT
Transaction Host.

A PIN Pad will perform these functions by implementing one or more PIN Pad
Management Systems. A PIN Pad Management System defines the manner in
which the PIN Pad will perform functions such as PIN Encryption, Message
Authentication Code calculation, and Key Updating. Examples of PIN Pad
Management Systems include: Master-Session, DUKPT, APACS40,
HGEPOS, AS2805, and JDEBIT2, along with many others

Capabilities
The PIN Pad Control has the following minimal capability:

• Accept a PIN Entry at its keyboard and provide an Encrypted PIN to the
application.

The PIN Pad Control may have the following additional capabilities:

• Compute Message Authentication Codes.

• Perform Key Updating in accordance with the selected PIN Pad
Management System.

• Supports multiple PIN Pad Management Systems.

• Allow use of the PIN Pad Keyboard, Display, & Tone Generator for
application usage. If one or more of these features are available, then the
application opens and uses the associated POS Keyboard, Line Display, or
Tone Indicator Device Objects:

212
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
PIN Pad Class Diagram

The following diagram shows the relationships between the PIN Pad classes.

UposConst
(from upos)

<<utility>>

UposException
(from upos)

<<exception>>

PINPadConst
(from upos)

<<utility>>

DataEvent
(from events)

<<event>>

ErrorEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

PINPadControl

<<capability>> CapDisplay : int32
<<capability>> CapLanguage : int32
<<capability>> CapKeyboard : boolean
<<capability>> CapMACCalculation : boolean
<<capability>> CapTone : boolean
<<prop>> AccountNumber : string
<<prop>> AdditionalSecurityInformation : string
<<prop>> Amount : currency
<<prop>> AvailableLanguagesList : string
<<prop>> AvailablePromptsList : string
<<prop>> EncryptedPIN : string
<<prop>> MaximumPINLength : int32
<<prop>> MerchantID : string
<<prop>> MinimumPINLength : int32
<<prop>> PINEntryEnabled : boolean
<<prop>> Prompt : int32
<<prop>> PromptLanguage : int32
<<prop>> TerminalID : string
<<prop>> Track1Data : binary
<<prop>> Track2Data : binary
<<prop>> Track3Data : binary
<<prop>> Track4Data : binary
<<prop>> TransactionType : int32

beginEFTTransaction(PINPadSystem : string, transactionHost : int32) : void
computeMAC(inMsg : string, outMsg : object) : void
enablePINEntry() : void
endEFTTransaction(completionCode : int32) : void
updateKey(keyNum : int32, key : string) : void
verifyMAC(message : string) : void

(from upos)

<<Interface>>

fires

fires

fires

DirectIOEvent
(from events)

<<event>>

fires

BaseControl
(from upos)

<<Interface>>

<<sends>>

<<uses>>
<<uses>>

<<uses>>

<<sends>>

213 General Information
Feature Not Supported
This specification does not include support for the following:

• Initial Key Loading. This operation usually requires downloading at least
one key in the clear and must be done in a secure location (typically either
the factory or at a Financial Institution). Thus, support for initial key
loading is outside the scope of this specification. However, this
specification does include support for updating keys while a PIN Pad unit
is installed at a retail site.

• Full EFT functionality. This specification addresses the functionality of a
PIN Pad that is used solely as a peripheral device by an Electronic Funds
Transfer application. It specifically does not define the functionality of an
Electronic Funds Transfer application that might execute within an
intelligent PIN Pad. This specification does not include support for
applications in which the PIN Pad application determines that a message
needs to be transmitted to the EFT Transaction Host. Consequently, this
specification will not apply in Canada, Germany, Netherlands, and
possibly other countries. It also does not apply to PIN Pad in which the
vendor has chosen to provide EFT Functionality in the PIN Pad.

• Smartcard Reader. Some PIN Pad devices will include a Smartcard reader.
Support for this device may be included in a future revision of this
specification. In the interim, the directIO method could not be used to control
such added functionality.

Note on Terminology
For the PIN Pad device, clarification of the terminology used to describe the
data exchange with the device is necessary. “Hex-ASCII” is used to indicate
that the “standard” representation of bytes as hexadecimal ASCII characters is
used. For instance, the byte stream {0x15, 0xC7, 0xF0} would be represented
in hex-ASCII as “15C7F0”.

214
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
Model
A PIN Pad performs encryption functions under control of a PIN Pad
Management System. Some PIN Pads will support multiple PIN Pad
Management Systems. Some PIN Pad Management Systems support multiple
keys (sets) for different EFT Transaction Hosts. Thus, for each EFT
transaction, the application will need to select the PIN Pad Management
System and EFT Transaction Host to be used. Depending on the PIN Pad
Management System, one or more EFT transaction parameters will need to be
provided to the PIN Pad for use in the encryption functions. The application
should set the value of ALL EFT Transaction parameter properties to enable
easier migration to EFT Transaction Hosts that require a different PIN Pad
Management System.

After opening, claiming, and enabling the PIN Pad Control, an application
should use the following general scenario for each EFT Transaction.

• Set the EFT transaction parameters (AccountNumber, Amount,
MerchantID, TerminalID, Track1Data, Track2Data, Track3Data,
Track4Data, and TransactionType properties) and then call the
beginEFTTransaction method. This will initialize the Device to perform
the encryption functions for the EFT transaction.

• If PIN Entry is required, call the enablePINEntry method. Then set the
DataEventEnabled property and wait for the DataEvent.

• If Message Authentication Codes are required, use the computeMAC and
verifyMAC methods as needed.

• Call the endEFTTransaction method to notify the Device that all
operations for the EFT transaction have been completed.

This specification supports two models of usage of the display. The
CapDisplay property indicates one of the following models.

• An application has complete control of the text that is to be displayed. For
this model, there is an associated Line Display Control that is used by the
application to interact with the display.

• An application cannot supply the text to be displayed. Instead, it can only
select from a list of pre-defined messages to be displayed. For this model,
there is a set of PIN Pad properties that are used to control the display.

215 General Information
Device Sharing
The PIN Pad is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before the device begins
reading input, or before calling methods that manipulate the device.

• See the “Summary” table for precise usage prerequisites.

216
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
PIN Pad State Diagram

The following state diagram depicts the PIN Pad Control device model.

Closed Opened Claimed

Enabled

EFT Transaction

Idle

MAC
Processing

PIN Input Processing

Wait PIN Input

Error Event
Processing

Data Event
Processing

Idle

MAC
Processing

PIN Input Processing

Wait PIN Input

Error Event
Processing

Data Event
Processing

Wait for PIN Input

ErrorEvent
Processing

DataEvent
Processing

open()

close()

claim()

Error
[DataEventEnabled == true]

release()

/set DeviceEnabled(true)

close()

beginEFTTransaction()

endEFTTransaction()

release()

/set DeviceEnabled(false)

close()

done

enablePINEntry()

computeMAC(),
verifyMAC()

done

217 Properties (UML attributes)
Properties (UML attributes)
AccountNumber Property

Syntax AccountNumber: string { read-write, access after open }

Remarks Holds the account number to be used for the current EFT transaction. The
application must set this property before calling the beginEFTTransaction
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
beginEFTTransaction method has been called.

AdditionalSecurityInformation Property

Syntax AdditionalSecurityInformation: string { read-only, access after open }

Remarks Holds additional security/encryption information when a DataEvent is delivered.
This property will be formatted as a HEX-ASCII string. The information content
and internal format of this string will vary among PIN Pad Management Systems.
For example, if the PIN Pad Management System is DUKPT, then this property
will contain the “PIN Pad sequence number”. If the PIN Entry was cancelled, this
property will contain the empty string.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Amount Property

Syntax Amount: int32 { read-write, access after open }

Remarks Holds the amount of the current EFT transaction. The application must set this
property before calling the beginEFTTransaction method. This property is a
monetary value stored using an implied four decimal places. For example, an
actual value of 12345 represents 1.2345.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
beginEFTTransaction method has been called.

218
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
AvailableLanguagesList Property

Syntax AvailableLanguagesList: string { read-only, access after open }

Remarks Holds a semi-colon separated list of a set of a “language definitions” that are
supported by the pre-defined prompts in the PIN Pad. A “language definition”
consists of an ISO-639 language code and an ISO-3166 country code. The two
codes are comma separated.

For example, the string “EN,US;FR,CAN” represents two supported language
definitions. US English and Canadian French where the variant of French used will
be dependent on what is available on the device.

If CapLanguage is PPAD_LANG_NONE, then this property will be the empty
string.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also PromptLanguage Property.

AvailablePromptsList Property

Syntax AvailablePromptsList: string { read-only, access after open }

Remarks Holds a comma-separated string representation of the supported values for the
Prompt property.

The full set of supported Prompt values are shown below:

Name (Value) Meaning

PPAD_MSG_ENTERPIN (1)
Enter pin number on the PIN Pad.

PPAD_MSG_PLEASEWAIT (2)
The system is processing. Wait.

PPAD_MSG_ENTERVALIDPIN (3)
The pin that was entered is not correct. Enter the correct
pin number.

PPAD_MSG_RETRIESEXCEEDED (4)
The user has failed to enter the correct pin number and
the maximum number of attempts has been exceeded.

PPAD_MSG_APPROVED (5)
The request has been approved.

PPAD_MSG_DECLINED (6)
The EFT Transaction Host has declined to perform the
requested function.

219 Properties (UML attributes)
PPAD_MSG_CANCELED (7)
The request is cancelled.

PAD_MSG_AMOUNTOK (8)
Enter Yes/No to approve the amount.

PPAD_MSG_NOTREADY (9)
PIN Pad is not ready for use.

PPAD_MSG_IDLE (10)
The System is Idle.

PPAD_MSG_SLIDE_CARD (11)
Slide card through the integrated MSR.

PPAD_MSG_INSERTCARD (12)
Insert (smart)card.

PPAD_MSG_SELECTCARDTYPE (13)
Select the card type (typically credit or debit).

Value 1000 and above are reserved for device specific defined values.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

220
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
CapDisplay Property

Syntax CapDisplay: int32 { read-only, access after open }

Remarks Defines the operations that the application may perform on the PIN Pad display.

Value Meaning

PPAD_DISP_UNRESTRICTED
The application can use the PIN Pad display in an
unrestricted manner to display messages. In this case, an
associated Line Display Control Object is the interface
to the PIN Pad display. The application must call Line
Display methods to manipulate the display.

PPAD_DISP_PINRESTRICTED
The application can use the PIN Pad display in an
unrestricted manner except during PIN Entry. The PIN
Pad will display a pre-defined message during PIN
Entry. If an attempt is made to use the associated Line
Display Control Object while PIN Entry is enabled, the
Line Display Control will throw a UposException with
an associated ErrorCode of E_BUSY.

PPAD_DISP_RESTRICTED_LIST
The application cannot specify the text of messages to
display. It can only select from a list of pre-defined
messages. There is no associated Line Display Device
Control.

PPAD_DISP_RESTRICTED_ORDER
The application cannot specify the text of messages to
display. It can only select from a list of pre-defined
messages. The selections must occur in a pre-defined
acceptable order. There is no associated Line Display
Device Control.

PPAD_DISP_NONE The PIN Pad does not have the PIN Pad display.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

221 Properties (UML attributes)
CapKeyboard Property

Syntax CapKeyboard: boolean { read-only, access after open }

Remarks If true, the application can use the PIN Pad to obtain input. The application will
use an associated POS Keyboard Device Control object as the interface to the PIN
Pad keyboard. Note that the associated POS Keyboard Control is effectively
disabled while PINEntryEnabled is true.

If false, the application cannot obtain input directly from the PIN Pad keyboard.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapLanguage Property

Syntax CapLanguage: int32 { read-only, access after open }

Remarks Defines the capabilities that the application has to select the language of pre-
defined messages (e.g. English, French, Arabic etc.).

Value Meaning

PPAD_LANG_NONE The PIN Pad supports no pre-defined prompt messages.
The property will be set to this value if CapDisplay =
PPAD_DISP_UNRESTRICTED. Any attempt to set the
value of the PromptLanguage property will cause a
UposException to be thrown with the associated
ErrorCode of E_ILLEGAL.

PPAD_LANG_ONE The PIN Pad supports pre-defined prompt messages in
one language. Any attempt to set the value of the
PromptLanguage property to other than the default
value will cause a UposException to be thrown with the
associated ErrorCode of E_ILLEGAL.

PPAD_LANG_PINRESTRICTED
The PIN Pad cannot change prompt languages during
PIN Entry. The application must set the desired value
into the PromptLanguage property before calling
enablePINEntry. Any attempt to set the value of the
PromptLanguage while PINEntryEnabled is true will
cause a UposException to be thrown with the associated
ErrorCode of E_BUSY.

PPAD_DISP_RESTRICTED_ORDER
The application can change the language of pre-defined
prompt messages at anytime. The currently displayed
message will change immediately.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also PromptLanguage Property.

222
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
CapMACCalculation Property

Syntax CapMACCalculation: boolean { read-only, access after open }

Remarks If true, the PIN Pad supports MAC calculation.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapTone Property

Syntax CapTone: boolean { read-only, access after open }

Remarks If true, the PIN Pad has a Tone Indicator. The Tone Indicator may be accessed by
use of an associated Tone Indicator Control. If false, there is no Tone Indicator.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

EncryptedPIN Property

Syntax EncryptedPIN: string { read-only, access after open }

Remarks Holds the value of the Encrypted PIN after a DataEvent. This property will be
formatted as a hexadecimal ASCII string. Each character is in the ranges ‘0’
through ‘9’ or ‘A’ through ‘F’. Each pair of characters is the hexadecimal
representation for a byte.
For example, if the first four characters are “12FA”, then the first two bytes of the
PIN are 12 hexadecimal (18) and FA hexadecimal (250).

If the PIN Entry was cancelled, this property will contain the empty string.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

MaximumPINLength Property

Syntax MaximumPINLength: int32 { read-write, access after open }

Remarks Holds the maximum acceptable number of digits in a PIN. This property must be
set to a default value by the open method. If the application wishes to change this
property, it should be set before the enablePINEntry method is called. Note that
in some implementations, this value cannot be changed by the application.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
enablePINEntry method has been called.

223 Properties (UML attributes)
MerchantID Property

Syntax MerchantID: string { read-write, access after open }

Remarks Holds the Merchant ID, as it is known to the EFT Transaction Host. The
application must set this property before calling the beginEFTTransaction
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
enablePINEntry method has been called.

MinimumPINLength Property

Syntax MinimumPINLength: int32 { read-only, access after open }

Remarks Holds the minimum acceptable number of digits in a PIN. This property will be set
to a default value by the open method. If the application wishes to change this
property, it should be set before the enablePINEntry method is called. Note that
in some implementations, this value cannot be changed by the application.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
enablePINEntry method has been called.

PINEntryEnabled Property

Syntax PINEntryEnabled: boolean { read-write, access after open }

Remarks If true, the PIN entry operation is enabled. It is set when the enablePINEntry
method is called. It will be set to false when the user has completed the PIN Entry
operation or when the endEFTTransaction method has completed.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

224
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
Prompt Property

Syntax Prompt: int32 { read-write, access after open }

Remarks Holds the identifies a pre-defined message to be displayed on the PIN Pad. This
property is used if CapDisplay is PPAD_DISP_RESTRICTED_LIST or
PPAD_DISP_RESTRICTED_ORDER. It is also used during PIN Entry if
CapDisplay has a value of PPAD_DISP_PINRESTRICTED. The
AvailablePromptsList property lists the possible values for this property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following has occurred.
* An attempt was made to set the property to a value that
is not supported by the PIN Pad Device Service.
* An attempt was made to select prompt messages in an
unacceptable order (if CapDisplay is
PPAD_DISP_RESTRICTED_ORDER).

See Also PromptLanguage Property.

225 Properties (UML attributes)
PromptLanguage Property

Syntax PromptLanguage: nls { read-write, access after open }

Remarks Holds the “language definition” for the message to be displayed (as specified by
the Prompt property). This property is used if the Prompt property is begin used.
The exact effect of changing this property depends on the value of CapLanguage.

A “language definition” consists of an ISO-639 language code and an ISO-3166
country code. The two codes are comma separated.

The country code is optional and implies that the application does not care which
country variant of the language is used.

For example, the string “EN,US” represents a US English language definition, the
string “FR”, represents a French language definition where the variant of French
used will be dependent on what is available on the device.

The property is initialized to a default value by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following occurred.
* An attempt was made to set the property to a value that
is not supported by the PIN Pad Device Service.
* CapLanguage is PPAD_LANG_NONE. and an
attempt was made to set the value of this property.
* CapLanguage is PPAD_LANG_ONE and an attempt
was made to set the value of this property to other than
the default value.

E_BUSY CapLanguage is PPAD_LANG_PINRESTRICTED
and PINEntryEnabled is true.

See Also CapLanguage Property, AvailableLanguagesList Property.

TerminalID Property

Syntax TerminalID: string { read-write, access after open }

Remarks Holds the terminal ID, as it is known to the EFT Transaction Host. The application
must set this property before calling the beginEFTTransaction method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
beginEFTTransaction method has been called.

226
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
Track1Data Property

Syntax Track1Data: binary { read-write, access after open }

Remarks Holds either the decoded track 1 data from the previous card swipe or an empty
array. An empty array indicates that the track was not physically read. The
application must set this property before calling the beginEFTTransaction
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
beginEFTTransaction method has been called.

Track2Data Property

Syntax Track2Data: binary { read-write, access after open }

Remarks Holds either the decoded track 2 data from the previous card swipe or an empty
array. An empty array indicates that the track was not physically read. The
application must set this property before calling the beginEFTTransaction
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
beginEFTTransaction method has been called.

Track3Data Property

Syntax Track3Data: binary { read-write, access after open }

Remarks Holds either the decoded track 3 data from the previous card swipe or an empty
array. An empty array indicates that the track was not physically read. The
application must set this property before calling the beginEFTTransaction
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
beginEFTTransaction method has been called.

227 Properties (UML attributes)
Track4Data Property Added in Release 1.5

Syntax Track4Data: binary { read-write, access after open }

Remarks Holds either the decoded track 4 (JIS-II) data from the previous card swipe or an
empty array. An empty array indicates that the track was not physically read. The
application must set this property before calling the beginEFTTransaction
method.

To maintain compatibility with previous versions, the Control may also continue
to store the JIS-II data in another TracknData property. However, it should be
noted that to ensure application portability, Track4Data should be used to access
JIS-II data.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
beginEFTTransaction method has been called.

TransactionType Property

Syntax TransactionType: int32 { read-write, access after open }

Remarks Holds the type of the current EFT Transaction. The application must set this
property before calling the beginEFTTransaction method.

This property have one of the following values:

Value Meaning

PPAD_TRANS_DEBIT Debit (decrease) the specified account

PPAD_TRANS_CREDITCredit (increase) the specified account

PPAD_TRANS_INQ (Balance) Inquiry

PPAD_TRANS_RECONCILE
Reconciliation/Settlement

PPAD_TRANS_ADMINAdministrative Transaction

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An attempt was made to change this property after the
beginEFTTransaction method has been called.

228
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
Methods (UML operations)

beginEFTTransaction Method

Syntax beginEFTTransaction (PINPadSystem: string, transactionHost: int32) :
void { raises-exception, use after open-claim-enable }

Value Description

PINPadSystem Name of the desired PIN Pad Management System (see
below). The Device Service my support other PIN Pad
Management systems.

transactionHost Identifications particular EFT Transaction Host to be
used for this transaction.

The PINPadSystem Parameter has one of the following values:

Value Description

“M/S” Master/Session (U.S.A Latin America)

“DUKPT” Derived Unique Key Per Transaction (USA, Latin
America)

“APACS40” Standard 40 (UK and other countries)

“AS2805” Australian Standard 2805

“HGEPOS” (Italian)

“JDEBIT2” Japan Debit 2

Remarks Initialize the beginning of an EFT Transaction. The device will perform
initialization functions (such as computing session keys). No other PIN Pad
functions can be performed until this method is called.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The requested PIN Pad Management System is not
supported by the Control, or the requested EFT
Transaction Host is an illegal value for the selected PIN
Pad Management System.

E_BUSY The PIN Pad is already performing an EFT transaction.

229 Methods (UML operations)
computeMAC Method

Syntax computeMAC (inMsg: string, outMsg: object) :
void { raises-exception, use after beginEFTTransaction)

Value Description

inMsg The message that the application intends to send to an
EFT Transaction.

outMsg Contains the result of applying the MAC calculation to
inMsg. This output parameter will contain a reformatted
message that may actually be transmitted to an EFT
Transaction Host.

Remarks Computers a MAC value and appends it to the designated message. Depending on
the selected PIN Pad management system, the PIN Pad may also insert other fields
into the message. Note that this method cannot be used while PIN Pad input (PIN
Entry) is enabled.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_DISABLED A beginEFTTransaction method has not been
performed.

E_BUSY PINEntryEnabled is true. The PIN Pad cannot perform a
MAC calculation during PIN Entry.

enablePINEntry Method

Syntax enablePINEntry ():
void { raises-exception, use after beginEFTTransaction);

Remarks Enable PIN Entry at the PIN Pad device. When this method is called, the

PINEntryEnabled property will be changed to true. If the PIN Pad uses pre-
defined prompts for PIN Entry, then the Prompt property will be changed to
PPAD_MSG_ENTERPIN.

When the user has completed the PIN entry operation (either by entering their PIN
or by hitting Cancel), the PINEntryEnabled property will be changed to false. A
DataEvent will be delivered to provide the encrypted PIN to the application when
DataEventEnabled is set to true. Note that any data entered at the PIN Pad while
PINEntryEnabled is true will be supplied in encrypted form and will NOT be
provided to any associated Keyboard Control Object.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_DISABLED A beginEFTTransaction method has not been
performed.

230
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
endEFTTransaction Method

Syntax endEFTTransaction (completionCode: int32):
void { raises-exception, use after beginEFTTransaction }

The completionCode is one of the following values:

Value Description

PPAD_EFT_NORMAL The EFT transaction completed normally. Note that this
does not mean that the EFT transaction was approved. It
merely means that the proper sequence of messages was
transmitted and received.

PPAD_EFT_ABNORMALThe proper sequence of messages was not transmitted
& received.

Remarks Ends an EFT Transaction. The Device will perform termination functions (such as
computing next transaction keys).

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

updateKey Method

Syntax updateKey (keyNum: int32, key: string):
void { raises-exception, use after beginEFTTransaction }

Parameter Description

keyNum A key number.

key A Hex-ASCII value for a new key.

Remarks Provides a new encryption key to the PIN Pad. It is used only for those PIN Pad
Management Systems in which new key values are sent to the terminal as a field
in standard messages from the EFT Transaction Host.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following conditions occurred.
* The selected PIN Pad Management System does not
support this function.
* The keyNum specifies an unacceptable key number.
* The key contains a bad key (not Hex-ASCII or wrong
length or bad parity).

231 Methods (UML operations)
verifyMAC Method

Syntax verifyMAC (message: string):
void { raises-exception, use after beginEFTTransaction }

Parameter Description

message Contains a message received from an EFT Transaction
Host.

Remarks Verify the MAC value in a message received from an EFT Transaction Host. This
method throws a UposException if it can verify the message. Note that this method
cannot be used while PIN Entry is enabled.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_DISABLED A beginEFTTransaction method has not been
performed.

E_BUSY PINEntryEnabled is true. The PIN Pad cannot perform
a MAC verification during PIN Entry.

232
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
Events (UML interfaces)

DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Notifies the application when a PIN Entry operation has completed.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 See below.

The status property has one of the following values:

Value Meaning

PPAD_SUCCESS PIN Entry has occurred and values have been stored into
the EncryptedPIN and
AdditionalSecurityInformation properties.

PPAD_CANCEL The user hit the cancel button on the PIN Pad.

PPAD_TIMEOUT A timeout condition occurred in the PIN Pad. (Not all
PIN Pads will report this condition).

Remarks This event is enqueued after the request’s data has been both sent and the Service
has confirmation that is was processed by the device successfully.

See Also “Device Input Model” on page 17.

233 Events (UML interfaces)
DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Device Service information directly to the application. This event
provides a means for a vendor-specific PIN Pad Service to provide events to the
application that are not otherwise supported by the Device Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service event.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Device Service. This property is
settable.

Obj object Additional data whose usage varies by the EventNumber
and Device Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s PIN Pad devices which may not have any
knowledge of the Service’s need for this event.

See Also “Events” on page 14, directIO Method

ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-only }

Description Notifies the application that an error was detected while trying to perform a PIN
encryption function.

Attributes This event contains the following properties:

Attributes Type Description

ErrorCode int32 Result code causing the error event. See a list of Error
Codes on page 15.

ErrorCodeExtended int32 Extended Error code causing the error event. If
ErrorCode is E_EXTENDED, then see values below.
Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error, and is set to EL_INPUT indicating
that the error occurred while gathering or processing
event-driven input.

234
UnifiedPOS Retail Peripheral Architecture Chapter 13

PIN Pad
ErrorResponse int32 Error response, whose default value may be overridden
by the application (i.e., this property is settable). See
values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the
following values:

Value Meaning

EPPAD_BAD_KEY An Encryption Key is corrupted or missing.

The ErrorLocus property may be one of the following:

Value Meaning

EL_INPUT Error occurred while gathering or processing event-
driven input. No input data is available.

The application’s error event listener may change ErrorResponse to the following
values:

Value Meaning

ER_CLEAR Clear the buffered input data. The error state is exited.
Default when locus is EL_INPUT.

Remarks Enqueued when an error is detected and the Service’s State transitions into the
error state. This event is not delivered until DataEventEnabled is true, so that
proper application sequencing occurs.

See Also “Device Behavior Models” on page 9 and ErrorReportingType Property.

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the power status of a PIN Pad.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates the status change, and has one of the
following values:

Note that Release 1.3 added Power State
Reporting with additional Power reporting
StatusUpdateEvent values. See
“StatusUpdateEvent” description on page 56.

Remarks Enqueued when the PIN Pad detects a power state change.

See Also “Events” on page 14.

C H A P T E R 1 4

Point Card Reader Writer

This Chapter defines the Point Card Reader Writer device category.

Summary

Properties (UML attributes)

Common Type Mutability Versiona

a. The version representation provides the mechanism for recognizing when a
change occurs to a property, method, or event. The Point Card Reader Writer
definition was introduced in the UnifiedPOS version 1.5.

May Use After

AutoDisable: boolean { read-write } 1.5 Not Supported

CapPowerReporting: int32 { read-only } 1.5 open

CheckHealthText: string { read-only } 1.5 open

Claimed: boolean { read-only } 1.5 open

DataCount: int32 { read-only } 1.5 open

DataEventEnabled: boolean { read-write } 1.5 open

DeviceEnabled: boolean { read-write } 1.5 open & claim

FreezeEvents: boolean { read-write } 1.5 open

OutputID: int32 { read-only } 1.5 open

PowerNotify: int32 { read-write } 1.5 open

PowerState: int32 { read-only } 1.5 open

State: int32 { read-only } 1.5 --

DeviceControlDescription: string { read-only } 1.5 --

DeviceControlVersion: int32 { read-only } 1.5 --

DeviceServiceDescription: string { read-only } 1.5 open

DeviceServiceVersion: int32 { read-only } 1.5 open

PhysicalDeviceDescription: string { read-only } 1.5 open

PhysicalDeviceName: string { read-only } 1.5 open

236
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
Properties (Continued)
Specific: Type Mutability Version May Use After

CapBold: boolean { read-only } 1.5 open

CapCardEntranceSensor: int32 { read-only } 1.5 open

CapCharacterSet: int32 { read-only } 1.5 open

CapCleanCard: boolean { read-only } 1.5 open

CapClearPrint: boolean { read-only } 1.5 open

CapDhigh: boolean { read-only } 1.5 open

CapDwide: boolean { read-only } 1.5 open

CapDwideDhigh: boolean { read-only } 1.5 open

CapItalic: boolean { read-only } 1.5 open

CapLeft90: boolean { read-only } 1.5 open

CapPrint: boolean { read-only } 1.5 open

CapPrintMode: boolean { read-only } 1.5 open

CapRight90: boolean { read-only } 1.5 open

CapRotate180: boolean { read-only } 1.5 open

CapTracksToRead: int32 { read-only } 1.5 open

CapTracksToWrite: int32 { read-only } 1.5 open

CardState: int32 { read-only } 1.5 open

CharacterSet: int32 { read-write } 1.5 open, claim, & enable

CharacterSetList: string { read-only } 1.5 open

FontTypeFaceList: string { read-only } 1.5 open

LineChars: int32 { read-only } 1.5 open, claim, & enable

LineCharsList: string { read-only } 1.5 open

LineHeight: int32 { read-only } 1.5 open, claim, & enable

LineSpacing: int32 { read-only } 1.5 open, claim, & enable

LineWidth: int32 { read-only } 1.5 open, claim, & enable

MapMode: int32 { read-only } 1.5 open, claim, & enable

MaxLine: int32 { read-only } 1.5 open, claim, & enable

PrintHeight: int32 { read-only } 1.5 open, claim, & enable

ReadState1: int32 { read-only } 1.5 open

ReadState2: int32 { read-only } 1.5 open

RecvLength1: int32 { read-only } 1.5 open, claim, & enable

RecvLength2: int32 { read-only } 1.5 open, claim, & enable

SidewaysMaxChars: int32 { read-only } 1.5 open

SidewaysMaxLines: int32 { read-only } 1.5 open

237 Summary
Properties (Continued)
Specific: Type Mutability Version May Use After

TracksToRead: int32 { read-write } 1.5 open, claim, & enable

TracksToWrite: int32 { read-write } 1.5 open, claim, & enable

Track1Data: binary { read-only } 1.5 open

Track2Data: binary { read-only } 1.5 open

Track3Data: binary { read-only) 1.5 open

Track4Data: binary { read-only } 1.5 open

Track5Data: binary { read-only } 1.5 open

Track6Data: binary { read-only } 1.5 open

WriteState1: int32 { read-only } 1.5 open

WriteState2: int32 { read-only } 1.5 open

Write1Data: binary { read-write } 1.5 open

Write2Data: binary { read-write } 1.5 open

Write3Data: binary { read-write } 1.5 open

Write4Data: binary { read-write } 1.5 open

Write5Data: binary { read-write } 1.5 open

Write6Data: binary { read-write } 1.5 open

238
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
Methods (UML operations)

Common
Name
open (logicalDeviceName: string):

void { raises exception }
close ():

void { raises exception, use after open }
claim (timeout: int32):

void { raises exception, use after open }
release ():

void { raises exception, use after open, claim }
checkHealth (level: int32):

void { raises exception, use after open, claim, enable }
clearInput ():

void { raises exception, use after open, claim }
clearOutput ():

void { raises exception, use after open, claim }
directIO (command: int32, inout data: int32, inout obj: object):

void { raises exception, use after open, claim}

Specific

Name

beginInsertion (timeout: int32):
void { raises exception, use after open, claim, enable }

beginRemoval (timeout: int32):
void{ raises exception, use after open, claim, enable }

cleanCard ():
void { raises exception, use after open, claim, enable }

clearPrintWrite (kind: int32, hposition: int32, vposition: int32, width: int32,
height: int32):

void { raises exception, use after open, claim, enable }

endInsertion ():
void { raises exception, use after open, claim, enable }

endRemoval ():
void { raises exception, use after open, claim, enable }

239 Summary
printWrite (kind: int32, hposition: int32, vposition: int32, data: string):
void { raises exception, use after open, claim, enable }

rotatePrint (rotation: int32):
void { raises exception, use after open, claim, enable }

validateData (data: string):
void { raises exception, use after open, claim, enable }

Events (UML interfaces)
Name Type Mutability

upos::events::DataEvent

 Status: int32 { read-only }

upos::events::DirectIOEvent

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse: int32 { read-write }

upos::events::OutputCompleteEvent

 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent

 Status: int32 { read-only }

240
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
General Information

The Point Card Reader Writer programmatic name is “PointCardRW”.
This device was introduced in Version 1.5 of the specification.

Capabilities
The Point Card Reader Writer has the following capabilities.

• Both reading and writing of the point card magnetic data are possible.

• Supports reading and writing of data from up to 6 tracks.

• The data on the tracks is in a device specific format, see the device manual
for specific definition. The data is usually in ASCII format.

• Supports point cards with or without a printing area. Actual printing support
depends upon the capabilities of the device.

• Supports both card insertion and ejection.

• No special security capabilities (e.g., encryption) are supported.

241 Point Card Reader Writer Class Diagram
Point Card Reader Writer Class Diagram
The following diagram shows the relationships between the Point Card Reader
Writer classes.

UposException
(from upos)

<<exception>>

UposConst
(from upos)

<<utility>>

PointCardRWConst
(from upos)

<<utility>>

DataEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>

ErrorEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

PointCardRWControl

<<capability>> CapBold : boolean
<<capability>> CapCardEntranceSensor : boolean
<<capability>> CapCharacterSet : int32
<<capability>> CapCleanCard : boolean
<<capability>> CapClearPrint : boolean
<<capability>> CapDhigh : boolean
<<capability>> CapDwide : boolean
<<capability>> CapDwideDhigh : boolean
<<capability>> CapItalic : boolean
<<capability>> CapLeft90 : boolean
<<capability>> CapPrint : boolean
<<capability>> CapPrintMode : boolean
<<capability>> CapRight90 : boolean
<<capability>> CapRotate180 : boolean
<<capability>> CapTracksToRead : int32
<<capability>> CapTracksToWrite : int32
<<prop>> CardState : int32
<<prop>> CharacterSet : int32
<<prop>> CharacterSetList : string
<<prop>> FontTypeFaceList : string
<<prop>> LineChars : int32
<<prop>> LineCharsList : string
<<prop>> LineHeight : int32
<<prop>> LineSpacing : int32
<<prop>> LineWidth : int32
<<prop>> MapMode : int32
<<prop>> MaxLines : int32
<<prop>> PrintHeight : int32
<<prop>> RecvLength1 : int32
<<prop>> RecvLength2 : int32
<<prop>> ReadState1 : int32
<<prop>> ReadState2 : int32
<<prop>> SidewaysMaxChars : int32
<<prop>> SidewaysMaxLines : int32
<<prop>> Tracks1Data : binary
<<prop>> Tracks2Data : binary
<<prop>> Tracks3Data : binary
<<prop>> Tracks4Data : binary
<<prop>> Tracks5Data : binary
<<prop>> Tracks6Data : binary
<<prop>> TracksToRead : int32
<<prop>> TracksToWrite : int32
<<prop>> Write1Data : binary
<<prop>> Write2Data : binary
<<prop>> Write3Data : binary
<<prop>> Write4Data : binary
<<prop>> Write5Data : binary
<<prop>> Write6Data : binary
<<prop>> WriteState1 : int32
<<prop>> WriteState2 : int32

beginInsertion()
beginRemoval()
cleanCard()
clearPrintWrite()
endInsertion()
endRemoval()
printWrite()
rotatePrint()
validateData()

(from upos)

<<Interface>>

<<uses>>

<<sends>>

fires

fires

fires

fires

BaseControl

(from upos)

<<Interface>>

<<uses>>

<<uses>>

<<sends>>

242
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
Model
The general model of Point Card Reader Writer is as follows:

• The Point Card Reader Writer reads all the magnetic stripes on a point card.
The data length and reading information are placed in the property
corresponding to the track.

• The Point Card Reader Writer follows the input model of event driven input
during the card insertion processing. Also, writing to the printing area and the
magnetic stripe follows the output model.

Input Model
• An application must call open and claim, then set DeviceEnabled to true.

• When an application wants a card inserted, it calls the beginInsertion
method, specifying a timeout value.

• If a card is not inserted before the timeout period elapses, the Point Card
Reader Writer fires an exception.

• Even if a timeout occurs, the Point Card Reader Writer remains in insertion
mode. If the application still wants a card inserted, it must call the
beginInsertion method again.

• To exit insertion mode, either after a card was inserted or the application
wishes to abort insertion, the application calls the endInsertion method.

• If there is a point card in the Point Card Reader Writer when endInsertion is
called, the point card’s data tracks are automatically read and a DataEvent is
enqueued. When the application sets the DataEventEnabled property to
true, the DataEvent will be delivered.

• If an error occurs while reading the point card’s data tracks, an ErrorEvent
is enqueued instead of a DataEvent. When the application sets the
DataEventEnabled property to true, the ErrorEvent will be delivered.

• The application can obtain the current number of enqueued data events by
reading the DataCount property.

• All enqueued but undelivered input may be deleted by calling the clearInput
method.

243 Point Card Reader Writer Class Diagram
Output Model

• To write data to a card, the application calls the printWrite method. The
ability to write data depends upon the capabilities of the device.

• The printWrite method is always performed asynchronously. All
asynchronous output is performed on a first-in, first-out basis.

• When the application calls printWrite, the Point Card Reader Writer assigns
a unique identification number for this request. This ID is stored in the
property OutputID. The Point Card Reader Writer then either queues the
request or starts its processing. Either way, the Point Card Reader Writer
returns to the application quickly.

• When the printWrite method completes, an OutputCompleteEvent is
delivered to the application. The OutputID associated with the completed
request is passed in the OutputCompleteEvent.

• If the printWrite method fails during its processing, an ErrorEvent will be
delivered to the application. If the application had multiple outstanding
output requests, the OutputID of the request that failed can be determined by
watching which requests have successfully completed by monitoring
OutputCompleteEvents. The request that failed is the one that was issued
immediately after the last request that successfully completed.

• All incomplete output requests may be deleted by calling the clearOutput
method. This method also stops any output that is in progress, if possible. No
OutputCompleteEvents will be delivered for output requests terminated in
this manner.

• When done accessing the point card, the application calls the beginRemoval
method, specifying a timeout value.

• If the card is not removed before the timeout period elapses, the Point Card
Reader Writer fires an exception.

• Even if a timeout occurs, the Point Card Reader Writer remains in removal
mode. If the application still wants the card removed, it must call the
beginRemoval method again.

• To exit removal mode, either after the card was physically removed or the
application wishes to abort removal, the application calls the endRemoval
method.

244
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
Card Insertion Diagram
The processing from card insertion to card removal is shown below. All methods,
other than printWrite, are performed synchronously.

(1) If the card is not inserted into the Point Card Reader Writer before the
application specified timeout elapses, an exception is fired. The application
needs to call beginInsertion again to confirm that a point card has been
inserted or call endInsertion to cancel the card insertion. After a successful
beginInsertion, the application must call endInsertion to cause the Point
Card Reader Writer to exit insertion mode and to read the magnetic stripe
data from the point card.

(2) If the card is not removed from the Point Card Reader Writer before the
application specified timeout elapses, an exception is fired. The application
needs to call beginRemoval again to confirm that the point card has been
removed, or call endRemoval to cancel the card removal. After a successful
beginRemoval, the application must call endRemoval to cause the Point
Card Reader Writer to exit removal mode.

DataEvent

beginInsertion

endInsertion

DataEventEnabled = true

OutputCompleteEvent

printWrite

beginRemoval

endRemoval

Card
insertion

Card
write

Card
removal

beginInsertion
(1)

beginRemoval

Application

Point Card
Reader Writer

(2)

245 Point Card Reader Writer Class Diagram
Printing Capability

• The Point Card Reader Writer supports devices that allow for rewriting the
print area of a card.

• The Point Card Reader Writer supports printing specified either by dot units
or by line units. When CapPrintMode is true, the unit type is determined by
the value of the MapMode property. When CapPrintMode is false, the unit
type is defined as lines.

• The data to print is passed to the printWrite method as the data parameter.
Special character modifications, such as double height, are dependent upon
the capabilities of the device. The starting print location is specified by the
vposition and hposition parameters respectively indicating the vertical and
horizontal start position expressed in units defined by the MapMode
property value.

• When using line units, the start position for lines containing both single and
double high characters is the top of a single high character for horizontal
printing and the bottom of all characters for vertical printing. See the diagram
below for further clarification.

Horizontal printing Vertical printing

0

0

hposition

vposition

0

0

B
A

Line feed

BA

hposition

vposition

d
ire

c
tio

n
 o

f
in

s
e
rtio

n

L
in

e
 fe

e
d

d
ire

c
tio

n
 o

f
in

s
e
rtio

n

246
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
Cleaning Capability

• Cleaning of the Point Card Reader Writer is necessary to prevent errors
caused by dirt build up inside the device.

• A special cleaning card is used. There are two types of cleaning card: a wet
card (such as a card wet with ethanol before use) and a dry card.

• Cleaning is carried out by having the inserted cleaning card make several
passes over the read heads inside the device.

• Some Point Card Reader Writers perform the cleaning operation by use of a
switch on the device. Others perform the cleaning operation entirely under
control of the application.

Initialization of Magnetic Stripe Data

• Some Point Card Reader Writers can initialize the magnetic stripe data to
prevent the illegal use of a point card.

• There are three initialization techniques in use for Point Card Reader Writers:

• Initialize all of the data, including the start sentinel, end sentinel, and a
correct LRC.

• Write an application specific code into the data area using no sentinels.
• Initialize all tracks to empty by just writing start and end sentinels.

• Initialization of the magnetic stripe is dependent upon the capability of the
device.

Device Sharing
The Point Card Reader Writer is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many
Point Card Reader Writer specific properties.

• The application must claim and enable the device before calling methods that
manipulate the device.

• See the “Summary” table for precise usage prerequisites.

247 Data Characters and Escape Sequences
Data Characters and Escape Sequences
The default character set of all Point Card Reader Writers is assumed to support at
least the ASCII characters 20-hex through 7F-hex, which include spaces, digits,
uppercase, lowercase, and some special characters. If the Point Card Reader
Writer does not support lowercase characters, then the Service may translate them
to uppercase.

Every escape sequence begins with the escape character ESC, whose value is 27
decimal, followed by a vertical bar (‘|’). This is followed by zero or more digits
and/or lowercase alphabetic characters. The escape sequence is terminated by an
uppercase alphabetic character. Sequences that do not begin with ESC “|” are
passed through to Point Card Reader Writer. Also, sequences that begin with ESC
“|” but which are not valid UnifiedPOS escape sequences are passed through to
Point Card Reader Writer.

To determine if escape sequences or data can be performed on Point Card Reader
Writer, the application can call the validateData method. (For some escape
sequences, corresponding capability properties can also be used.)

The following escape sequences are recognized. If an escape sequence specifies
an operation that is not supported by the Point Card Reader Writer, then it is
ignored.

Print Mode Characteristics that are remembered until explicitly changed.

Name Data Remarks

Font typeface selection ESC |#fT Selects a new typeface for the following data. Values for the

character ‘#’ are:

0 = Default typeface.

1 = Select first typeface from the FontTypefaceList property.

2 = Select second typeface from the FontTypefaceList property.

And so on.

248
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
Print Line Characteristics that are reset at the end of each print method or by a
“Normal” sequence.

Name Data Remarks

Bold ESC |bC Prints in bold or double-strike.

Underline ESC |#uC Prints with underline. The character ‘#’ is replaced by

an ASCII decimal string telling the thickness of the

underline in printer dot units. If ‘#’ is omitted, then a

printer-specific default thickness is used.

Italic ESC |iC Prints in italics.

Reverse video ESC |rvC Prints in a reverse video format.

Single high & wide ESC |1C Prints normal size.

Double wide ESC |2C Prints double-wide characters.

Double high ESC |3C Prints double-high characters.

Double high & wide ESC |4C Prints double-high/double-wide characters.

Scale horizontally ESC |#hC Prints with the width scaled ‘#’ times the normal size,

where ‘#’ is replaced by an ASCII decimal string.

Scale vertically ESC |#vC Prints with the height scaled ‘#’ times the normal size,

where ‘#’ is replaced by an ASCII decimal string.

Center ESC |cA Aligns following text in the center.

Right justify ESC |rA Aligns following text at the right.

Normal ESC |N Restores printer characteristics to normal condition.

249 Point Card Reader Writer State Diagram
Point Card Reader Writer State Diagram

250
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
Properties (UML Attributes)

CapBold Property
Syntax CapBold: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print bold characters, false if it
cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapCardEntranceSensor Property
Syntax CapCardEntranceSensor: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer has an entrance sensor, false if it does
not.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapCharacterSet Property
Syntax CapCharacterSet: int32 { read-only, access after open }

Remarks Holds the default character set capability. It may be one of the following:

Value Meaning

PCRW_CCS_ALPHA The default character set supports upper case
alphabetic plus numeric, space, minus, and period.

PCRW_CCS_ASCII The default character set supports all ASCII
characters between 20-hex and 7F-hex.

PCRW_CCS_KANA The default character set supports partial code page
932, including ASCII characters 20-hex through 7F-
hex and the Japanese Kana characters A1-hex through
DF-hex, but excluding the Japanese Kanji characters.

PCRW_CCS_KANJI The default character set supports code page 932,
including the Shift-JIS Kanji characters, Levels 1 and
2.

PCRW_CCS_UNICODE The default character set supports UNICODE.

The default character set may contain a superset of these ranges. The initial
CharacterSet property may be examined for additional information.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

251 Properties (UML Attributes)
CapCleanCard Property
Syntax CapCleanCard: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer supports cleaning under application
control, false if it does not.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapClearPrint Property
Syntax CapClearPrint: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer supports clearing (erasing) the printing
area, false if it does not.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapDhigh Property
Syntax CapDhigh: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print double high characters, false
if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapDwide Property
Syntax CapDwide: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print double wide characters, false
if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

252
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
CapDwideDhigh Property

Syntax CapDwideDhigh: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print double high / double wide
characters, false if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapItalic Property
Syntax CapItalic: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print italic characters, false if it
cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapLeft90 Property
Syntax CapLeft90: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print in rotated 90° left mode, false
if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapPrint Property
Syntax CapPrint: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer has printing capability; false if it does
not.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapPrintMode Property
Syntax CapPrintMode: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can designate a printing start position
with the MapMode property, false if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

253 Properties (UML Attributes)
CapRight90 Property
Syntax CapRight90: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print in a rotated 90° right mode,
false if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapRotate180 Property
Syntax CapRotate180: boolean { read-only, access after open }

Remarks If true, then the Point Card Reader Writer can print in a rotated upside down mode,
false if it cannot.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapTracksToRead Property
Syntax CapTracksToRead: int32 { read-only, access after open }

Remarks A bitmask indicating which magnetic tracks are accessible on the inserted point
card. The value contained in this property is a bitwise OR of the constants
PCRW_TRACK1 through PCRW_TRACK6.

For example, access to track 1 is possible when PCRW_TRACK1 is set.

This property is initialized by the open method.

Value Meaning

PCRW_TRACK1 Track1

PCRW_TRACK2 Track2

PCRW_TRACK3 Track3

PCRW_TRACK4 Track4

PCRW_TRACK5 Track5

PCRW_TRACK6 Track6

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

254
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
CapTracksToWrite Property

Syntax CapTracksToWrite: int32 { read-only, access after open }

Remarks A bitmask indicating which magnetic tracks are writable on the inserted point
card. The value contained in this property is a bitwise OR of the constants
PCRW_TRACK1 through PCRW_TRACK6.

For example, access to track 1 is possible when PCRW_TRACK1 is set.

This property is initialized by the open method.

Value Meaning

PCRW_TRACK1 Track1

PCRW_TRACK2 Track2

PCRW_TRACK3 Track3

PCRW_TRACK4 Track4

PCRW_TRACK5 Track5

PCRW_TRACK6 Track6

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CardState Property
Syntax CardState: int32 { read-only, access after open }

Remarks If CapCardEntranceSensor is true, the current card entrance sensor status is
stored in this property. The value will be one of the following.

Value Meaning

PCRW_STATE_NOCARD No card or card sensor position indeterminate

PCRW_STATE_REMAINING Card remaining at the entrance

PCRW_STATE_INRW There is a card in the device

If CapCardEntranceSensor is false, then CardState will always be set to
PCRW_STATE_NOCARD.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CapCardEntranceSensor Property.

255 Properties (UML Attributes)
CharacterSet Property

Syntax CharacterSet: int32 { read-write, access after open-claim-enable }

Remarks The character set for printing characters.

Value Meaning

Range 101 - 199 Device-specific character sets that do not match a code
page or the ASCII or ANSI character sets.

Range 400 - 990 Code page; matches one of the standard values.

PCRW_CS_UNICODE The character set supports UNICODE. The value of this
constant is 997.

PCRW_CS_ASCII The ASCII character set, supporting the ASCII
characters between 0x20 and 0x7F. The value of this
constant is 998.

PCRW_CS_ANSI The ANSI character set. The value of this constant is
999.

Range 1000 and higher Windows code page; matches one of the standard
values.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid property value was specified.

See Also CharacterSetList Property.

CharacterSetList Property
Syntax CharacterSetList: string { read-only, access after open }

Remarks Holds the string of character set numbers. The string consists of an ASCII numeric
set numbers separated by commas.

For example, if the string is “101,850,999”, then the device supports a device
specific character set, code page 850, and the ANSI character set.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CharacterSet Property.

256
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
FontTypefaceList Property

Syntax FontTypefaceList: string { read-only, access after open }

Remarks A string that specifies the fonts and/or typefaces that are supported by the Point
Card Reader Writer.

The string consists of font or typeface names separated by commas. The
application selects a font or typeface for the Point Card Reader Writer by using the
font typeface selection escape sequence (ESC |#fT). The “#” character is replaced
by the number of the font or typeface within the list: 1, 2, and so on.

In Japan, this property will frequently include the fonts “Mincho” and “Gothic”.
Other fonts or typefaces may be commonly supported in other countries.

An empty string indicates that only the default typeface is supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also “Data Characters and Escape Sequences” on page 247.

LineChars Property
Syntax LineChars: int32 { read-write, access after open-claim-enable }

Remarks The number of characters that may be printed on a line on the Point Card Reader
Writer.

If changed to a line character width that can be supported, then the width is set to
the specified value. If the exact width cannot be supported, then subsequent lines
will be printed with a character size that most closely supports the specified
characters per line. (For example, if set to 36 and the Point Card Reader Writer can
print either 30 or 40 characters per line, then the Service should select the character
size “40” and print up to 36 characters on each line.)

If the character width cannot be supported, then an exception is thrown. (For
example, if set to 42 and Point Card Reader Writer can print either 30 or 40
characters per line, then the Service cannot support the request.)

Setting LineChars may also update LineWidth, LineHeight, and LineSpacing,
since the character pitch or font may be changed.

The value of LineChars is initialized to the Point Card Reader Writer’s default
line character width when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid line character width was specified.

See Also LineCharsList Property.

257 Properties (UML Attributes)
LineCharsList Property

Syntax LineCharsList: string { read-only, access after open }

Remarks A string containing the line character widths supported by the Point Card Reader
Writer.

The string consists of an ASCII numeric set numbers separated by commas. For
example, if the string is “32,36,40”, then the station supports line widths of 32, 36,
and 40 characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also LineChars Property.

LineHeight Property
Syntax LineHeight: int32 { read-write, access after open-claim-enable }

Remarks The Point Card Reader Writer print line height. If CapPrintMode is true, this is
expressed in the unit of measure given by MapMode.

If changed to a height that can be supported with the current character width, then
the line height is set to this value. If the exact height cannot be supported, then the
height is set to the closest supported value.

When LineChars is changed, LineHeight is updated to the default line height for
the selected width.

The value of LineHeight is initialized to the Point Card Reader Writer’s default
line height when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

LineSpacing Property

Syntax LineSpacing: int32 { read-write, access after open-claim-enable }

Remarks The spacing of each single-high print line, including both the printed line height
plus the white space between each pair of lines. Depending upon the Point Card
Reader Writer and the current line spacing, a multi-high print line might exceed
this value. If CapPrintMode is true, line spacing is expressed in the unit of
measure given by MapMode.

If changed to a spacing that can be supported by the Point Card Reader Writer, then
the line spacing is set to this value. If the spacing cannot be supported, then the
spacing is set to the closest supported value.

When LineChars or LineHeight is changed, LineSpacing is updated to the
default line spacing for the selected width or height.

The value of LineSpacing is initialized to the Point Card Reader Writer’s default
line spacing when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

258
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
LineWidth Property
Syntax LineWidth: int32 { read-only, access after open-claim-enable }

Remarks The width of a line of LineChars characters. If CapPrintMode is true, expressed
in the unit of measure given by MapMode.

Setting LineChars may also update LineWidth.

The value of LineWidth is initialized to the Point Card Reader Writer’s default
line width when the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

MapMode Property
Syntax MapMode: int32 { read-write, access after open-claim-enable }

Remarks Contains the mapping mode of the Point Card Reader Writer. The mapping mode
defines the unit of measure used for other properties, such as line heights and line
spacings. The following map modes are supported:

Value Meaning

PCRW_MM_DOTS The Point Card Reader Writer’s dot width. This
width may be different for each Point Card Reader
Writer.

PCRW_MM_TWIPS 1/1440 of an inch.
PCRW_MM_ENGLISH 0.001 inch.
PCRW_MM_METRIC 0.01 millimeter.

Setting MapMode may also change LineHeight, LineSpacing, and LineWidth.

The value of MapMode is initialized to PCRW_MM_DOTS when the device is
first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid mapping mode value was specified.

MaxLine Property
Syntax MaxLine: int32 { read-only, access after open-claim-enable }

Remarks When the CapPrintMode property is false, MaxLine contains the maximum
printable line number.

In the case where there is a double-high character in the same line, this is
dependent upon the capability of the device.

When the LineHeight property and/or the LineSpacing property change, the
MaxLine property may be changed.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also LineHeight Property.

259 Properties (UML Attributes)
PrintHeight Property
Syntax PrintHeight: int32 { read-only, access after open-claim-enable }

Remarks When the CapPrintMode property is true, the height of the largest character in the
character set is stored in this property expressed in MapMode units.

When the MapMode property is changed the value of the PrintHeight property
changes.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CapPrintMode Property, MapMode Property.

ReadState1 Property

Syntax ReadState1: int32 { read-only, access after open }

Remarks The property is divided into four bytes with each byte containing status
information about the first four tracks. The diagram below indicates how the
property value is divided:

The Control sets a value to this property immediately before it enqueues the
ErrorEvent or DataEvent.

The following values can be set:

Value Meaning

SUCCESS Successful read of the data.

EPCRW_START It is a start sentinel error.

EPCRW_END It is a end sentinel error.

EPCRW_PARITY It is a parity error.

EPCRW_ENCODE There is no encoding.

EPCRW_LRC It is a LRC error.

EPCRW_VERIFY It is a verify error.

E_FAILURE It is other error.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also ReadState2 Property.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Track4 Track 3 Track 2 Track 1

260
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
ReadState2 Property
Syntax ReadState2: int32 { read-only, access after open }

Remarks The property is divided into four bytes with two bytes containing status
information about the fifth and sixth tracks. The diagram below indicates how the
property value is divided:

The Point Card Reader Writer sets a value to this property immediately before it
enqueues the ErrorEvent or DataEvent.

The following values can be set.

Value Meaning

SUCCESS Successful read of the data.

EPCRW_START It is a start sentinel error.

EPCRW_END It is a end sentinel error.

EPCRW_PARITY It is a parity error.

EPCRW_ENCODE There is no encoding.

EPCRW_LRC It is a LRC error.

EPCRW_VERIFY It is a verify error.

E_FAILURE It is other error.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also ReadState1 Property.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Unused Unused Track 6 Track 5

261 Properties (UML Attributes)
RecvLength1 Property

Syntax RecvLength1: int32 { read-only, access after open-claim-enable }

Remarks The property is divided into four bytes with each of the bytes representing
information about the first four tracks. The diagram below indicates how the value
is divided:

A value of zero for a track byte means that no data was obtained from the swipe
for that particular track. This might be due to the hardware device simply not
having a read head for the track, or STX, ETX and LRC only was obtained from
the swipe for that particular track, or reading of data without being made with
some errors, or perhaps the application intentionally precluded incoming data from
the track via the TracksToRead property.

A value greater than zero indicates the length in bytes of the corresponding
TrackxData property.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CapTracksToRead property, TracksToRead property, RecvLength2 Property.

RecvLength2 Property

Syntax RecvLength2: int32 { read-only, access after open-claim-enable }

Remarks The property is divided into four bytes with two of the bytes representing
information about the fifth and sixth tracks, while the third and fourth bytes are
unused. The diagram below indicates how the value is divided:

A value of zero for a track byte means that no data was obtained from the swipe
for that particular track. This might be due to the hardware device simply not
having a read head for the track, or STX, ETX, and LRC only was obtained from
the swipe for that particular track, or reading of data without being made with
some errors, or perhaps the application intentionally precluded incoming data from
the track via the TracksToRead property.

A value greater than zero indicates the length in bytes of the corresponding
TrackxData property.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CapTracksToRead property, TracksToRead property, RecvLength1 Property.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Track4 Track 3 Track 2 Track 1

High Word Low Word

High Byte Low Byte High Byte Low Byte

Unused Unused Track 6 Track 5

262
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
SidewaysMaxChars Property
Syntax SidewaysMaxChars: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of characters that may be printed on each line in
sideways mode.

If the capabilities CapLeft90 and CapRight90 are both false, then
SidewaysMaxChars is zero.

Changing the properties LineHeight, LineSpacing, and LineChars may cause
this property to change.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also SidewaysMaxLines Property.

SidewaysMaxLines Property
Syntax SidewaysMaxLines: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of lines that may be printed in sideways mode.

If the capabilities CapLeft90 and CapRight90 are both false, then
SidewaysMaxLines is zero.

Changing the properties LineHeight, LineSpacing, and LineChars may cause
this property to change.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also SidewaysMaxChars Property.

263 Properties (UML Attributes)
TracksToRead Property

Syntax TracksToRead: int32 { read-write, access after open-claim-enable }

Remarks Holds the tracks that are to be read from the point card. It contains a bitwise OR
of the constants PCRW_TRACK1 through PCRW_TRACK6. It may only contain
values that are marked as allowable by the CapTracksToRead property. For
example, to read tracks 1, 2, and 3, this property should be set to:
PCRW_TRACK1 | PCRW_TRACK2 | PCRW_TRACK3.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY This operation cannot be performed because
asynchronous output is in progress.

E_ILLEGAL An illegal track was defined. The track is not
available for reading. Refer to CapTracksToRead.

See Also CapTracksToRead Property.

TracksToWrite Property

Syntax TracksToWrite: int32 { read-write, access after open-claim-enable }

Remarks Holds the tracks that are to be written to the point card. It contains a bitwise OR of
the constants PCRW_TRACK1 through PCRW_TRACK6. It may only contain
values that are marked as allowable by the CapTracksToWrite property. For
example, to write tracks 1, 2, and 3, this property should be set to:
PCRW_TRACK1 | PCRW_TRACK2 | PCRW_TRACK3.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY This operation cannot be performed because
asynchronous output is in progress.

E_ILLEGAL An illegal track was defined. The track is not
available for writing. Refer to CapTracksToWrite.

See Also CapTracksToWrite Property, printWrite Method.

264
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
Track1Data Property

Syntax Track1Data: binary { read-only, access after open }

Remarks Contains the track 1 data from the point card.

This property contains track data between but not including the start and end
sentinels.

An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Track2Data Property
Syntax Track2Data: binary { read-only, access after open }

Remarks Contains the track 2 data from the point card.

This property contains track data between but not including the start and end
sentinels.

An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Track3Data Property

Syntax Track3Data: binary { read-only, access after open }

Remarks Contains the track 3 data from the point card.

This property contains track data between but not including the start and end
sentinels.

An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Track4Data Property
Syntax Track4Data: binary { read-only, access after open }

Remarks Contains the track 4 data from the point card.

This property contains track data between but not including the start and end
sentinels.

An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

265 Properties (UML Attributes)
Track5Data Property

Syntax Track5Data: binary { read-only, access after open }

Remarks Contains the track 5 data from the point card.

This property contains track data between but not including the start and end
sentinels.

An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Track6Data Property

Syntax Track6Data: binary { read-only, access after open }

Remarks Contains the track 6 data from the point card.

This property contains track data between but not including the start and end
sentinels.

An empty string indicates that the track was not accessible.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

266
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
 WriteState1 Property
Syntax WriteState1: int32 { read-only, access after open }

Remarks The property is divided into four bytes with each byte containing status
information about the first four tracks. The diagram below indicates how the
property is divided:

The Control sets a value to this property immediately before it enqueues the
ErrorEvent.

The following value is set.

Value Meaning

SUCCESS Successful write of the data.

EPCRW_START It is a start sentinel error.

EPCRW_END It is a end sentinel error.

EPCRW_PARITY It is a parity error.

EPCRW_ENCODE There is not encoding.

EPCRW_LRC It is a LRC error.

EPCRW_VERIFY It is a verify error.

E_FAILURE It is other error.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also WriteState2 Property.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Track4 Track 3 Track 2 Track 1

267 Properties (UML Attributes)
WriteState2 Property
Syntax WriteState2: int32 { read-only, access after open }

Remarks The property is divided into four bytes with each byte containing status
information about the fifth and sixth tracks. The diagram below indicates how the
property is divided:

The Control sets a value to this property immediately before it enqueues the
ErrorEvent.

The following value is set.

Value Meaning

SUCCESS Successful write of the data.

EPCRW_START It is a start sentinel error.

EPCRW_END It is a end sentinel error.

EPCRW_PARITY It is a parity error.

EPCRW_ENCODE There is not encoding.

EPCRW_LRC It is a LRC error.

EPCRW_VERIFY It is a verify error.

E_FAILURE It is other error.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also WriteState1 Property.

Write1Data Property
Syntax Write1Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 1 of a point card.

This property contains track data between but not including the start and end
sentinels.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

High Word Low Word

High Byte Low Byte High Byte Low Byte

Unused Unused Track 6 Track 5

268
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
Write2Data Property

Syntax Write2Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 2 of a point card.

This property contains track data between but not including the start and end
sentinels.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Write3Data Property

Syntax Write3Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 3 of a point card.

This property contains track data between but not including the start and end
sentinels.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Write4Data Property
Syntax Write4Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 4 of a point card.

This property contains track data between but not including the start and end
sentinels.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Write5Data Property
Syntax Write5Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 5 of a point card.

This property contains track data between but not including the start and end
sentinels.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Write6Data Property
Syntax Write6Data: binary { read-write, access after open }

Remarks The printWrite method writes this data to track 6 of a point card.

This property contains track data between but not including the start and end
sentinels.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

269 Methods (UML operations)
Methods (UML operations)
beginInsertion Method

Syntax beginInsertion (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

timeout The number of milliseconds before failing the method

If zero, the method initiates insertion mode and either returns immediately if
successful, or raises an exception. If FOREVER (-1), the method initiates the
begin insertion mode, then waits as long as needed until either the point card is
inserted or an error occurs.

Remarks Called to initiate point card insertion processing.

When called, Point Card Reader Writer state is changed to allow the insertion of a
point card and the point card insertion mode is entered. This method is paired with
the endInsertion method for controlling point card insertion.

If the Point Card Reader Writer device cannot be placed into insertion mode an
exception is raised. Otherwise, the Control continues to monitor point card
insertion until either the point card is not inserted before timeout milliseconds have
elapsed, or an error is reported by the Point Card Reader Writer device. In the latter
case, the Control raises an exception with the appropriate error code. The Point
Card Reader Writer device remains in point card insertion mode. This allows an
application to perform some user interaction and reissue the beginInsertion
method without altering the point card handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY This operation cannot be performed because
asynchronous output is in progress.

E_ILLEGAL The Point Card Reader Writer does not exist or an
invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the point
card being properly inserted.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in
the Events section “ErrorEvent” on page 278.

See Also endInsertion Method, beginRemoval Method, endRemoval Method.

270
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
beginRemoval Method

Syntax beginRemoval (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

timeout The number of milliseconds before failing the method

If zero, the method initiates the begin removal mode and either returns
immediately or raises an exception. If FOREVER (-1), the method initiates the
begin removal mode, then waits as long as needed until either the form is removed
or an error occurs.

Remarks Called to initiate point card removal processing.

When called, the Point Card Reader Writer is made ready to eject a point card or
activating a point card ejection mode. This method is paired with the endRemoval
method for controlling point card removal.

The model that has the sensor in the entrance ends normally when a card is ejected
from Point Card Reader Writer. The model without the sensor ends normally when
that ejection processing is implemented.

If the Point Card Reader Writer cannot be placed into removal or ejection mode,
an exception is raised. Otherwise, the Control continues to monitor point card
removal until either the point card is not ejected before timeout milliseconds have
elapsed, or an error is reported by the Point Card Reader Writer. In this case, the
Control raises an exception with the appropriate error code. The Point Card Reader
Writer remains in point card ejection mode. This allows an application to perform
some user interaction and reissue the beginRemoval method without altering the
point card handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY This operation cannot be performed because
asynchronous output is in progress.

E_ILLEGAL The Point Card Reader Writer does not exist or an
invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the point
card being properly inserted.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in
the Events section “ErrorEvent” on page 278.

See Also CapCardEntranceSensor Property, CardState Property, beginInsertion
Method, endInsertion Method, endRemoval Method.

271 Methods (UML operations)
cleanCard Method

Syntax cleanCard():
void { raises-exception, use after open-claim-enable }

Remarks This method is used to clean the read/write heads of the Point Card Reader Writer.
This method is only supported if the CapCleanCard property is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Point Card Reader Writer does not exist or
CapCleanCard is false.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in
the Events section “ErrorEvent” on page 278.

See Also CapCleanCard Property.

272
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
clearPrintWrite Method

Syntax clearPrintWrite (kind: int32, hposition: int32, vposition: int32, width: int32,
height: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

kind Defines the parts of the point card that will be cleared.
1: Printing area
2: Magnetic tracks
3: Both printing area and magnetic tracks

hposition The horizontal start position for erasing the printing area.
The value is in MapMode units if CapPrintMode is true.

vposition The vertical start position for erasing the printing area. The
value is in MapMode units if CapPrintMode is true.

width The width used for erasing the printing area. The value is in
MapMode units if CapPrintMode is true.

height The height used for erasing the printing area. The value is in
MapMode units if CapPrintMode is true.

Remarks Used to erase the printing area of a point card and/or erase the magnetic track data
on a point card.

When the CapPrint and CapClearPrint properties are both true, this method can
be used to clear the printing area of a point card. The hposition, vposition, width,
and height parameters define the rectangle that will be cleared. If these
parameters are 0, 0, -1, -1 respectively, this method will erase the entire printing
area.

The initialization of the magnetic track data relies upon the capability of the
device.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY This operation cannot be performed because
asynchronous output is in progress.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in
the Events section “ErrorEvent” on page 278.

See Also CapClearPrint Property, CapPrint Property, CapPrintMode Property,
MapMode Property.

273 Methods (UML operations)
endInsertion Method

Syntax endInsertion ():
void { raises-exception, use after open-claim-enable }

Remarks Called to end point card insertion processing.
When called, the Point Card Reader Writer is taken out of point card insertion
mode. If no point card is present, an exception is raised.
This method is paired with the beginInsertion method for controlling point card
insertion.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Point Card Reader Writer is not in point card
insertion mode.

E_FAILURE A card is not inserted in the Point Card Reader
Writer.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in
the Events section “ErrorEvent” on page 278.

See Also beginInsertion Method, beginRemoval Method, endRemoval Method.

endRemoval Method
Syntax endRemoval ():

void { raises-exception, use after open-claim-enable }

Remarks Called to end point card removal processing.
When called, the Point Card Reader Writer is taken out of point card removal or
ejection mode. If a point card is present, an exception is raised. This method is
paired with the beginRemoval method for controlling point card removal.

The application may choose to call this method immediately after a successful
beginRemoval if it wants to use the Point Card Reader Writer sensors to deter-
mine when the point card has been ejected. Alternatively, the application may
prompt the user and wait for a key being pressed before calling this method.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The Point Card Reader Writer is not in point card
removal mode.

E_FAILURE There is a card in the Point Card Reader Writer.
E_EXTENDED Refer to the definitions for ErrorCodeExtended in

the Events section “ErrorEvent” on page 278.

See Also beginInsertion Method, beginRemoval Method, endInsertion Method.

274
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
printWrite Method

Syntax printWrite (kind: int32, hposition: int32, vposition: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

kind Designates the effect of the point card.
1: Print 2: Write 3: Print+Write

hposition The horizontal start position for printing. The value is in
MapMode units if CapPrintMode is true.

vposition The vertical start position for printing. The value is in
MapMode units if CapPrintMode is true.

data The data to be printed. Any escape sequences in the data
are dependent upon the capabilities of the device.

Remarks This method will either print the specified data on the printing area of the point
card, write data from the WriteXData properties to the magnetic tracks, or both.
In order to print on a point card, the CapPrint property must be true. In order to
write the magnetic tracks on a point card, the WriteXData properties for each
desired track must be set to the desired value, the TracksToWrite property must
be set to a bitmask indicating which tracks to write (see TracksToWrite for a
complete description) and the CapTracksToWrite property must indicate that
each tracks specified in TracksToWrite is legal.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL There is no card in the Point Card Reader Writer.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in
the Events section “ErrorEvent” on page 278.

See Also CapPrint Property, CapPrintMode Property, CapTracksToWrite Property,
MapMode Property, TracksToWrite Property, WriteXData Property.

275 Methods (UML operations)
rotatePrint Method

Syntax rotatePrint (rotation: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

rotation Direction of rotation. See values below.

Value Meaning

PCRW_RP_RIGHT90 Rotate printing 90º to the right (clockwise).

PCRW_RP_LEFT90 Rotate printing 90º to the left (counter-clockwise).

PCRW_RP_ROTATE180 Rotate printing 180º, that is print upside-down.

PCRW _RP_NORMAL End rotated printing.

Remarks Enters or exits rotated print mode.

The rotatePrint method designates the rotation of the printing area. After calling
this method, the application calls the printWrite method and the print data is
printed in the direction specified by the rotatePrint call. If rotation is
PCRW_RP_NORMAL, then rotated print mode is exited.

Changing the rotation mode may also change the Point Card Reader Writer’s line
height, line spacing, line width, and other metrics.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY This operation cannot be performed because
asynchronous output is in progress.

E_ILLEGAL The Point Card Reader Writer does not support the
specified rotation.

E_EXTENDED Refer to the definitions for ErrorCodeExtended in
the Events section “ErrorEvent” on page 278.

See Also “Data Characters and Escape Sequences” on page 247, printWrite Method.

276
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
validateData Method

Syntax validateData (data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

data The data to be validated. May include printable data and
escape sequences.

Remarks Called to determine whether a data sequence, possibly including one or more
escape sequences, is valid for printing, prior to calling the printWrite method.
This method does not cause any printing, but is used to determine the capabilities
of the Point Card Reader Writer.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL Some of the data is not precisely supported by the
device, but the Control can select valid alternatives.

E_FAILURE Some of the data is not supported. No alternatives can be
selected.

Cases which cause ErrorCode of E_ILLEGAL:

Escape Sequence Condition

Underline The thickness ‘#’ is not precisely supported: Control
will select the closest supported value.

Shading The percentage ‘#’ is not precisely supported: Control
will select the closest supported value.

Scale horizontally The scaling factor ‘#’ is not supported. Control will
select the closest supported value.

Scale vertically The scaling factor ‘#’ is not supported. Control will
select the closest supported value.

Cases which will cause E_FAILURE to be returned are:

Escape Sequence Condition

(General) The escape sequence format is not valid
Font typeface The typeface ‘#’ is not supported:
Bold Not supported.
Underline Not supported.
Italic Not supported.
Reverse video Not supported.
Single high & wide Not supported.
Double wide Not supported.
Double high Not supported.
Double high & wide Not supported.

See Also “Data Characters and Escape Sequences” on page 247, printWrite Method.

277 Events (UML Interfaces)
Events (UML Interfaces)

DataEvent

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description Fired to present input data from the device to the application.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 The Status parameter contains zero.

Remarks The point card data is placed in each property before this event is delivered.

DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific PointCard Service to provide events to the application
that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s point card devices which may not have any
knowledge of the Service’s need for this event.

See Also “Events” on page 14, directIO Method.

278
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a PointCard error has been detected and a suitable
response by the application is necessary to process the error condition.

Attributes This event contains the following properties:

Attributes Type Description

ErrorCode int32 Result code causing the error event. See a list of Error
Codes on page15.

ErrorCodeExtended int32 Extended Error code causing the error event. If
ErrorCode is E_EXTENDED, then see values below.
Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error. See values below.

ErrorResponse int32 Error response, whose default value may be overridden
by the application. (i.e., this property is settable). See
values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the
following values:

Value Meaning

EPCRW_READ There was a read error.

EPCRW_WRITE There was a write error.

EPCRW_JAM There was a card jam.

EPCRW_MOTOR There was a conveyance motor error.

EPCRW_COVER The conveyance motor cover was open.

EPCRW_PRINTER The printer has an error.

EPCRW_RELEASE There is a card remaining in the entrance.

EPCRW_DISPLAY There was a display indicator error.

EPCRW_NOCARD There is no card in the reader.

279 Events (UML Interfaces)
The ErrorLocus property may be one of the following:

Value Meaning

EL_OUTPUT Error occurred while processing asynchronous output.

EL_INPUT Error occurred while gathering or processing event-
driven input. No input data is available.

EL_INPUT_DATA Error occurred while gathering or processing event-
driven input, and some previously buffered data is
available.

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER_RETRY Typically valid only when locus is EL_OUTPUT.
Retry the asynchronous output. The error state is exited.
May be valid when locus is EL_INPUT.
Default when locus is EL_OUTPUT.

ER_CLEAR Clear the asynchronous output or buffered input data.
The error state is exited. Default when locus is
EL_INPUT.

ER_CONTINUEINPUT Use only when locus is EL_INPUT_DATA.
Acknowledges the error and directs the Control to
continue processing. The Control remains in the error
state and will deliver additional DataEvents as directed
by the DataEventEnabled property. When all input has
been delivered and the DataEventEnabled
 property is again set to true, then another ErrorEvent
is delivered with locus EL_INPUT. Default when locus
is EL_INPUT_DATA.

Remarks Input error events are generated when errors occur while reading the magnetic
track data from a newly inserted card. These error events are not delivered until
the DataEventEnabled property is set to true so as to allow proper application
sequencing. All error information is placed into the ReadStateX properties
before this event is delivered. The RecvLengthX property is set to 0 for each
track that had an error and the TrackXData property is set to empty for each track
that had an error.

Output error events are generated and delivered when an error occurs during
asynchronous printWrite processing. The errors are placed into the WriteStateX
properties before the event is delivered.

See Also ReadStatex Property, RecvLengthx Property, TrackxData Property,
WriteStatex Property.

280
UnifiedPOS Retail Peripheral Architecture Chapter 14

Point Card Reader Writer
OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the
OutputID attribute has completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description

OutputID int32 The ID number of the asynchronous output request that
is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service
has confirmation that is was processed by the device successfully.

See Also “Device Output Models” on page 20.

StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that there is a change in the status of the PointCard device.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates a change in the power status of the unit.

If Status parameter has one of the following values:

Value Meaning

PCRW_SUE_NOCARD No card or card sensor position indeterminate.

PCRW_SUE_REMAINING Card remaining in the entrance.

PCRW_SUE_INRW There is a card in the device.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on pa ge56.

Remarks Fired when the entrance sensor status of the Point Card Reader Writer changes. If
the capability CapCardEntranceSensor is false, then the device does not
support status reporting, and this event will never be fired to report card insertion
state changes.

See Also “Events” on page 14, CapCardEntranceSensor Property.

C H A P T E R 1 5

POS Keyboard

This Chapter defines the POS Keyboard device category.

General Information
The POS Keyboard programmatic name is “POSKeyboard”.

This chapter is grandfathered in based on the OPOS and JavaPOS Version 1.4
specifications.

282
UnifiedPOS Retail Peripheral Architecture Chapter 15

POS Keyboard

This Chapter defines the POS Power device category.

Summary

Properties (UML attributes)

Common Type Mutability Versiona

a. The version representation provides the mechanism for recognizing when a
change occurs to a property, method or event. This POSPower definition was
introduced in UnifiedPOS version 1.5.

May Use After

AutoDisable: boolean { read-write } 1.5 Not Supported

CapPowerReporting: int32 { read-only } 1.5 open

CheckHealthText: string { read-only } 1.5 open

Claimed: boolean { read-only } 1.5 open

DataCount: int32 { read-only } 1.5 Not Supported

DataEventEnabled: boolean { read-write } 1.5 Not Supported

DeviceEnabled: boolean { read-write } 1.5 open

FreezeEvents: boolean { read-write } 1.5 open

OutputID: int32 { read-only } 1.5 Not Supported

PowerNotify: int32 { read-write } 1.5 open

PowerState: int32 { read-only } 1.5 open

State: int32 { read-only } 1.5 --

DeviceControlDescription: string { read-only } 1.5 --

DeviceControlVersion: int32 { read-only } 1.5 --

DeviceServiceDescription: string { read-only } 1.5 open

DeviceServiceVersion: int32 { read-only } 1.5 open

PhysicalDeviceDescription: string { read-only } 1.5 open

PhysicalDeviceName: string { read-only } 1.5 open

C H A P T E R 1 6

POS Power

284
UnifiedPOS Retail Peripheral Architecture Chapter 16

POS Power
Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
 void { raises exception }

close () :
 void { raises exception, use after open }

claim (timeout: int32):
 void { raises exception, use after open }

release ():
 void { raises exception, use after open, claim }

checkHealth (level: int32):
 void { raises exception, use after open, enable }

clearInput (): Not supported
 void { }

clearOutput (): Not supported
 void { }

directIO (command: int32, inout data: int32, inout obj: object):
 void { raises exception, use after open }

Specific

Name

shutdownPOS ():
 void { raises exception, use after open, enable }

Properties (Continued)
Specific Type Mutability Version May Use After

CapFanAlarm: boolean { read-only } 1.5 open

CapHeatAlarm: boolean { read-only } 1.5 open

CapQuickCharge: boolean { read-only } 1.5 open

CapShutdownPOS: boolean { read-only } 1.5 open

CapUPSChargeState: int32 { read-only } 1.5 open

EnforcedShutdownDelayTime: int32 { read-write } 1.5 open

PowerFailDelayTime: int32 { read-only } 1.5 open

QuickChargeMode: boolean { read-only } 1.5 open

QuickChargeTime: int32 { read-only } 1.5 open

UPSChargeState: int32 { read-only } 1.5 open & enable

285 Summary
Events (UML interfaces)
Name Type Mutability

upos::events::DirectIOEvent

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::StatusUpdateEvent

 Status: int32 { read-only }

286
UnifiedPOS Retail Peripheral Architecture Chapter 16

POS Power
General Information

The POS Power programmatic name is “POSPower”.

Capabilities
The POSPower device class has the following capabilities:

• Supports a command to “shut down” the system.

• Supports accessing a power handling mechanism of the underlying operating
system and hardware.

• Informs the application if a power fail situation has occurred.

• Informs the application if the UPS charge state has changed.

• Informs the application about high CPU temperature.

• Informs the application about stopped CPU fan.

• Informs the application if an operating system dependant enforced shutdown
mechanism is processed.

• Allows the application after saving application data locally or transferring
application data to a server to shut down the POS terminal.

• Informs the application about an initiated shutdown.

Device Sharing
The POSPower is a sharable device. Its device sharing rules are:

• After opening and enabling the device, the application may access all
properties and methods and will receive status update events.

• If more than one application has opened and enabled the device, all
applications may access its properties and methods. Status update events are
fired to all of the applications.

• If one application claims the POSPower, then only that application may call
the shutdownPOS method. This feature provides a degree of security, such
that these methods may effectively be restricted to the main POS application
if that application claims the device at startup.

• See the “Summary” table for precise usage prerequisites.

287 General Information
Model
The general model of POSPower is based on the power model of each device in
version 1.3 or later. The same common properties are used but all states relate to
the POS terminal itself and not to a peripheral device.

There are three states of the POSPower:

• ONLINE. The POS terminal is powered on and ready for use. This is the
“operational” state.

• OFF. The POS terminal is powered off or detached from the power supplying
net. The POS terminal runs on battery power support. This is the powerfail
situation.

• OFFLINE. The POS terminal is powered on but is running is a “lower-power-
consumption” mode. It may need to be placed online by pressing a button or
key or something else which may wake up the system.

Power reporting only occurs while the device is open, enabled and power
notification is switched on.

In a powerfail situation - that means the POSPower is in the state OFF - the POS
terminal will be shut down automatically after the last application has closed the
POSPower device or the time specified by the EnforcedShutdownDelayTime
property has been elapsed.

A call to the shutdownPOS method will always shut down the POS terminal
independent of the system power state.

288
UnifiedPOS Retail Peripheral Architecture Chapter 16

POS Power
POSPower Class Diagram

The following diagram shows the relationships between the POSPower classes.

POSPowerConst

$ PWR_UPS_FULL : int32 {frozen}
$ PWR_UPS_WARNING : int32 {frozen}
$ PWR_UPS_LOW : int32 {frozen}
$ PWR_UPS_CRITICAL : int32 {frozen}
$ PWR_SUE_UPS_FULL : int32 {frozen}
$ PWR_SUE_UPS_WARNING : int32 {frozen}
$ PWR_SUE_UPS_LOW : int32 {frozen}
$ PWR_SUE_UPS_CRITICAL : int32 {frozen}
$ PWR_SUE_FAN_STOPPED : int32 {frozen}
$ PWR_SUE_FAN_RUNNING : int32 {frozen}
$ PWR_SUE_TEMPERATURE_HIGH : int32 {frozen}
$ PWR_SUE_TEMPERATURE_OK : int32 {frozen}
$ PWR_SUE_SHUTDOWN : int32 {frozen}

(from upos)

<<utility>>

UposException
(from upos)

<<exception>>

UposConst
(from upos)

<<utility>>

BaseControl

(from upos)

<<Interface>>

<<uses>>

<<sends>>

DirectIOEvent

<<prop>> EventNumber : int32
<<prop>> Data : int32
<<prop>> Obj : object

(from events)

<<event>>

POSPowerControl

<<capability>> CapFanAlarm : boolean
<<capability>> CapHeatAlarm : boolean
<<capability>> CapQuickCharge : boolean
<<capability>> CapShutdownPOS : boolean
<<capability>> CapUPSChargeState : int32
<<prop>> EnforcedShutdownDelayTime : int32
<<prop>> PowerFailDelayTime : int32
<<prop>> QuickChargeMode : boolean
<<prop>> QuickChargeTime : int32
<<prop>> UPSChargeState : int32

shutdownPOS() : void

(from upos)

<<Interface>>fires

StatusUpdateEvent

<<prop>> Status : int32

(from events)

<<event>>

fires

<<uses>>

<<uses>>

<<sends>>

289 General Information
POSPower State Diagram

The following state diagram depicts the POSPower Control device model.

The State Diagram shows
the states when the device is
opened, claimed, enabled and
additionally when PowerNotify is enabled.
Claiming the device is optional since
POSPower is a sharable device.

Additionally, for CapPowerReporting only
the value PR_ADVANCED is possible.

/open(…)

/ claim(...)/ release()

/close()

/ setDevice-
Enabled(false)

/ setDevice-
Enabled (true)

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_ENABLED]

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_DISABLED]

/ claim(...)

/ setDevice-
Enabled(true)

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_ENABLED]

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_DISABLED]

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_ENABLED]

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_DISABLED]

/ setDevice-
Enabled(false)

/ release()

/ setDevice-
Enabled(true)

/ setDevice-
Enabled(false)

/ release()/ claim(...)

/ setDevice-
Enabled (true)

/ setDevice-
Enabled(false)

/ release()/ claim(...)
[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_ENABLED]

[CapPowerReporting==PR_ADVANCED]
/ setPowerNotify(PR_DISABLED]

Opened &Claimed
State == S_IDLE

Claimed == true

DeviceEnabled == false

PowerNotify == PN_DISABLED

Opened, Claimed & Enabled
State == S_IDLE

Claimed == true

DeviceEnabled == true

PowerNotify == PN_DISABLED

Opened &PowerEnabled
State == S_IDLE

Claimed == false

DeviceEnabled == false

PowerNotify == PN_ENABLED

Opened,Claimed &PowerEnabled
State == S_IDLE

Claimed == true

DeviceEnabled == false

PowerNotify == PN_ENABLED

Opened & Enabled
State == S_IDLE

Claimed == false

DeviceEnabled == true

PowerNotify == PN_DISABLED

Opened
State = S_IDLE

Claimed=false

DeviceEnabled=false

PowerNotify=PN_DISABLED

OS / application stopped.

[CapShutdownPOS == true]
/ Application saves all data and
sets itself to a defined state.
/ shutdownPOS()

Shutdown Operating System
entry / {Deliver StatusUpdateEvent

 (PWR_SUE_SHUTDOWN) }

Opened, Claimed, Enabled
& PowerEnabled
State == S_IDLE

Claimed == true

DeviceEnabled == true

PowerNotify == PN_ENABLED

Opened,, Enabled
& PowerEnabled
State == S_IDLE

Claimed == false

DeviceEnabled == true

PowerNotify == PN_ENABLED

The
details of
these
states are
described
in
separate
diagrams
below.

290
UnifiedPOS Retail Peripheral Architecture Chapter 16

POS Power
POSPower PowerState Diagram - part 1

The following state diagram depicts the POSPower Power States.

Opened,Enabled & PowerEnabled OR Opened, Claimed, Enabled & PowerEnabled

The State Diagram shows
the states when the POS terminal
changes its power state.

PowerState ONLINE

The POS terminal is powered on and ready for use

PowerState= = PS_ONLINE

entry / {Deliver StatusUpdateEvent (SUE_POWER_ONLINE) }

PowerState OFFLINE

The POS terminal is powered on but is running

 is a “lower-power-consumption” mode

PowerState= = PS_OFFLINE

entry / {Deliver StatusUpdateEvent
 (SUE_POWER_OFFLINE) }

[The POS terminal is powered off or
detached from the power supplying net.]

[The POS terminal is
again powered on
or attached to the
power supplying net.]

[The POS terminal is running in a
“lower-power-consumption” mode]

[The POS
terminal is
placed online by
pressing a
button or key or
due to a power
fail situation or
some-thing else
which may wake
up the system.]

Application saves all
data and sets itself
to a defined state.

OS/ application stopped.

 [last POSPower
 Device instance
 opened]
/ close ()

 [EnforcedShutdown-
 DelayTime >0]

 After the time specified in
EnforcedShutdown-DelayTime

PowerState OFF
(Power Fail Situation)

The POS terminal runs on battery power

 support. This is the powerfail situation.

PowerState == PS_OFF

entry / {Deliver StatusUpdateEvent
 (SUE_POWER_OFF) }

[PowerFailDelayTime >0 && The POS terminal is
powered off or detached from the power supplying
net

[The POS terminal is again powered on or attached
to the power supplying net within the time specified in
PowerFailDelayTime.]

OFFONLINE

Shutdown Operating System
entry / {Deliver StatusUpdateEvent

 (PWR_SUE_SHUTDOWN) }

The details of these
states are described
in separate diagrams
below.

291 General Information
POSPower PowerState Diagram - part 2

The following state diagram depicts the POSPower PowerState ONLINE.

PowerState ONLINE

The State Diagram shows
the sub states in the
PowerState ONLINE state
when charging the UPS battery.

UPSChargeState PWR_UPS_CRITICAL

UPS battery is in a critical state

PowerState= = PS_ONLINE

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_CRITICAL) }

[(CapUPSChargeState &
PWR_UPS_LOW) != 0
 && physical battery
charge state is near empty]
/ Battery is loading

UPSChargeState PWR_UPS_WARNING

UPS battery UPS battery is near 50% charge

PowerState= = PS_ONLINE

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_WARNING) }

UPSChargeState PWR_UPS_LOW

UPS battery UPS battery is near empty.

PowerState= = PS_ONLINE

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_LOW) }

UPSChargeState PWR_UPS_FULL

UPS battery UPS battery is near full charge

PowerState= = PS_ONLINE

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_FULL) }

[(CapUPSChargeState &
PWR_UPS_WARNING) != 0
 && physical battery charge state
is near 50%]
/ Battery is loading

[(CapUPSChargeState &
PWR_UPS_FULL) != 0
 && physical battery charge
state is near full]
/ Battery is loading

[(CapUPSChargeState & PWR_UPS_CRITICAL) != 0
 && physical battery charge state is critical]

[(CapUPSChargeState & PWR_UPS_LOW) != 0
 && physical battery charge state is near empty]

[(CapUPSChargeState &
PWR_UPS_WARNING) != 0 &&
physical battery charge state is
near 50% charge]

[(CapUPSChargeState &
PWR_UPS_FULL) != 0 &&
physical battery charge state
 is near full]

292
UnifiedPOS Retail Peripheral Architecture Chapter 16

POS Power
POSPower PowerState Diagram - part 3
The following state diagram depicts the POSPower PowerState OFF.

PowerState OFF

The State Diagram shows
the sub states in the
PowerState OFF state
when unloading the UPS battery.

UPSChargeState PWR_UPS_CRITICAL

UPS battery is in a critical state

PowerState= = PS_OFF

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_CRITICAL) }

[(CapUPSChargeState &
PWR_UPS_CRITICAL) != 0
 && physical battery charge
state is critical]
/ Battery is unloading

UPSChargeState PWR_UPS_WARNING

UPS battery UPS battery is near 50% charge

PowerState= = PS_OFF

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_WARNING) }

UPSChargeState PWR_UPS_LOW

UPS battery UPS battery is near empty.

PowerState= = PS_OFF

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_LOW) }

UPSChargeState PWR_UPS_FULL

UPS battery UPS battery is near full charge

PowerState= = PS_OFF

entry / {Deliver StatusUpdateEvent (PWR_SUE_UPS_FULL) }

[(CapUPSChargeState &
PWR_UPS_LOW) != 0
 && physical battery charge
state is near empty] / Battery
is unloading

[(CapUPSChargeState &
PWR_UPS_WARNING) != 0
&& physical battery charge
state is near 50%]
/ Battery is unloading

[(CapUPSChargeState & PWR_UPS_CRITICAL) != 0
 && physical battery charge state is critical]

[(CapUPSChargeState & PWR_UPS_LOW) != 0
 && physical battery charge state is near empty]

[(CapUPSChargeState &
PWR_UPS_WARNING) != 0 &&
physical battery charge state is
near 50% charge]

[(CapUPSChargeState &
PWR_UPS_FULL) != 0 &&
physical battery charge state
 is near full]

293 General Information
POSPower State chart Diagram for fan and temperature

The following state diagram depicts the handling of fan and temperature alarms.

Opened,Enabled & PowerEnabled OR Opened, Claimed, Enabled & PowerEnabled

The State Diagrams shows
the states for handling
high CPU temperature and
stopped CPU fan.

CPU temperature is high

entry / {Deliver StatusUpdateEvent
 (PWR_SUE_TEMPERATURE_HIGH) }

CPU temperature
decrease and leaves
the critical state

CPU temperature
increases and reaches
 a critical state

CPU temperature is low

entry / {Deliver StatusUpdateEvent
 (PWR_SUE_TEMPERATURE_OK) }

[(CapHeatAlarm == true &&
 CPU temperature is critical]

[(CapHeatAlarm == true &&
 CPU temperature is uncritical]

Opened,Enabled & PowerEnabled OR Opened, Claimed, Enabled & PowerEnabled

The CPU fan is stopped.

entry / {Deliver StatusUpdateEvent
 (PWR_SUE_FAN_STOPPED) }

Fan starts running
Fan stops running

CPU fan is running

entry / {Deliver StatusUpdateEvent
 (PWR_SUE_FAN_RUNNING) }

[(CapFanAlarm == true &&
 fan is stopped]

[(CapFanAlarm == true &&
 fan works properly]

294
UnifiedPOS Retail Peripheral Architecture Chapter 16

POS Power
Properties (UML attributes)

CapFanAlarm Property

Syntax CapFanAlarm: boolean { read-only, access after open }

Remarks If true the device is able to detect whether the CPU fan is stopped. Otherwise it is
false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapHeatAlarm Property

Syntax CapHeatAlarm: boolean { read-only, access after open }

Remarks If true the device is able to detect whether the CPU is running at too high of a
temperature. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapQuickCharge Property

Syntax CapQuickCharge: boolean { read-only, access after open }

Remarks If true the power management allows the charging of the battery in quick mode.
The time for charging the battery is shorter than usual. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also QuickChargeMode Property, QuickChargeTime Property.

CapShutdownPOS Property

Syntax CapShutdownPOS: boolean { read-only, access after open }

Remarks If true the device is able to explicitly shut down the POS. Otherwise it is false.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also shutdownPOS Method.

295 Properties (UML attributes)
CapUPSChargeState Property

Syntax CapUPSChargeState: int32 { read-only, access after open }

Remarks If not equal to zero, the UPS can deliver one or more charge states. It can contain
any of the following values logically ORed together.

Value Meaning

PWR_UPS_FULL UPS battery is near full charge.

PWR_UPS_WARNING UPS battery is near 50% charge.

PWR_UPS_LOW UPS battery is near empty. Application shutdown
should be started to ensure that is can be completed
before the battery charge is depleted. A minimum of
2 minutes of normal system operation can be
assumed when this state is entered unless this is the
first state reported upon entering the “Off” power
state.

PWR_UPS_CRITICAL UPS battery is in a critical state and could be
disconnected at any time without further warning.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also UPSChargeState Property.

EnforcedShutdownDelayTime Property

Syntax EnforcedShutdownDelayTime: int32 { read-write, access after open }

Remarks If not equal to zero the system has a built-in mechanism to shut down the POS
terminal after a determined time in a power fail situation. This property contains
the time in milliseconds when the system will shut down automatically after a
power failure. A power failure is the situation when the POS terminal is powered
off or detached from the power supplying net and runs on battery power support.
If zero no automatic shutdown is performed and the application has to call itself
the shutdownPOS method.

Applications will be informed about an initiated automatic shutdown.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also shutdownPOS Method.

296
UnifiedPOS Retail Peripheral Architecture Chapter 16

POS Power
PowerFailDelayTime Property

Syntax PowerFailDelayTime: int32 { read-only, access after open }

Remarks This property contains the time in milliseconds for power fail intervals which will
not create a power fail situation. In some countries the power has sometimes short
intervals where the power supply is interrupted. Those short intervals are in the
range of milliseconds up to a few seconds and are handled by batteries or other
electric equipment and should not cause a power fail situation. The power fail
interval starts when the POS terminal is powered off or detached from the power
supplying net and runs on battery power support. The power fail interval ends
when the POS terminal is again powered on or attached to the power supplying net.
However, if the power fail interval is longer than the time specified in the
PowerFailDelayTime property a power fail situation is created.

Usually this parameter is a configuration parameter of the underlying power
management. So, the application can only read this property.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

QuickChargeMode Property

Syntax QuickChargeMode: boolean { read-only, access after open }

Remarks If true, the battery is being recharged in a quick charge mode.
If false, it is being charged in a normal mode.

This property is only set if CapQuickCharge is true.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CapQuickCharge Property, QuickChargeTime Property.

QuickChargeTime Property

Syntax QuickChargeTime: int32 { read-only, access after open }

Remarks This time specifies the remaining time for loading the battery in quick charge
mode. After the time has elapsed, the battery loading mechanism of power
management usually switches into normal mode.

This time is specified in milliseconds.

This property is only set if CapQuickCharge is true.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CapQuickCharge Property, QuickChargeMode Property.

297 Properties (UML attributes)
UPSChargeState Property

Syntax UPSChargeState: int32 { read-only, access after open, enable }

Remarks This property holds the actual UPS charge state.

It has one of the following values:

Value Meaning

PWR_UPS_FULL UPS battery is near full charge.

PWR_UPS_WARNING UPS battery is near 50% charge.

PWR_UPS_LOW UPS battery is near empty. Application shutdown
should be started to ensure that is can be completed
before the battery charge is depleted. A minimum of
2 minutes of normal system operation can be
assumed when this state is entered unless this is the
first state reported upon entering the “Off” power
state.

PWR_UPS_CRITICAL UPS battery is in a critical state and could be
disconnected at any time without further warning.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15

See Also CapUPSChargeState Property.

298
UnifiedPOS Retail Peripheral Architecture Chapter 16

POS Power
Methods (UML operations)

shutdownPOS Method

Syntax shutdownPOS ():
void { raises exception, use after open, enable }

Remarks Call to shut down the POS terminal. This method will always shut down the
system independent of the system power state.

If the POSPower is claimed, only the application which claimed the device is able
to shut down the POS terminal.

Applications will be informed about an initiated shutdown.

It is recommended that in a power fail situation an application has to call this
method after saving all data and setting the application to a defined state.
If the EnforcedShutdownDelayTime property specifies a time greater than zero
and the application did not call the shutdownPOS method within the time
specified in EnforcedShutdownDelayTime, the system will be shut down
automatically. This mechanism may be provided by an underlying operating
system to prevent the battery from being emptied before the system is shut down.
This method is only supported if CapShutdownPOS is true.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL This method is not supported (see the
CapShutdownPOS property)

See Also CapShutdownPOS Property, EnforcedShutdownDelayTime Property.

299 Events (UML Interfaces)
Events (UML Interfaces)

DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific POSPower Service to provide events to the
application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Device Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Device Service. This property is
settable.

Obj object Additional data whose usage varies by the EventNumber
and Device Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s POSPower devices which may not have any
knowledge of the Service’s need for this event.

See Also “Events” on page 14, directIO Method.

300
UnifiedPOS Retail Peripheral Architecture Chapter 16

POS Power
StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
 Status: int32 { read-only }

Description Delivered when UPSChargeState changes or an alarm situation occurs.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 See below.

The Status property contains the updated power status or alarm status.

Value Meaning

PWR_SUE_UPS_FULL UPS battery is near full charge. Can be
returned if CapUPSChargeState contains
PWR_UPS_FULL.

PWR_SUE_UPS_WARNING UPS battery is near 50% charge. Can be
returned if CapUPSChargeState contains
PWR_UPS_WARNING.

PWR_SUE_UPS_LOW UPS battery is near empty. Application
shutdown should be started to ensure that it
can be completed before the battery charge
is depleted. A minimum of 2 minutes of
normal system operation can be assumed
when this state is entered unless this is the
first charge state reported upon entering the
“Off” state. Can be returned if
CapUPSChargeState contains
PWR_UPS_LOW.

PWR_SUE_UPS_CRITICAL UPS is in critical state, and will in short
time be disconnected. Can be returned if
CapUPSChargeState contains
PWR_UPS_CRITICAL.

PWR_SUE_FAN_STOPPED The CPU fan is stopped. Can be returned if
CapFanAlarm is true.

PWR_SUE_FAN_RUNNING The CPU fan is running. Can be returned if
CapFanAlarm is true.

PWR_SUE_TEMPERATURE_HIGHThe CPU is running on high temperature.
Can be returned if CapHeatAlarm is true.

PWR_SUE_TEMPERATURE_OK The CPU is running on normal
temperature. Can be returned if
CapHeatAlarm is true.

PWR_SUE_SHUTDOWN The system will shutdown immediately.

Note that Release 1.3 added Power State Reporting with
additional Power reporting StatusUpdateEvent values.
See “StatusUpdateEvent” description on page 56.

See Also CapFanAlarm, CapHeatAlarm, CapUPSChargeState, and UPSChargeState
Properties.

C H A P T E R 1 7

POS Printer

This Chapter defines the POS Printer device category.

Summary

Properties (UML attributes)

Common Type Mutability Versiona

a. The version representation provides the mechanism for recognizing when a change
occurs to a property, method or event. This POS Printer definition was introduced
in an existing standard and was not changed for the UnifiedPOS version 1.4.

May Use After

AutoDisable: boolean { read-write } 1.3 Not Supported

CapPowerReporting: int32 { read-only } 1.3 open

CheckHealthText: string { read-only } 1.3 open

Claimed: boolean { read-only } 1.3 open

DataCount: int32 { read-only } 1.3 Not Supported

DataEventEnabled: boolean { read-write } 1.3 Not Supported

DeviceEnabled: boolean { read-write } 1.3 open & claim

FreezeEvents: boolean { read-write } 1.3 open

OutputID: int32 { read-only } 1.3 open

PowerNotify: int32 { read-write } 1.3 open

PowerState: int32 { read-only } 1.3 open

State: int32 { read-only } 1.3 --

DeviceControlDescription: string { read-only } 1.3 --

DeviceControlVersion: int32 { read-only } 1.3 --

DeviceServiceDescription: string { read-only } 1.3 open

DeviceServiceVersion: int32 { read-only } 1.3 open

PhysicalDeviceDescription: string { read-only } 1.3 open

PhysicalDeviceName: string { read-only } 1.3 open

302
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Properties (Continued)
Specific Type Mutability Version May Use After

CapCharacterSet:

CapConcurrentJrnRec:

CapConcurrentJrnSlp:

CapConcurrentRecSlp:

CapCoverSensor:

CapTransaction:

int32

boolean

boolean

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

1.3

1.3

1.3

1.3

1.3

1.3

open

open

open

open

open

open

CapJrnPresent:

CapJrn2Color:

CapJrnBold:

CapJrnDhigh:

CapJrnDwide:

CapJrnDwideDhigh:

CapJrnEmptySensor:

CapJrnItalic:

CapJrnNearEndSensor:

CapJrnUnderline:

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

open

open

open

open

open

open

open

open

open

open

CapJrnCartridgeSensor:

CapJrnColor:

int32

int32

{ read-only }

{ read-only }

1.5

1.5

open

open

CapRecPresent:

CapRec2Color:

CapRecBarCode:

CapRecBitmap:

CapRecBold:

CapRecDhigh:

CapRecDwide:

CapRecDwideDhigh:

CapRecEmptySensor:

CapRecItalic:

CapRecLeft90:

CapRecNearEndSensor:

CapRecPapercut:

CapRecRight90:

CapRecRotate180:

CapRecStamp:

CapRecUnderline:

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

CapRecCartridgeSensor: int32 { read-only } 1.5 open

CapRecColor: int32 { read-only } 1.5 open

CapRecMarkFeed: int32 { read-only } 1.5 open

303 Summary
Properties (Continued)
Specific (continued) Type Mutability Version May Use After

CapSlpPresent:

CapSlpFullslip:

CapSlp2Color:

CapSlpBarCode:

CapSlpBitmap:

CapSlpBold:

CapSlpDhigh:

CapSlpDwide:

CapSlpDwideDhigh:

CapSlpEmptySensor:

CapSlpItalic:

CapSlpLeft90:

CapSlpNearEndSensor:

CapSlpRight90:

CapSlpRotate180:

CapSlpUnderline:

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

{ read-only }

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

1.3

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

open

CapSlpBothSidesPrint: boolean { read-only } 1.5 open

CapSlpCartridgeSensor: int32 { read-only } 1.5 open

CapSlpColor: int32 { read-only } 1.5 open

AsyncMode: boolean { read-write } 1.3 open

CartridgeNotify: int32 { read-write } 1.5 open

CharacterSet: int32 { read-write } 1.3 open, claim, & enable

CharacterSetList: string { read-only } 1.3 open

CoverOpen: boolean { read-only } 1.3 open, claim, & enable

ErrorLevel: int32 { read-only } 1.3 open

ErrorStation: int32 { read-only } 1.3 open

ErrorString: string { read-only } 1.3 open

FontTypefaceList: string { read-only } 1.3 open

FlagWhenIdle: boolean { read-write } 1.3 open

MapMode: int32 { read-write } 1.3 open

RotateSpecial: int32 { read-write } 1.3 open

JrnLineChars: int32 { read-write } 1.3 open, claim, & enable

JrnLineCharsList: string { read-only } 1.3 open

JrnLineHeight: int32 { read-write } 1.3 open, claim, & enable

JrnLineSpacing: int32 { read-write } 1.3 open, claim, & enable

JrnLineWidth: int32 { read-only } 1.3 open, claim, & enable

304
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Properties (Continued)
Specific (continued) Type Mutability Version May Use After

JrnLetterQuality: boolean { read-write } 1.3 open, claim, & enable

JrnEmpty: boolean { read-only } 1.3 open, claim, & enable

JrnNearEnd: boolean { read-only } 1.3 open, claim, & enable

JrnCartridgeState: int32 { read-only } 1.5 open, claim, & enable

JrnCurrentCartridge: int32 (read-write } 1.5 open, claim, & enable

RecLineChars: int32 { read-write } 1.3 open, claim, & enable

RecLineCharsList: string { read-only } 1.3 open

RecLineHeight: int32 { read-write } 1.3 open, claim, & enable

RecLineSpacing: int32 { read-write } 1.3 open, claim, & enable

RecLineWidth: int32 { read-only } 1.3 open, claim, & enable

RecLetterQuality: boolean { read-write } 1.3 open, claim, & enable

RecEmpty: boolean { read-only } 1.3 open, claim, & enable

RecNearEnd: boolean { read-only } 1.3 open, claim, & enable

RecSidewaysMaxLines: int32 { read-only } 1.3 open, claim, & enable

RecSidewaysMaxChars: int32 { read-only } 1.3 open, claim, & enable

RecLinesToPaperCut: int32 { read-only } 1.3 open, claim, & enable

RecBarCodeRotationList: string { read-only } 1.3 open

RecCartridgeState: int32 { read-only } 1.5 open, claim, & enable

RecCurrentCartridge: int32 { read-write } 1.5 open, claim, & enable

SlpLineChars: int32 { read-write } 1.3 open, claim, & enable

SlpLineCharsList: string { read-only } 1.3 open

SlpLineHeight: int32 { read-write } 1.3 open, claim, & enable

SlpLineSpacing: int32 { read-write } 1.3 open, claim, & enable

SlpLineWidth: int32 { read-only } 1.3 open, claim, & enable

SlpLetterQuality: boolean { read-write } 1.3 open, claim, & enable

SlpEmpty: boolean { read-only } 1.3 open, claim, & enable

SlpNearEnd: boolean { read-only } 1.3 open, claim, & enable

SlpSidewaysMaxLines: int32 { read-only } 1.3 open, claim, & enable

SlpSidewaysMaxChars: int32 { read-only } 1.3 open, claim, & enable

SlpMaxLines: int32 { read-only } 1.3 open, claim, & enable

SlpLinesNearEndToEnd: int32 { read-only } 1.3 open, claim, & enable

SlpBarCodeRotationList: string { read-only } 1.3 open

SlpPrintSide: int32 { read-only } 1.5 open, claim, & enable

SlpCartridgeState: int32 { read-only } 1.5 open, claim, & enable

SlpCurrentCartridge: int32 { read-write } 1.5 open, claim, & enable

305 Summary
Methods (UML operations)

Common

Name

open (logicalDeviceName: string):
 void { raises exception }

close ():
 void { raises exception, use after open }

claim (timeout: int32):
 void { raises exception, use after open }

release ():
 void { raises exception, use after open, claim }

checkHealth (level: int32):
 void { raises exception, use after open, claim, enable }

clearInput (): Not supported
 void { raises exception, use after open }

clearOutput ():
 void { raises exception, use after open, claim }

directIO (command: int32, inout data: int32, inout obj: object):
 void { raises exception, use after open }

Specific

beginInsertion (timeout: int32):
void { raises exception, use after open, claim, enable }

beginRemoval (timeout: int32):
void { raises exception, use after open, claim, enable }

changePrintSide (side: int32):
void { raises exception, use after open, claim, enable }

cutPaper (percentage: int32):
void { raises exception, use after open, claim, enable }

endInsertion ():
void { raises exception, use after open, claim, enable }

endRemoval ():
void { raises exception, use after open, claim, enable }

markFeed (side: int32):
void { raises exception, use after open, claim, enable }

printBarCode (station: int32, data: string, symbology: int32, height: int32,
width: int32, alignment: int32, textPosition: int32):
void { raises exception, use after open, claim, enable }

printBitmap (station: int32, fileName: string, width: int32, alignment: int32):
void { raises exception, use after open, claim, enable }

306
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
printImmediate (station: int32, data: string):
void { raises exception, use after open, claim, enable }

printNormal (station: int32, data: string):
void { raises exception, use after open, claim, enable }

printTwoNormal (station: int32, data1: string, data2: string):
void { raises exception, use after open, claim, enable }

rotatePrint (station: int32, rotation: int32):
void { raises exception, use after open, claim, enable }

setBitmap (bitmapNumber: int32, station: int32, fileName: string, width:
int32, alignment: int32):
void { raises exception, use after open, claim, enable }

setLogo (location: int32, data: string):
void { raises exception, use after open, claim, enable }

transactionPrint (station: int32, control: int32):
void { raises exception, use after open, claim, enable }

validateData (station: int32, data: string):
void { raises exception, use after open, claim, enable }

Events (UML interfaces)
Name Type Mutability

upos::events::DirectIOEvent

 EventNumber: int32 { read-only }

 Data: int32 { read-write }

 Obj: object { read-write }

upos::events::ErrorEvent

 ErrorCode: int32 { read-only }

 ErrorCodeExtended: int32 { read-only }

 ErrorLocus: int32 { read-only }

 ErrorResponse int32 { read-write }

upos::events::OutputCompleteEvent

 OutputID: int32 { read-only }

upos::events::StatusUpdateEvent

 Status: int32 { read-only }

307 General Information
General Information

The POS Printer programmatic name is “POSPrinter”.

The POS Printer Service does not attempt to encapsulate the behavior of a generic
graphics printer. Rather, for performance and ease of use considerations, the
interfaces are defined to directly control a POS printer. Usually, an application will
print one line to one station per method, for ease of use and accuracy in recovering
from errors.

The printer model defines three stations with the following general uses:

• Journal Used for simple text to log transaction and activity information. Kept
by the store for audit and other purposes.

• Receipt Used to print transaction information. Usually given to the customer.
Also often used for store reports. Contains either a knife to cut the paper
between transactions, or a tear bar to manually cut the paper.

• Slip Used to print information on a form. Usually given to the customer.
Also used to print “validation” information on a form. The form type is
typically a check or credit card slip.

Sometimes, limited forms-handling capability is integrated with the receipt or
journal station to permit validation printing. Often this limits the number of
print lines, due to the station’s forms-handling throat depth. The Printer
Service nevertheless addresses this printer functionality as a slip station.

Capabilities
The POS printer has the following capability:

• The default character set can print ASCII characters (0x20 through 0x7F),
which includes space, digits, uppercase, lowercase, and some special
characters. (If the printer does not support all of these, then it should translate
them to close approximations – such as lowercase to uppercase.)

The POS printer may have several additional capabilities. See the capabilities
properties for specific information.

The following capabilities are not addressed in this version of the specification. A
Service may choose to support them through the directIO mechanism.

• Downloadable character sets.

• Character substitution.

• General graphics printing, where each pixel of the printer line may be
specified.

308
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
POS Printer Class Diagram

The following diagram shows the relationships between the POS Printer classes.

POS Printer Class Diagram - Version 1.5 Updates

The following diagram shows the relationships between the POS Printer classes
that were updated in version 1.5 of the specification.

StatusUpdateEvent
(from events)

<<event>>
ErrorEvent
(from events)

<<event>>

OutputCompleteEvent
(from events)

<<event>>
DirectIOEvent

(from events)

<<event>>

POSPrinterControl

beginInsertion(timeout : int32) : void
beginRemoval(timeout : int32) : void
changePrintSide(side : int32) : void
cutPaper(percentage : int32) : void
endInsertion() : void
endRemoval() : void
markFeed(type : int32) : void
printBarCode(station : int32, data : string, symbology : int32, height : int32, width : int32, alignment : int32, textPosition : int32) : voi
printBitmap(station : int32, fileName : string, width : int32, alignment : int32) : void
printImmediate(station : int32, data : string) : void
printNormal(station : int32, data : string) : void
printTwoNormal(stations : int32, data1 : string, data2 : string) : void
rotatePrint(station : int32, rotation : int32) : void
setBitmap(bitmapNumber : int32, station : int32, fileName : string, width : int32, alignment : int32) : void
setLogo(location : int32, data : string) : void
transactionPrint(station : int32, control : int32) : void
validateData(station : int32, data : string) : void

(from upos)

<<Interface>>

fires fires fires fires

POSPrinterConst
(from upos)

<<utility>>

<<uses>>

UposConst
(from upos)

<<utility>>

<<uses>>

UposException
(from upos)

<<exception>>
BaseControl

(from upos)

<<Interface>>
<<uses>> <<sends>>

<<sends>>

Only the methods of the
POSPrinterControl are shown in
order to avoid cluttering the diagram.

309 General Information
UposConst
(from upos)

<<utility>>

POSPrinterConst

$ PTR_PS_UNKNOWN : int32 {frozen}
$ PTR_PS_SIDE1 : int32 {frozen}
$ PTR_PS_SIDE2 : int32 {frozen}
$ PTR_PS_OPPOSITE : int32 {frozen}
$ PTR_MF_TAKEUP : int32 {frozen}
$ PTR_MF_FEED_TO_CUTTER : int32 {frozen}
$ PTR_MF_PRESENT_TOF : int32 {frozen}
$ PTR_MF_NEXT_TOF : int32 {frozen}
$ PTR_CART_UNKNOWN : int32 {frozen}
$ PTR_CART_OK : int32 {frozen}
$ PTR_CART_REMOVED : int32 {frozen}
$ PTR_CART_EMPTY : int32 {frozen}
$ PTR_CART_NEAREND : int32 {frozen}
$ PTR_CART_CLEANING : int32 {frozen}
$ PTR_COLOR_PRIMARY : int32 {frozen}
$ PTR_COLOR_CUSTOM1 : int32 {frozen}
$ PTR_COLOR_CUSTOM2 : int32 {frozen}
$ PTR_COLOR_CUSTOM3 : int32 {frozen}
$ PTR_COLOR_CUSTOM4 : int32 {frozen}
$ PTR_COLOR_CUSTOM5 : int32 {frozen}
$ PTR_COLOR_CUSTOM6 : int32 {frozen}
$ PTR_COLOR_CYAN : int32 {frozen}
$ PTR_COLOR_MAGENTA : int32 {frozen}
$ PTR_COLOR_YELLOW : int32 {frozen}
$ PTR_COLOR_FULL : int32 {frozen}
$ PTR_CN_DISABLED : int32 {frozen}
$ PTR_CN_ENABLED : int32 {frozen}
$ PTR_SUE_JRN_CARTRIDGE_EMPTY : int32 {frozen}
$ PTR_SUE_JRN_CARTRIDGE_NEAREMPTY : int32 {frozen}
$ PTR_SUE_JRN_HEAD_CLEANING : int32 {frozen}
$ PTR_SUE_JRN_CARTRIDGE_OK : int32 {frozen}
$ PTR_SUE_REC_CARTRIDGE_EMPTY : int32 {frozen}
$ PTR_SUE_REC_CARTRIDGE_NEAREMPTY : int32 {frozen}
$ PTR_SUE_REC_HEAD_CLEANING : int32 {frozen}
$ PTR_SUE_REC_CARTRIDGE_OK : int32 {frozen}
$ PTR_SUE_SLP_CARTRIDGE_EMPTY : int32 {frozen}
$ PTR_SUE_SLP_CARTRIDGE_NEAREMPTY : int32 {frozen}
$ PTR_SUE_SLP_HEAD_CLEANING : int32 {frozen}
$ PTR_SUE_SLP_CARTRIDGE_OK : int32 {frozen}
$ EPTR_JRN_CARTRIDGE_REMOVED : int32 {frozen}
$ EPTR_JRN_CARTRIDGE_EMPTY : int32 {frozen}
$ EPTR_JRN_HEAD_CLEANING : int32 {frozen}
$ EPTR_REC_CARTRIDGE_REMOVED : int32 {frozen}
$ EPTR_REC_CARTRIDGE_EMPTY : int32 {frozen}
$ EPTR_REC_HEAD_CLEANING : int32 {frozen}
$ EPTR_SLP_CARTRIDGE_REMOVED : int32 {frozen}
$ EPTR_SLP_CARTRIDGE_EMPTY : int32 {frozen}
$ EPTR_SLP_HEAD_CLEANING : int32 {frozen}

(from upos)

<<utility>>

Only the new 1.5 properties and
methods of the
POSPrinterControl are shown in
order to avoid cluttering the
diagram.

BaseControl

(from upos)

<<Interface>>

UposException
(from upos)

<<exception>>

<<uses>>

<<sends>>

ErrorEvent
(from events)

<<event>>

DirectIOEvent
(from events)

<<event>>

StatusUpdateEvent
(from events)

<<event>>
OutputCompleteEvent

(from events)

<<event>>

POSPrinterControl

<<capability>> CapSlpBothSidesPrint : boolean
<<capability>> CapRecMarkFeed : int32
<<prop>> SlpPrintSide : int32

changePrintSide(side : int32) : void
markFeed(type : int32) : void

(from upos)

<<Interface>>

fires

fires

fires

<<uses>>

<<uses>>

<<sends>>

fires

310
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Model
The POS Printer follows the general device behavior model for output devices,
with some enhancements:

• The following methods are always performed synchronously:
beginInsertion, endInsertion, beginRemoval, endRemoval,
changePrintSide, and checkHealth. These methods will fail if asynchronous
output is outstanding.

• The printImmediate method is also always performed synchronously: This
method tries to print its data immediately (that is, as the very next printer
operation). It may be called when asynchronous output is outstanding. This
method is primarily intended for use in exception conditions when
asynchronous output is outstanding.

• The following methods are performed either synchronously or
asynchronously, depending on the value of the AsyncMode property:
cutPaper, markFeed, printBarCode, printBitmap, printNormal,
printTwoNormal, rotatePrint, and transactionPrint. When AsyncMode is
false, then these methods are performed synchronously.

• When AsyncMode is true, then these methods operate as follows:

• The Service buffers the request, sets the OutputID property to an
identifier for this request, and returns as soon as possible. When the
request completes successfully, an OutputCompleteEvent is enqueued.
A property of this event contains the OutputID of the completed request.

• Asynchronous printer methods will not raise an exception due to a
printing problem, such as out of paper or printer fault. These errors will
only be reported by an ErrorEvent. An exception is raised only if the
printer is not claimed and enabled, a parameter is invalid, or the request
cannot be enqueued. The first two error cases are due to an application
error, while the last is a serious system resource error exception.

• If an error occurs while performing an asynchronous request, an
ErrorEvent is enqueued. The ErrorStation property is set to the station
or stations that were printing when the error occurred. The ErrorLevel
and ErrorString properties are also set.

• The event handler may call synchronous print methods (but not
asynchronous methods), then can either retry the outstanding output or
clear it.

• All asynchronous output is performed on a first-in first-out basis.

• All output buffered may be deleted by calling clearOutput.
OutputCompleteEvents will not be delivered for cleared output. This
method also stops any output that may be in progress (when possible).

• The property FlagWhenIdle may be set to cause a StatusUpdateEvent
to be enqueued when all outstanding outputs have finished, whether
successfully or because they were cleared.

311 General Information
• Transaction mode printing is supported. A transaction is a sequence of print
operations that are printed to a station as a unit. Print operations which may be
included in a transaction are printNormal, cutPaper, rotatePrint,
printBarCode, printBitmap, and markFeed. During a transaction, the print
operations are first validated. If valid, they are added to the transaction but not
printed yet. Once the application has added as many operations as required,
then the transaction print method is called.

If the transaction is printed synchronously and an exception is not raised, then
the entire transaction printing was successful. If the transaction is printed
asynchronously, then the asynchronous print rules listed above are followed.
If an error occurs and the Error Event handler causes a retry, the entire
transaction is retried.

The printer error reporting model is as follows:

• Printer out-of-paper and cover open conditions are reported by setting the
exception’s (or ErrorEvent’s) ErrorCode to E_EXTENDED and then setting
the associated ErrorCodeExtended to one of the following error conditions:
EPTR_JRN_EMPTY,
EPTR_REC_EMPTY,
EPTR_SLP_EMPTY,
EPTR_COVER_OPEN,
EPTR_JRN_CARTRIDGE_REMOVED,
EPTR_REC_CARTRIDGE_REMOVED,
EPTR_SLP_CARTRIDGE_REMOVED,
EPTR_JRN_CARTRIDGE_EMPTY,
EPTR_REC_CARTRIDGE_EMPTY,
EPTR_SLP_CARTRIDGE_EMPTY,
EPTR_JRN_HEAD_CLEANING,
EPTR_REC_HEAD_CLEANING, or
EPTR_SLP_HEAD_CLEANING.

• Other printer errors are reported by setting the exception’s (or ErrorEvent’s)
ErrorCode to E_FAILURE or another standard error status. These failures are
typically due to a printer fault or jam, or to a more serious error.

Release 1.5 and later – Print cartridge support added

The print cartridge model is as follows:

312
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
• The CapJrnCartridgeSensor, CapRecCartridgeSensor, and the
CapSlpCartridgeSensor capabilities are used to determine whether the
printer has the ability to detect the operating condition of the cartridge.

• Prior to determining a cartridge’s operating condition, a cartridge is selected
by using one of the following properties: JrnCurrentCartridge,
RecCurrentCartridge, or SlpCurrentCartridge.

• The condition of the selected cartridge is set up using one of the
JrnCartridgeState, RecCartridgeState or SlpCartridgeState properties.
The values that these properties can take in order of high priority to low
priority are as follows: PTR_CART_UNKNOWN,
PTR_CART_REMOVED, PTR_CART_EMPTY,
PTR_CART_CLEANING, PTR_CART_NEAREND, PTR_CART_OK.

• CapJrnColor, CapRecColor, and CapSlpColor capabilities are used to
determine the color capabilities of the station.

Mono Color

• CapJrnColor, CapRecColor, and CapSlpColor capabilities are set to
PTR_COLOR_PRIMARY.

Two Color

• CapJrnColor, CapRecColor, and CapSlpColor capabilities are a logical
OR combination of PTR_COLOR_PRIMARY and
PTR_COLOR_CUSTOM1.

• PTR_COLOR_CUSTOM1 refers to the secondary color, usually red.
• Secondary color printing can be done by using the ESC|rC escape sequence.

Custom Color

• CapJrnColor, CapRecColor, and CapSlpColor capabilities are a logical
OR combination of PTR_COLOR_PRIMARY and any of the following bit
values:
PTR_COLOR_CUSTOM1, PTR_COLOR_CUSTOM2,
PTR_COLOR_CUSTOM3, PTR_COLOR_CUSTOM4,
PTR_COLOR_CUSTOM5, PTR_COLOR_CUSTOM6.

• Selection of a custom color can be done using the ESC|#rC escape sequence.

Full Color

• CapJrnColor, CapRecColor, and CapSlpColor capabilities are a logical
OR combination of PTR_COLOR_FULL and the following values:
PTR_COLOR_CYAN, PTR_COLOR_MAGENTA,
PTR_COLOR_YELLOW.

• PTR_COLOR_FULL is not used to indicate that a print cartridge is currently
installed in the printer. Rather, it is used to indicate that the printer has the
ability to print in full color mode.

• Full color printing is accomplished by using the ESC|#fC escape sequence.

313 General Information
Full Color with Custom Color(s)

• CapJrnColor, CapRecColor, and CapSlpColor are a logical OR
combination of the settings for Custom Color and Full Color.

Release 1.5 and later – Cartridge State Reporting Requirements
for DeviceEnabled

The print cartridge state reporting model is:

• CartridgeNotify property: The application may set this property to enable
cartridge state reporting via StatusUpdateEvents and JrnCartridgeState,
RecCartridgeState, and SlpCartridgeState properties. This property may
only be set before the device is enabled (that is, before DeviceEnabled is set
to true). This restriction allows simpler implementation of cartridge status
notification with no adverse effects on the application. The application is
either prepared to receive notifications or doesn’t want them, and has no need
to switch between these cases. This property may be one of:

PTR_CN_DISABLED, or PTR_CN_ENABLED

The following semantics are added to DeviceEnabled when the
CapJrnCartridgeSensor, CapRecCartridgeSensor, and
CapSlpCartridgeSensor capabilities are not zero, and CartridgeNotify is set to
PTR_CN_ENABLED:

• Monitoring the cartridge state begins when DeviceEnabled changes from
false to true.

• When DeviceEnabled changes from true to false, the state of the cartridge is
no longer valid. Therefore, JrnCartridgeState, RecCartridgeState, and
SlpCartridgeState properties are set to PTR_CART_UNKNOWN.

Device Sharing
The POS Printer is an exclusive-use device, as follows:

• The application must claim the device before enabling it.

• The application must claim and enable the device before accessing many
printer-specific properties.

• The application must claim and enable the device before calling methods that
manipulate the device.

• See the “Summary” table for precise usage prerequisites.

314
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
POS Printer State Diagram

To be added in a future release.

315 General Information
“Both sides printing” sequence Diagram

The following sequence diagram is a representation of the typical usage of the
“Both sides printing” feature.

:POSPrinterControl:Client

beginInsertion(1000)

endInsertion()

Example on how to print some string on both

side with a POSPrinter service supporting both

sides printing.

NOTE: the sequence below assumes no errors

Prints "Some
String Data"

on the Side1
of the Slip of
POSPrinter

changePrintSide(PTR_PS_SIDE2) [CapSlpBothSidesPrint == true]

changePrintSide(PTR_PS_SIDE1) [CapSlpBothSidesPrint == true]

printNormal(PTR_S_SLIP, "Some String Data")

printNormal(PTR_S_SLIP, "Some String Data")

Prints "Some
String Data"

on the Side2
of the Slip of

POSPrinter

beginRemoval(5000)

endRemoval()

316
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Data Characters and Escape Sequences

The default character set of all POS printers is assumed to support at least the
ASCII characters 0x20 through 0x7F, which include spaces, digits, uppercase,
lowercase, and some special characters. If the printer does not support lowercase
characters, then the Service may translate them to uppercase.

Every escape sequence begins with the escape character ESC, whose value is 27
decimal, followed by a vertical bar (‘|’). This is followed by zero or more digits
and/or lowercase alphabetic characters. The escape sequence is terminated by an
uppercase alphabetic character. Sequences that do not begin with ESC “|” are
passed through to the printer. Also, sequences that begin with ESC “|” but which
are not valid escape sequences are passed through to the printer.

To determine if escape sequences or data can be performed on a printer station, the
application can call the validateData method. (For some escape sequences,
corresponding capability properties can also be used.)

The following escape sequences are recognized. If an escape sequence specifies an
operation that is not supported by the printer station, then it is ignored.

317 General Information
Commands Perform indicated action.

Print Mode Characteristics that are remembered until explicitly changed.

Name Data Remarks

Paper cut ESC |#P Cuts receipt paper. The character ‘#’ is replaced by an
ASCII decimal string telling the percentage cut desired. If
‘#’ is omitted, then a full cut is performed. For example:
The C string “\x1B|75P” requests a 75% partial cut.

Feed and Paper cut ESC |#fp Cuts receipt paper, after feeding the paper by the
RecLinesToPaperCut lines. The character ‘#’ is defined
by the “Paper cut” escape sequence.

Feed, Paper cut, and Stamp ESC |#sP Cuts and stamps receipt paper, after feeding the paper by
the RecLinesToPaperCut lines. The character ‘#’ is
defined by the “Paper cut” escape sequence.

Fire stamp ESC |sL Fires the stamp solenoid, which usually contains a
graphical store emblem.

Print bitmap ESC |#B Prints the pre-stored bitmap. The character ‘#’ is replaced
by the bitmap number. See setBitmap method.

Print top logo ESC |tL Prints the pre-stored top logo.

Print bottom logo ESC |bL Prints the pre-stored bottom logo.

Feed lines ESC |#lF Feed the paper forward by lines. The character ‘#’ is
replaced by an ASCII decimal string telling the number of
lines to be fed. If ‘#’ is omitted, then one line is fed.

Feed units ESC |#uF Feed the paper forward by mapping mode units. The
character ‘#’ is replaced by an ASCII decimal string
telling the number of units to be fed. If ‘#’ is omitted, then
one unit is fed.

Feed reverse ESC |#rF Feed the paper backward. The character ‘#’ is replaced by
an ASCII decimal string telling the number of lines to be
fed. If ‘#’ is omitted, then one line is fed.

Name Data Remarks

Font typeface selection ESC |#fT Selects a new typeface for the following data. Values for
the character ‘#’ are:

0 = Default typeface.
1 = Select first typeface from the FontTypefaceList
property.
2 = Select second typeface from the FontTypefaceList
property.
And so on.

318
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Print Line Characteristics that are reset at the end of each print method or by a
“Normal” sequence.

Note: These escape sequences are only available in Version 1.5 and later.

Name Data Remarks

Bold ESC |bC Prints in bold or double-strike.

Underline ESC |#uC Prints with underline. The character ‘#’ is replaced by an
ASCII decimal string telling the thickness of the
underline in printer dot units. If ‘#’ is omitted, then a
printer-specific default thickness is used.

Italic ESC |iC Prints in italics.

Alternate color (Custom) ESC |#rC Prints using an alternate custom color. The character ‘#’
is replaced by an ASCII decimal string indicating the
desired color. The value of the decimal string is equal to
the value of the cartridge constant used in the printer
device properties. If ‘#’ is omitted, then the secondary
color (Custom Color 1) is selected. Custom Color 1 is
usually red.

Reverse video ESC |rvC Prints in a reverse video format.

Shading ESC |#sC Prints in a shaded manner. The character ‘#’ is replaced
by an ASCII decimal string telling the percentage shading
desired. If ‘#’ is omitted, then a printer-specific default
level of shading is used.

Single high & wide ESC |1C Prints normal size.

Double wide ESC |2C Prints double-wide characters.

Double high ESC |3C Prints double-high characters.

Double high & wide ESC |4C Prints double-high/double-wide characters.

Scale horizontally ESC |#hC Prints with the width scaled ‘#’ times the normal size,
where ‘#’ is replaced by an ASCII decimal string.

Scale vertically ESC |#vC Prints with the height scaled ‘#’ times the normal size,
where ‘#’ is replaced by an ASCII decimal string.

RGB Color ESC |#fC Prints in # color. The character ‘#’ is replaced by an
ASCII decimal string indicating the additive amount of
RGB to produce the desired color. There are 3 digits each
of Red, Green, and Blue elements. Valid values range
from “000” to “255”. (E.g., “255255000” represents
yellow). Color Matching to the subtractive percentage of
CMY (Cyan, Magenta and Yellow color components) to
produce the desired color matching specified by RGB is
up to the Service. If ‘#’ is omitted, then the primary color
is used. Bitmap printing is not affected. (See Note below.)

SubScript ESC |tbC Prints SubScript characters. (See Note below.)

SuperScript ESC |tpC Prints SuperScript characters. (See Note below.)

Center ESC |cA Aligns following text in the center.

Right justify ESC |rA Aligns following text at the right.

Normal ESC |N Restores printer characteristics to normal condition.

319 POS Printer State Diagrams (Low Level)
POS Printer State Diagrams (Low Level)
Purpose:

The Low level state diagrams show a simplified, implementable flow of the
POSPrinter.

They are intended to be used by Device service implementers as an example of
how a Service may be designed. It uses multiple threads of execution to separate
initiation of requests (via the POSPrinter APIs) with their processing and event
delivery.

They are also intended to be used by application developers to show more details
on processing of their API calls than can be given in the high level state diagram.

These diagrams assume:

- A separate request thread that processes print request.
Print requests are placed on a request queue (RequestQ) for the request thread to
access. The request thread has some mechanism to report request completion
and results.

- A separate event thread that delivers events.
Events are placed on an event queue (EventQ) for the event thread to access. The
event thread has some mechanism to report error event results.

Print Commands: changePrintSide, cutPaper, markFeed, printBarCode,
printBitmap, printNormal, printTwoNormal, rotatePrint.

Not Shown: Validation of APIs. If an API fails during validation, then it may
return an error result and return prematurely to the “Wait for API“ state.

320
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
POS Printer State Diagram (Low Level): API

[Opened &&
Claimed &&
Enabled]

[Closed ||
Released ||
Disabled]

Begin Transaction
do { Init transaction buffer; Set Trans-

action-Mode (TM) flag }

Print Immediate
do { Add print request to beginning of

RequestQ }

End Transaction
do { Make print request from

transaction buffer; Reset TM flag }

Print
do { Add print request to end of

RequestQ }

Print Transaction
do { Add print request to transaction

buffer;
set ResultCode to success }

Clear Output
do { Add clear request to end of RequestQ; cancel TM }

Begin Insertion
do { Wait for up to app specified

timeout for form in }

Begin Removal
do { Wait for up to app specified

timeout for form out }

Other
do { Process command }

End Removal
do { If form not out, then error }

Removal
Mode

[No form out before timeout ||
other failure]

/ beginRemoval

/ endRemoval

[Form out] / endRemoval

End Insertion
do { If form in, then close “jaws”; else error}

Insertion
Mode

[No form in before timeout ||
other failure]

/ beginInsertion

[Form in] / endInsertion

/ endInsertion

/ Other Command

/ beginRemoval

/ beginInsertion

/ clearOutput

[TM]
/ Print Command

[no TM] / Print Command

/ transactionPrint (end)

/ transactionPrint (begin)

/ printImmediate

Request Complete
do { Set ResultCode to

print request result }

Async Request Started
do { Assign & Set OutputID;
Set ResultCode to success }

[AsyncMode == true]

[(AsyncMode == false)
&& request complete]

[request
complete]

Wait For API

[request complete]

321 POS Printer State Diagrams (Low Level)
POS Printer State Diagram (Low Level): Request
Thread

[Started
by main
Service
Thread]

[Stopped before
Service terminates]

Wait For Work

Clear
do { Stop printer; clear

RequestQ & InProgressQ;
mark as complete }

Error
do { Stop printer; enqueue

ErrorEvent }

Done
do { Set print request

result; mark as complete;
remove from InProgressQ }

Print Request
do { Send to printer; move

from PrintQ to
InProgressQ }

StatusUpdateEvent
do { Enqueue

StatusUpdateEvent }

Idle SUE
do { Enqueue Idle

StatusUpdateEvent; set
FlagWhenIdle = false }

Retry
do { Resend requests in

the InProgressQ }

OutputCompleteEvent
do { Enqueue

OutputCompleteEvent }

[RequestQ Empty && FlagWhenIdle == true]

[status change]

/ RequestQ: Print

[async request done]

[async request error]

/ RequestQ: Clear

[response == clear]

[response
== retry]

[(AsyncMode == false)
&& (done || error)]

[AsyncMode == true]

[AsyncMode == false]

[AsyncMode == true]

322
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
POS Printer State Diagram (Low Level): Event
Delivery Thread

[Started
by main
Service
Thread]

[Stopped before
Service terminates]

Idle

Events to Deliver

Fire DataEvent
do { Set DataEventEnabled =

false; Fire event }

Fire Other Event
do { Fire event }

Fire ErrorEvent
do { Fire event; Return response

to Request Thread }

[EventQ Not
Empty]

[EventQ
Empty]

[FreezeEvents
== false]

[FreezeEvents
== true]

[Input ErrorEvent &&
DataEventEnabled == true]

[Output ErrorEvent]

[OutputCompleteEvent ||
StatusUpdateEvent ||
DirectIOEvent]

Events to Deliver and
Events Not Frozen

[DataEvent &&
DataEventEnabled == true]

323 POS Printer State Diagrams (Low Level)
Non-Slip Printing (Receipt and/or Journal)

POS Printer Slip Handling State Diagram

beginInsertion (Timeout)

endInsertion

Insertion
Mode

Slip Inserted: Perform Slip Printing (printNormal, etc…)

beginRemoval (Timeout)

endRemoval

Removal
Mode

[Form in before
Timeout
(SUCCESS)]
/ endInsertion

/ beginRemoval

/ endInsertion

[Form in
(SUCCESS)]

/ beginInsertion

[(no form in before Timeout (E_TIMEOUT)) ||
(Other failure (E_ILLEGAL, E_BUSY, E_FAILURE, etc.))]

/ beginInsertion

[Failure (EPTR_SLP_EMPTY, E_FAILURE, etc.)]

[Form out before
Timeout
(SUCCESS)]
/ endRemoval

/ endRemoval

[(Form not out before Timeout (E_TIMEOUT)) ||
(Other failure (E_ILLEGAL, E_BUSY, E_FAILURE, etc.))]

/ beginRemoval

[Form out
(SUCCESS)]

[Failure (EPTR_SLP_FORM, E_FAILURE, etc.)]

324
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Properties (UML attributes)
AsyncMode Property

Syntax AsyncMode: boolean { read-write, access after open }

Remarks If true, then the print methods cutPaper, markFeed, printBarCode,
printBitmap, printNormal, printTwoNormal, rotatePrint, and
transactionPrint will be performed asynchronously.
If false, they will be printed synchronously.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapCharacterSet Property Updated in Release 1.5

Syntax CapCharacterSet: int32 { read-only, access after open }

Remarks Holds the default character set capability. It has one of the following values:

Value Meaning

PTR_CCS_ALPHA The default character set supports uppercase alphabetic
plus numeric, space, minus, and period.

PTR_CCS_ASCII The default character set supports all ASCII characters
0x20 through 0x7F.

PTR_CCS_KANA The default character set supports partial code page 932,
including ASCII characters 0x20 through 0x7F and the
Japanese Kana characters 0xA1 through 0xDF, but
excluding the Japanese Kanji characters.

PTR_CCS_KANJI The default character set supports code page 932,
including the Shift-JIS Kanji characters, Levels 1 and 2.

PTR_CCS_UNICODE The default character set supports UNICODE.

The default character set may contain a superset of these ranges. The initial
CharacterSet property may be examined for additional information.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CharacterSet Property.

325 Properties (UML attributes)
CapConcurrentJrnRec Property

Syntax CapConcurrentJrnRec: boolean { read-only, access after open }

Remarks If true, then the Journal and Receipt stations can print at the same time.
The printTwoNormal method may be used with the
PTR_TWO_RECEIPT_JOURNAL and PTR_S_JOURNAL_RECEIPT station
parameter. If false, the application should print to only one of the stations at a time,
and minimize transitions between the stations. Non-concurrent printing may be
required for reasons such as:

• Higher likelihood of error, such as greater chance of paper jams when moving
between the stations.

• Higher performance when each station is printed separately.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapConcurrentJrnSlp Property

Syntax CapConcurrentJrnSlp: boolean { read-only, access after open }

Remarks If true, then the Journal and Slip stations can print at the same time. The
printTwoNormal method may be used with the
PTR_TWO_RECEIPT_JOURNAL and PTR_S_JOURNAL_SLIP station
parameter. If false, the application must use the sequence beginInsertion/
endInsertion followed by print requests to the Slip followed by beginRemoval/
endRemoval before printing on the Journal. Non-concurrent printing may be
required for reasons such as:

• Physical constraints, such as the Slip form being placed in front of the Journal
station.

• Higher likelihood of error, such as greater chance of paper jams when moving
between the stations.

• Higher performance when each station is printed separately.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

326
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
CapConcurrentRecSlp Property

Syntax CapConcurrentRecSlp: boolean { read-only, access after open }

Remarks If true, then the Receipt and Slip stations can print at the same time. The
printTwoNormal method may be used with the
PTR_TWO_RECEIPT_JOURNAL and PTR_S_RECEIPT_SLIP station
parameter. If false, the application must use the sequence beginInsertion/
endInsertion followed by print requests to the Slip followed by beginRemoval/
endRemoval before printing on the Receipt. Non-concurrent printing may be
required for reasons such as:

• Physical constraints, such as the Slip form being placed in front of the Receipt
station.

• Higher likelihood of error, such as greater chance of paper jams when moving
between the stations.

• Higher performance when each station is printed separately.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapCoverSensor Property

Syntax CapCoverSensor: boolean { read-only, access after open }

Remarks If true, then the printer has a “cover open” sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapJrn2Color Property

Syntax CapJrn2Color: boolean { read-only, access after open }

Remarks If true, then the journal can print dark plus an alternate color.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

327 Properties (UML attributes)
CapJrnBold Property

Syntax CapJrnBold: boolean { read-only, access after open }

Remarks If true, then the journal can print bold characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapJrnCartridgeSensor Property Added in Release 1.5

Syntax CapJrnCartridgeSensor: int32 { read-only, access after open}

Remarks This bit mapped parameter is used to indicate the presence of Journal Cartridge
monitoring sensors.

If CapJrnPresent is false, this property is “0”. Otherwise it is a logical OR
combination of any of the following values:

Value Meaning

PTR_CART_REMOVED There is a function to indicate that the Cartridge
has been removed.

PTR_CART_EMPTY There is a function to indicate that the Cartridge
is empty.

PTR_CART_CLEANING There is a function to indicate that the head is
being cleaned.

PTR_CART_NEAREND There is a function to indicate that the color
Cartridge is near end.

Note that the above mentioned values are arranged according to their priority level.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also JrnCartridgeState Property, JrnCurrentCartridge Property,
CartridgeNotify Property.

328
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
CapJrnColor Property Added in Release 1.5

Syntax CapJrnColor: int32 { read-only, access after open}

Remarks This capability indicates the availability of Journal color cartridges.

If CapJrnPresent is false, this property is “0”. Otherwise, this property indicates
the supported color cartridges.

CapJrnColor is a logical OR combination of any of the following values:

Value Meaning

PTR_COLOR_PRIMARY Supports Primary Color (Usually Black)

PTR_COLOR_CUSTOM1 Supports 1st Custom Color (Secondary Color,
usually Red)

PTR_COLOR_CUSTOM2 Supports 2nd Custom Color

PTR_COLOR_CUSTOM3 Supports 3rd Custom Color

PTR_COLOR_CUSTOM4 Supports 4th Custom Color

PTR_COLOR_CUSTOM5 Supports 5th Custom Color

PTR_COLOR_CUSTOM6 Supports 6th Custom Color

PTR_COLOR_CYAN Supports Cyan Color for full color printing

PTR_COLOR_MAGENTA Supports Magenta Color for full color printing

PTR_COLOR_YELLOW Supports Yellow Color for full color printing

PTR_COLOR_FULL Supports Full Color.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

329 Properties (UML attributes)
CapJrnDhigh Property

Syntax CapJrnDhigh: boolean { read-only, access after open }

Remarks If true, then the journal can print double high characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapJrnDwide Property

Syntax CapJrnDwide: boolean { read-only, access after open }

Remarks If true, then the journal can print double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapJrnDwideDhigh Property

Syntax CapJrnDwideDhigh: boolean { read-only, access after open }

Remarks If true, then the journal can print double high / double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

330
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
CapJrnEmptySensor Property

Syntax CapJrnEmptySensor: boolean { read-only, access after open }

Remarks If true, then the journal has an out-of-paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapJrnItalic Property

Syntax CapJrnItalic: boolean { read-only, access after open }

Remarks If true, then the journal can print italic characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapJrnNearEndSensor Property

Syntax CapJrnNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the journal has a low paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapJrnPresent Property

Syntax CapJrnPresent: boolean { read-only, access after open }

Remarks If true, then the journal print station is present.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapJrnUnderline Property

Syntax CapJrnUnderline: boolean { read-only, access after open }

Remarks If true, then the journal can underline characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

331 Properties (UML attributes)
CapRec2Color Property

Syntax CapRec2Color: boolean { read-only, access after open }

Remarks If true, then the receipt can print dark plus an alternate color.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapRecBarCode Property

Syntax CapRecBarCode: boolean { read-only, access after open }

Remarks If true, then the receipt has bar code printing capability.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapRecBitmap Property

Syntax CapRecBitmap: boolean { read-only, access after open }

Remarks If true, then the receipt can print bitmaps.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapRecBold Property

Syntax CapRecBold: boolean { read-only, access after open }

Remarks If true, then the receipt can print bold characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

332
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
CapRecCartridgeSensor Property Added in Release 1.5

Syntax CapRecCartridgeSensor: int32 { read-only, access after open}

Remarks This bit mapped parameter is used to indicate the presence of Receipt Cartridge
monitoring sensors.

If CapRecPresent is false, this property is “0”. Otherwise it is a logical OR
combination of any of the following values:

Value Meaning

PTR_CART_REMOVED There is a function to indicate that the Cartridge
has been removed.

PTR_CART_EMPTY There is a function to indicate that the Cartridge
is empty.

PTR_CART_CLEANING There is a function to indicate that the head is
being cleaned.

PTR_CART_NEAREND There is a function to indicate that the color
Cartridge is near end.

Note that the above mentioned values are arranged according to their priority level.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also RecCartridgeState Property, RecCurrentCartridge Property,
CartridgeNotify Property.

333 Properties (UML attributes)
CapRecColor Property Added in Release 1.5

Syntax CapRecColor: int32 { read-only, access after open }

Remarks This capability indicates the availability of Receipt color cartridges.

If CapRecPresent is false, this property is “0”. Otherwise, this property indicates
the supported color cartridges.

CapRecColor is a logical OR combination of any of the following values:

Value Meaning

PTR_COLOR_PRIMARY Supports Primary Color (Usually Black)

PTR_COLOR_CUSTOM1 Supports 1st Custom Color (Secondary Color,
usually Red)

PTR_COLOR_CUSTOM2 Supports 2nd Custom Color

PTR_COLOR_CUSTOM3 Supports 3rd Custom Color

PTR_COLOR_CUSTOM4 Supports 4th Custom Color

PTR_COLOR_CUSTOM5 Supports 5th Custom Color

PTR_COLOR_CUSTOM6 Supports 6th Custom Color

PTR_COLOR_CYAN Supports Cyan Color for full color printing

PTR_COLOR_MAGENTA Supports Magenta Color for full color printing

PTR_COLOR_YELLOW Supports Yellow Color for full color printing

PTR_COLOR_FULL Supports Full Color.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapRecDhigh Property

Syntax CapRecDhigh: boolean { read-only, access after open }

Remarks If true, then the receipt can print double high characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

334
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
CapRecDwide Property

Syntax CapRecDwide: boolean { read-only, access after open }

Remarks If true, then the receipt can print double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapRecDwideDhigh Property

Syntax CapRecDwideDhigh: boolean { read-only, access after open }

Remarks If true, then the receipt can print double high /double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapRecEmptySensor Property

Syntax CapRecEmptySensor: boolean { read-only, access after open }

Remarks If true, then the receipt has an out-of-paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapRecItalic Property

Syntax CapRecItalic: boolean { read-only, access after open }

Remarks If true, then the receipt can print italic characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapRecLeft90 Property

Syntax CapRecLeft90: boolean { read-only, access after open }

Remarks If true, then the receipt can print in a rotated 90° left mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

335 Properties (UML attributes)
CapRecMarkFeed Property Added in Release 1.5

Syntax CapRecMarkFeed: int32 { read-only, access after open }

Remarks This parameter indicates the type of mark sensed paper handling available.

CapRecMarkFeed is a logical OR combination of the following values. (The
values are identical to those used with the markFeed method.)

Value Meaning

PTR_MF_TO_TAKEUP Feed the Mark Sensed paper to the paper take-
up position.

PTR_MF_TO_CUTTER Feed the Mark Sensed paper to the autocutter
cutting position.

PTR_MF_TO_CURRENT_TOF Feed the Mark Sensed paper to the present
paper’s top of form. (Reverse feed if required)

PTR_MF_TO_NEXT_TOF Feed the Mark Sensed paper to the paper’s next
top of form.

If CapRecMarkFeed equals “0”, mark sensed paper handling is not supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also markFeed Method.

CapRecNearEndSensor Property

Syntax CapRecNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the receipt has a low paper sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

336
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
CapRecPapercut Property

Syntax CapRecPapercut: boolean { read-only, access after open }

Remarks If true, then the receipt can perform paper cuts.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapRecPresent Property

Syntax CapRecPresent: boolean { read-only, access after open }

Remarks If true, then the receipt print station is present.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapRecRight90 Property

Syntax CapRecRight90: boolean { read-only, access after open }

Remarks If true, then the receipt can print in a rotated 90° right mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapRecRotate180 Property

Syntax CapRecRotate180: boolean { read-only, access after open }

Remarks If true, then the receipt can print in a rotated upside down mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

337 Properties (UML attributes)
CapRecStamp Property

Syntax CapRecStamp: boolean { read-only, access after open }

Remarks If true, then the receipt has a stamp capability.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapRecUnderline Property

Syntax CapRecUnderline: boolean { read-only, access after open }

Remarks If true, then the receipt can underline characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapSlp2Color Property

Syntax CapSlp2Color: boolean { read-only, access after open }

Remarks If true, then the slip can print dark plus an alternate color.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapSlpBarCode Property

Syntax CapSlpBarCode: boolean { read-only, access after open }

Remarks If true, then the slip has bar code printing capability.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapSlpBitmap Property

Syntax CapSlpBitmap: boolean { read-only, access after open }

Remarks If true, then the slip can print bitmaps.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

338
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
CapSlpBold Property

Syntax CapSlpBold: boolean { read-only, access after open }

Remarks If true, then the slip can print bold characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapSlpBothSidesPrint Property Added in Release 1.5

Syntax CapSlpBothSidesPrint: boolean { read-only, access after open }

Remarks If true, then the slip station can automatically print on both sides of a check, either
by flipping the check or through the use of dual print heads.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapSlpCartridgeSensor Property Added in Release 1.5

Syntax CapSlpCartridgeSensor: int32 { read-only, access after open }

Remarks This bit mapped parameter is used to indicate the presence of Slip Cartridge
monitoring sensors.

If CapSlpPresent is false, this property is “0”. Otherwise it is a logical OR
combination of any of the following values:

Value Meaning

PTR_CART_REMOVED There is a function to indicate the Cartridge has
been removed.

PTR_CART_EMPTY There is a function to indicate the Cartridge is
empty.

PTR_CART_CLEANING There is a function to indicate head is being
cleaned.

PTR_CART_NEAREND There is a function to indicate the color
Cartridge is near end.

Note that the above mentioned values are arranged according to their priority level.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also SlpCartridgeState Property, SlpCurrentCartridge Property,
CartridgeNotify Property.

339 Properties (UML attributes)
CapSlpColor Property Added in Release 1.5

Syntax CapSlpColor: int32 { read-only, access after open }

Remarks This capability indicates the availability of Slip printing color cartridges.

If CapSlpPresent is false, this property is “0”. Otherwise, this property indicates
the supported color cartridges.

CapSlpColor is a logical OR combination of any of the following values:

Value Meaning

PTR_COLOR_PRIMARY Supports Primary Color (Usually Black)

PTR_COLOR_CUSTOM1 Supports 1st Custom Color (Secondary Color,
usually Red)

PTR_COLOR_CUSTOM2 Supports 2nd Custom Color

PTR_COLOR_CUSTOM3 Supports 3rd Custom Color

PTR_COLOR_CUSTOM4 Supports 4th Custom Color

PTR_COLOR_CUSTOM5 Supports 5th Custom Color

PTR_COLOR_CUSTOM6 Supports 6th Custom Color

PTR_COLOR_CYAN Supports Cyan Color for full color printing

PTR_COLOR_MAGENTA Supports Magenta Color for full color printing

PTR_COLOR_YELLOW Supports Yellow Color for full color printing

PTR_COLOR_FULL Supports Full Color.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapSlpDhigh Property

Syntax CapSlpDhigh: boolean { read-only, access after open }

Remarks If true, then the slip can print double high characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

340
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
CapSlpDwide Property

Syntax CapSlpDwide: boolean { read-only, access after open }

Remarks If true, then the slip can print double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapSlpDwideDhigh Property

Syntax CapSlpDwideDhigh: boolean { read-only, access after open }

Remarks If true, then the slip can print double high / double wide characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapSlpEmptySensor Property

Syntax CapSlpEmptySensor: boolean { read-only, access after open }

Remarks If true, then the slip has a “slip in” sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapSlpFullslip Property

Syntax CapSlpFullslip: boolean { read-only, access after open }

Remarks If true, then the slip is a full slip station. It can print full-length forms. If false, then
the slip is a “validation” type station. This usually limits the number of print lines,
and disables access to the receipt and/or journal stations while the validation slip
is being used.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapSlpItalic Property

Syntax CapSlpItalic: boolean { read-only, access after open }

Remarks If true, then the slip can print italic characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

341 Properties (UML attributes)
CapSlpLeft90 Property

Syntax CapSlpLeft90: boolean { read-only, access after open }

Remarks If true, then the slip can print in a rotated 90° left mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapSlpNearEndSensor Property

Syntax CapSlpNearEndSensor: boolean { read-only, access after open }

Remarks If true, then the slip has a “slip near end” sensor.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapSlpPresent Property

Syntax CapSlpPresent: boolean { read-only, access after open }

Remarks If true, then the slip print station is present.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapSlpRight90 Property

Syntax CapSlpRight90: boolean { read-only, access after open }

Remarks If true, then the slip can print in a rotated 90° right mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapSlpRotate180 Property

Syntax CapSlpRotate180: boolean { read-only, access after open }

Remarks If true, then the slip can print in a rotated upside down mode.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

342
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
CapSlpUnderline Property

Syntax CapSlpUnderline: boolean { read-only, access after open }

Remarks If true, then the slip can underline characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CapTransaction Property

Syntax CapTransaction: boolean { read-only, access after open }

Remarks If true, then printer transactions are supported by each station.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

CartridgeNotify Property Added in Release 1.5

Syntax CartridgeNotify: int32 { read-write, access after open }

Remarks Contains the type of cartridge state notification selected by the application.

The CartridgeNotify values are:

Value Meaning

PTR_CN_DISABLED The Control will not provide any cartridge state
notifications to the application or set any cartridge
related ErrorCodeExtended values. No cartridge state
notification StatusUpdateEvents will be fired, and
JrnCartridgeState, RecCartridgeState, and
SlpCartridgeState may not be set.

PTR_CN_ENABLED The Control will fire cartridge state notification
StatusUpdateEvents and update JrnCartridgeState,
RecCartridgeState and SlpCartridgeState, beginning
when DeviceEnabled is set true. The level of
functionality depends upon CapJrnCartridgeSensor,
CapRecCartridgeSensor and
CapSlpCartridgeSensor.

CartridgeNotify may only be set while the device is disabled, that is, while
DeviceEnabled is false.

This property is initialized to PTR_CN_DISABLED by the open method. This
value provides compatibility with earlier releases.

343 Properties (UML attributes)
Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:
The device is already enabled.
CapJrnCartridgeSensor, CapRecCartridgeSensor,
and CapSlpCartridgeSensor = “0”.

See Also CapJrnCartridgeSensor Property, CapRecCartridgeSensor Property,
CapSlpCartridgeSensor Property, JrnCartridgeState Property,
RecCartridgeState Property, SlpCartridgeState Property.

CharacterSet Property Updated in Release 1.5

Syntax CharacterSet: int32 { read-write, access after open-claim-enable }

Remarks Holds the character set for printing characters. It has one of the following values:

Value Meaning

Range 101 - 199 Device-specific character sets that do not match a code
page or the ASCII or ANSI character sets.

Range 400 - 990 Code page; matches one of the standard values.

PTR_CS_UNICODE The character set supports UNICODE. The value of this
constant is 997.

PTR_CS_ASCII The ASCII character set, supporting the ASCII
characters 0x20 through 0x7F. The value of this
constant is 998.

PTR_CS_ANSI The ANSI character set. The value of this constant is
999.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CharacterSetList Property.

344
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
CharacterSetList Property

Syntax CharacterSetList: string { read-only, access after open }

Remarks Holds the character set numbers. It consists of ASCII numeric set numbers
separated by commas.

For example, if the string is “101,850,999”, then the device supports a device-
specific character set, code page 850, and the ANSI character set.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CharacterSet Property.

CoverOpen Property

Syntax CoverOpen: boolean { read-only, access after open-claim-enable }

Remarks If true, then the printer’s cover is open.

If CapCoverSensor is false, then the printer does not have a cover open sensor,
and this property always returns false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

ErrorLevel Property

Syntax ErrorLevel: int32 { read-only, access after open }

Remarks Holds the severity of the error condition. It has one of the following values:

Value Meaning

PTR_EL_NONE No error condition is present.

PTR_EL_RECOVERABLE
A recoverable error has occurred.
(Example: Out of paper.)

PTR_EL_FATAL A non-recoverable error has occurred.
(Example: Internal printer failure.)

This property is set just before delivering an ErrorEvent. When the error is
cleared, then the property is changed to PTR_EL_NONE.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

345 Properties (UML attributes)
ErrorStation Property

Syntax ErrorStation: int32 { read-only, access after open }

Remarks Holds the station or stations that were printing when an error was detected.

This property will be set to one of the following values:
PTR_S_JOURNAL PTR_S_RECEIPT
PTR_S_SLIP PTR_S_JOURNAL_RECEIPT
PTR_S_JOURNAL_SLIP PTR_S_RECEIPT_SLIP
PTR_TWO_RECEIPT_JOURNAL PTR_TWO_SLIP_JOURNAL
PTR_TWO_SLIP_RECEIPT

This property is only valid if the ErrorLevel is not equal to PTR_EL_NONE. It is
set just before delivering an ErrorEvent.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

ErrorString Property

Syntax ErrorString: string { read-only, access after open }

Remarks Holds a vendor-supplied description of the current error.

This property is set just before delivering an ErrorEvent. If no description is
available, the property is set to an empty string. When the error is cleared, then the
property is changed to an empty string.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

FlagWhenIdle Property

Syntax FlagWhenIdle: boolean { read-write, access after open }

Remarks If true, a StatusUpdateEvent will be enqueued when the device is in the idle state.

This property is automatically reset to false when the status event is delivered.

The main use of idle status event that is controlled by this property is to give the
application control when all outstanding asynchronous outputs have been
processed. The event will be enqueued if the outputs were completed successfully
or if they were cleared by the clearOutput method or by an ErrorEvent handler.

If the State is already set to S_IDLE when this property is set to true, then a
StatusUpdateEvent is enqueued immediately. The application can therefore
depend upon the event, with no race condition between the starting of its last
asynchronous output and the setting of this flag.

This property is initialized to false by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

346
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
FontTypefaceList Property

Syntax FontTypefaceList: string { read-only, access after open }

Remarks Holds the fonts and/or typefaces that are supported by the printer. The string
consists of font or typeface names separated by commas. The application selects a
font or typeface for a printer station by using the font typeface selection escape
sequence (ESC |#fT). The “#” character is replaced by the number of the font or
typeface within the list: 1, 2, and so on.

In Japan, this property will frequently include the fonts “Mincho” and “Gothic.”
Other fonts or typefaces may be commonly supported in other countries.

An empty string indicates that only the default typeface is supported.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also “Data Characters and Escape Sequences” on page 316.

JrnCartridgeState Property Added in Release 1.5

Syntax JrnCartridgeState: int32 { read-only, access after open-claim-enable }

Remarks This property contains the status of the currently selected Journal cartridge (ink,
ribbon or toner).

It contains one of the following values:

Value Meaning

PTR_CART_UNKNOWN Cannot determine the cartridge state, for one of
the following reasons:
CapJrnCartridgeSensor = “0”.
Device does not support cartridge state
reporting.
CartridgeNotify = PTR_CN_DISABLED.
Cartridge state notifications are disabled.
DeviceEnabled = FALSE.
Cartridge state monitoring does not occur until
the device is enabled.

PTR_CART_REMOVED The cartridge selected by JrnCurrentCartridge
has been removed.

PTR_CART_EMPTY The cartridge selected by JrnCurrentCartridge
is empty.

PTR_CART_CLEANING The head selected by JrnCurrentCartridge is
being cleaned.

347 Properties (UML attributes)
PTR_CART_NEAREND The cartridge selected by JrnCurrentCartridge
is near end.

PTR_CART_OK The cartridge selected by JrnCurrentCartridge
is in normal condition.

Note that the above mentioned values are arranged according to their priority level.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also JrnCurrentCartridge Property, CapJrnCartridgeSensor Property,
CartridgeNotify Property.

JrnCurrentCartridge Property Added in Release 1.5

Syntax JrnCurrentCartridge: int32 { read-write, access after open-claim-enable }

Remarks This property specifies the currently selected Journal cartridge.

This property is initialized when the device is first enabled following the open
method call.

This value is guaranteed to be one of the color cartridges specified by the
CapJrnColor property. (PTR_COLOR_FULL can not be set.)

Setting JrnCurrentCartridge may also update JrnCartridgeState.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid property value was specified.

See Also JrnCartridgeState Property.

JrnEmpty Property

Syntax JrnEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, the journal is out of paper. If false, journal paper is present.

If CapJrnEmptySensor is false, then the value of this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also JrnNearEnd Property.

348
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
JrnLetterQuality Property

Syntax JrnLetterQuality: boolean { read-write, access after open-claim-enable }

Remarks If true, prints in high quality mode. If false, prints in high speed mode.

This property advises the Service that either high quality or high speed printing is
desired. For example, printers with bi-directional print capability may be placed in
unidirectional mode for high quality, so that column alignment is more precise.

Setting this property may also update JrnLineWidth, JrnLineHeight, and
JrnLineSpacing if MapMode is PTR_MM_DOTS. (See the footnote at
MapMode.)

This property is initialized to false when the device is first enabled following the
open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

JrnLineChars Property

Syntax JrnLineChars: int32 { read-write, access after open-claim-enable }

Remarks Holds the number of characters that may be printed on a journal line.

If changed to a line character width that is less than or equal to the maximum value
allowed for the printer, then the width is set to the specified value. If the exact
width cannot be supported, then subsequent lines will be printed with a character
size that most closely supports the specified characters per line. (For example, if
set to 36 and the printer can print either 30 or 40 characters per line, then the
Service should select the 40 characters per line size and print only up to 36
characters per line.)

If the character width is greater than the maximum value allowed for the printer,
then an exception is thrown. (For example, if set to 42 and the printer can print
either 30 or 40 characters per line, then the Service cannot support the request.)

Setting this property may also update JrnLineWidth, JrnLineHeight, and
JrnLineSpacing, since the character pitch or font may be changed.

This property is initialized to the printer’s default line character width when the
device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also JrnLineCharsList Property.

349 Properties (UML attributes)
JrnLineCharsList Property

Syntax JrnLineCharsList: string { read-only, access after open }

Remarks Holds the line character widths supported by the journal station. The string
consists of ASCII numeric set numbers separated by commas.

For example, if the string is “32,36,40”, then the station supports line widths of 32,
36, and 40 characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also JrnLineChars Property.

JrnLineHeight Property

Syntax JrnLineHeight: int32 { read-write, access after open-claim-enable }

Remarks Holds the journal print line height. Expressed in the unit of measure given by
MapMode.

If changed to a height that can be supported with the current character width, then
the line height is set to this value. If the exact height cannot be supported, then the
height is set to the closest supported value.

When JrnLineChars is changed, this property is updated to the default line height
for the selected width.

This property is initialized to the printer’s default line height when the device is
first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

350
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
JrnLineSpacing Property

Syntax JrnLineSpacing: int32 { read-write, access after open-claim-enable }

Remarks Holds the spacing of each single-high print line, including both the printed line
height plus the whitespace between each pair of lines. Depending upon the printer
and the current line spacing, a multi-high print line might exceed this value. Line
spacing is expressed in the unit of measure given by MapMode.

If changed to a spacing that can be supported by the printer, then the line spacing
is set to this value. If the spacing cannot be supported, then the spacing is set to the
closest supported value.

When JrnLineChars or JrnLineHeight is changed, this property is updated to
the default line spacing for the selected width or height.

This property is initialized to the printer’s default line spacing when the device is
first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

JrnLineWidth Property

Syntax JrnLineWidth: int32 { read-only, access after open-claim-enable }

Remarks Holds the width of a line of JrnLineChars characters. Expressed in the unit of
measure given by MapMode.

Setting JrnLineChars may also update this property.

This property is initialized to the printer’s default line width when the device is
first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

JrnNearEnd Property

Syntax JrnNearEnd: boolean { read-only, access after open-claim-enable }

Remarks If true, the journal paper is low. If false, journal paper is not low.

If CapJrnNearEndSensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also JrnEmpty Property.

351 Properties (UML attributes)
MapMode Property

Syntax MapMode: int32 { read-write, access after open }

Remarks Holds the mapping mode of the printer. The mapping mode defines the unit of
measure used for other properties, such as line heights and line spacings. It has one
of the following values:

Value Meaning

PTR_MM_DOTS The printer’s dot width. This width may be different for
each printer station.1

PTR_MM_TWIPS 1/1440 of an inch.

PTR_MM_ENGLISH 0.001 inch.

PTR_MM_METRIC 0.01 millimeter.

Setting this property may also change JrnLineHeight, JrnLineSpacing,
JrnLineWidth, RecLineHeight, RecLineSpacing, RecLineWidth,
SlpLineHeight, SlpLineSpacing, and SlpLineWidth.

This property is initialized to PTR_MM_DOTS when the device is first enabled
following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

1. From the POS Printer perspective, the exact definition of a “dot” is not significant. It is a
Printer/Service unit used to express various metrics. For example, some printers define a
“half-dot” that is used in high-density graphics printing, and perhaps in text printing. A
POS Printer Service may handle this case in one of these ways:

(a)Consistently define a “dot” as the printer’s smallest physical size, that is, a half-dot.

(b)If the Service changes bitmap graphics printing density based on the
XxxLetterQuality setting, then alter the size of a dot to match the bitmap density
(that is, a physical printer dot when false and a half-dot when true). Note that this
choice should not be used if the printer’s text metrics are based on half-dot sizes,
since accurate values for the metrics may not then be possible.

352
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
RecBarCodeRotationList Property

Syntax RecBarCodeRotationList: string { read-only, access after open }

Remarks Holds the directions in which a receipt barcode may be rotated. The string consists
of rotation strings separated by commas. An empty string indicates that bar code
printing is not supported. The legal rotation strings are:

Value Meaning

0 Bar code may be printed in the normal orientation.

R90 Bar code may be rotated 90° to the right.

L90 Bar code may be rotated 90° to the left.

180 Bar code may be rotated 180° - upside down.

For example, if the string is “0,180”, then the printer can print normal bar codes
and upside down bar codes.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also RotateSpecial Property, printBarCode Method.

RecCartridgeState Property Added in Release 1.5

Syntax RecCartridgeState: int32 { read-only, access after open-claim-enable }

Remarks This property contains the status of the currently selected Receipt cartridge (ink,
ribbon or toner).

It contains one of the following values:

Value Meaning

PTR_CART_UNKNOWN Cannot determine the cartridge state, for one of
the following reasons:
CapRecCartridgeSensor = “0”.
Device does not support cartridge state
reporting.
CartridgeNotify = PTR_CN_DISABLED.
Cartridge state notifications are disabled.
DeviceEnabled = FALSE.
Cartridge state monitoring does not occur until
the device is enabled.

PTR_CART_REMOVED The cartridge selected by
RecCurrentCartridge has been removed.

PTR_CART_EMPTY The cartridge selected by
RecCurrentCartridge is empty.

353 Properties (UML attributes)
PTR_CART_CLEANING The head selected by RecCurrentCartridge is
being cleaned.

PTR_CART_NEAREND The cartridge selected by
RecCurrentCartridge is near end.

PTR_CART_OK The cartridge selected by
RecCurrentCartridge is in normal condition.

Note that the above mentioned values are arranged according to their priority level.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also RecCurrentCartridge Property, CapRecCartridgeSensor Property,
CartridgeNotify Property.

RecCurrentCartridge Property Added in Release 1.5

Syntax RecCurrentCartridge: int32 { read-write, access after open-claim-enable }

Remarks This property specifies the currently selected Receipt cartridge.

This property is initialized when the device is first enabled following the open
method call.

This value is guaranteed to be one of the color cartridges specified by the
CapRecColor property. (PTR_COLOR_FULL can not be set.)

Setting RecCurrentCartridge may also update RecCartridgeState.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid property value was specified.

See Also RecCartridgeState Property.

RecEmpty Property

Syntax RecEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, the receipt is out of paper. If false, receipt paper is present.

If CapRecEmptySensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also RecNearEnd Property.

354
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
RecLetterQuality Property

Syntax RecLetterQuality: boolean { read-write, access after open-claim-enable }

Remarks If true, prints in high quality mode. If false, prints in high speed mode.

This property advises the Service that either high quality or high speed printing is
desired. For example:

• Printers with bi-directional print capability may be placed in unidirectional
mode for high quality, so that column alignment is more precise.

• Bitmaps may be printed in a high-density graphics mode for high-quality, and
in a low-density mode for high speed.

Setting this property may also update RecLineWidth, RecLineHeight, and
RecLineSpacing if MapMode is PTR_MM_DOTS. (See the footnote at
MapMode.)

This property is initialized to false when the device is first enabled following the
open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

RecLineChars Property

Syntax RecLineChars: int32 { read-write, access after open-claim-enable }

Remarks Holds the number of characters that may be printed on a receipt line.

If changed to a line character width that is less than or equal to the maximum value
allowed for the printer, then the width is set to the specified value. If the exact
width cannot be supported, then subsequent lines will be printed with a character
size that most closely supports the specified characters per line. (For example, if
set to 36 and the printer can print either 30 or 40 characters per line, then the
Service should select the 40 characters per line size and print only up to 36
characters per line.)

If the character width is greater than the maximum value allowed for the printer,
then an exception is thrown. (For example, if set to 42 and the printer can print
either 30 or 40 characters per line, then the Service cannot support the request.)

Setting this property may also update RecLineWidth, RecLineHeight, and
RecLineSpacing, since the character pitch or font may be changed.

This property is initialized to the printer’s default line character width when the
device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also RecLineCharsList Property.

355 Properties (UML attributes)
RecLineCharsList Property

Syntax RecLineCharsList: string { read-only, access after open }

Remarks Holds the line character widths supported by the receipt station. The string consists
of ASCII numeric set numbers, separated by commas.

For example, if the string is “32,36,40”, then the station supports line widths of 32,
36, and 40 characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also RecLineChars Property.

RecLineHeight Property

Syntax RecLineHeight: int32 { read-write, access after open-claim-enable }

Remarks Holds the receipt print line height, expressed in the unit of measure given by
MapMode.

If changed to a height that can be supported with the current character width, then
the line height is set to this value. If the exact height cannot be supported, then the
height is set to the closest supported value.

When RecLineChars is changed, this property is updated to the default line height
for the selected width.

This property is initialized to the printer’s default line height when the device is
first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also RecLineChars Property.

356
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
RecLineSpacing Property

Syntax RecLineSpacing: int32 { read-write, access after open-claim-enable }

Remarks Holds the spacing of each single-high print line, including both the printed line
height plus the whitespace between each pair of lines. Depending upon the printer
and the current line spacing, a multi-high print line might exceed this value. Line
spacing is expressed in the unit of measure given by MapMode.

If changed to a spacing that can be supported by the printer, then the line spacing
is set to this value. If the spacing cannot be supported, then the spacing is set to the
closest supported value.

When RecLineChars or RecLineHeight are changed, this property is updated to
the default line spacing for the selected width or height.

This property is initialized to the printer’s default line spacing when the device is
first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

RecLinesToPaperCut Property

Syntax RecLinesToPaperCut: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of lines that must be advanced before the receipt paper is cut.

If CapRecPapercut is true, then this is the line count before reaching the paper
cut mechanism. Otherwise, this is the line count before the manual tear-off bar.

Changing the properties RecLineChars, RecLineHeight, and RecLineSpacing
may cause this property to change.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

RecLineWidth Property

Syntax RecLineWidth: int32 { read-only, access after open-claim-enable }

Remarks Holds the width of a line of RecLineChars characters, expressed in the unit of
measure given by MapMode.

Setting RecLineChars may also update this property.

This property is initialized to the printer’s default line width when the device is
first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

357 Properties (UML attributes)
RecNearEnd Property

Syntax RecNearEnd: boolean { read-only, access after open-claim-enable }

Remarks If true, the receipt paper is low. If false, receipt paper is not low.

If CapRecNearEndSensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also RecEmpty Property.

RecSidewaysMaxChars Property

Syntax RecSidewaysMaxChars: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of characters that may be printed on each line in
sideways mode.

If CapRecLeft90 and CapRecRight90 are both false, then this property is zero.

Changing the properties RecLineHeight, RecLineSpacing, and RecLineChars
may cause this property to change.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also RecSidewaysMaxLines Property.

RecSidewaysMaxLines Property

Syntax RecSidewaysMaxLines: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of lines that may be printed in sideways mode.

If CapRecLeft90 and CapRecRight90 are both false, then this property is zero.

Changing the properties RecLineHeight, RecLineSpacing, and RecLineChars
may cause this property to change.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also RecSidewaysMaxChars Property.

358
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
RotateSpecial Property

Syntax RotateSpecial: int32 { read-write, access after open }

Remarks Holds the rotation orientation for bar codes. It has one of the following values:

Value Meaning

PTR_RP_NORMAL Print subsequent bar codes in normal orientation.

PTR_RP_RIGHT90 Rotate printing 90° to the right (clockwise)

PTR_RP_LEFT90 Rotate printing 90° to the left (counter-clockwise)

PTR_RP_ROTATE180 Rotate printing 180°,that is, print upside-down

This property is initialized to PTR_RP_NORMAL by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also printBarCode Method.

SlpBarCodeRotationList Property

Syntax SlpBarCodeRotationList: string { read-only, access after open }

Remarks Holds the directions in which a slip barcode may be rotated. The string consists of
rotation strings separated by commas. An empty string indicates that bar code
printing is not supported. The legal rotation strings are:

Value Meaning

0 Bar code may be printed in the normal orientation.

R90 Bar code may be rotated 90° to the right.

L90 Bar code may be rotated 90° to the left.

180 Bar code may be rotated 180° - upside down.

For example, if the string is “0,180”, then the printer can print normal bar codes
and upside down bar codes.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also RotateSpecial Property, printBarCode Method.

359 Properties (UML attributes)
SlpCartridgeState Property Added in Release 1.5

Syntax SlpCartridgeState: int32 { read-only, access after open-claim-enable }

Remarks This property contains the status of the currently selected Slip cartridge (ink,
ribbon or toner).

It contains one of the following values:

Value Meaning

PTR_CART_UNKNOWN Cannot determine the cartridge state, for one of
the following reasons:
CapSlpCartridgeSensor = “0”.
Device does not support cartridge state
reporting.
CartridgeNotify = PTR_CN_DISABLED.
Cartridge state notifications are disabled.
DeviceEnabled = FALSE.
Cartridge state monitoring does not occur until
the device is enabled.

PTR_CART_REMOVED The cartridge selected by
SlpCurrentCartridge has been removed.

PTR_CART_EMPTY The cartridge selected by
SlpCurrentCartridge is empty.

PTR_CART_CLEANING The head selected by SlpCurrentCartridge is
being cleaned.

PTR_CART_NEAREND The cartridge selected by
SlpCurrentCartridge is near end.

PTR_CART_OK The cartridge selected by
SlpCurrentCartridge is in normal condition.

Note that the above mentioned values are arranged according to their priority level.

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also SlpCurrentCartridge Property, CapSlpCartridgeSensor Property,
CartridgeNotify Property.

360
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
SlpCurrentCartridge Property Added in Release 1.5

Syntax SlpCurrentCartridge: int32 { read-write, access after open-claim-enable }

Remarks This property specifies the currently selected slip cartridge.

This property is initialized when the device is first enabled following the open
method call.

This value is guaranteed to be one of the color cartridges specified by the
CapSlpColor property. (PTR_COLOR_FULL can not be set.)

Setting SlpCurrentCartridge may also update SlpCartridgeState.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid property value was specified.

See Also RecCartridgeState Property.

SlpEmpty Property

Syntax SlpEmpty: boolean { read-only, access after open-claim-enable }

Remarks If true, a slip form is not present. If false, a slip form is present.

If CapSlpEmptySensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Note
The “slip empty” sensor should be used primarily to determine whether a form has been
inserted before printing, and can be monitored to determine whether a form is still in place.
This sensor is usually placed one or more print lines above the slip print head.

However, the “slip near end” sensor (when present) should be used to determine when
nearing the end of the slip. This sensor is usually placed one or more print lines below the
slip print head.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also SlpNearEnd Property.

361 Properties (UML attributes)
SlpLetterQuality Property

Syntax SlpLetterQuality: boolean { read-write, access after open-claim-enable }

Remarks If true, prints in high quality mode. If false, prints in high speed mode.

This property advises that either high quality or high speed printing is desired.

For example:

• Printers with bi-directional print capability may be placed in unidirectional
mode for high quality, so that column alignment is more precise.

• Bitmaps may be printed in a high-density graphics mode for high-quality, and
in a low-density mode for high speed.

Setting this property may also update SlpLineWidth, SlpLineHeight, and
SlpLineSpacing if MapMode is PTR_MM_DOTS. (See the footnote at
MapMode.)

This property is initialized to false when the device is first enabled following the
open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

SlpLineChars Property

Syntax SlpLineChars: int32 { read-write, access after open-claim-enable }

Remarks Holds the number of characters that may be printed on a slip line.

If changed to a line character width that is less than or equal to the maximum value
allowed for the printer, then the width is set to the specified value. If the exact
width cannot be supported, then subsequent lines will be printed with a character
size that most closely supports the specified characters per line. (The Service
should print the requested characters in the column positions closest to the side of
the slip table at which the slip is aligned. (For example, if the operator inserts the
slip with the right edge against the table side and if SlpLineChars is set to 36 and
the printer prints 60 characters per line, then the Service should add 24 spaces at
the left margin and print the characters in columns 25 through 60.)

If the character width is greater than the maximum value allowed for the printer,
then an exception is thrown. (For example, if set to 65 and the printer can only print
60 characters per line, then the Service cannot support the request.)

Setting this property may also update SlpLineWidth, SlpLineHeight, and
SlpLineSpacing, since the character pitch or font may be changed.

This property is initialized to the printer’s default line character width when the
device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also SlpLineCharsList Property.

362
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
SlpLineCharsList Property

Syntax SlpLineCharsList: string { read-only, access after open }

Remarks Holds the line character widths supported by the slip station. The string consists of
ASCII numeric set numbers, separated by commas.

For example, if the string is “32,36,40”, then the station supports line widths of 32,
36, and 40 characters.

This property is initialized by the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also SlpLineChars Property.

SlpLineHeight Property

Syntax SlpLineHeight: int32 { read-write, access after open-claim-enable }

Remarks Holds the slip print-line height, expressed in the unit of measure given by
MapMode.

If changed to a height that can be supported with the current character width, then
the line height is set to this value. If the exact height cannot be supported, then the
height is set to the closest supported value.

When SlpLineChars is changed, this property is updated to the default line height
for the selected width.

This property is initialized to the printer’s default line height when the device is
first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also SlpLineChars Property.

SlpLinesNearEndToEnd Property.

Syntax SlpLinesNearEndToEnd: int32 { read-only, access after open-claim-enable }

Remarks Holds the number of lines that may be printed after the “slip near end” sensor is
true but before the printer reaches the end of the slip.

This property may be used to optimize the use of the slip, so that the maximum
number of lines may be printed.

Changing the SlpLineHeight, SlpLineSpacing, or SlpLineChars properties may
cause this property to change.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also SlpEmpty Property, SlpNearEnd Property.

363 Properties (UML attributes)
SlpLineSpacing Property

Syntax SlpLineSpacing: int32 { read-write, access after open-claim-enable }

Remarks Holds the spacing of each single-high print line, including both the printed line
height plus the whitespace between each pair of lines. Depending upon the printer
and the current line spacing, a multi-high print line might exceed this value. Line
spacing is expressed in the unit of measure given by MapMode.

If changed to a spacing that can be supported by the printer, then the line spacing
is set to this value. If the spacing cannot be supported, then the spacing is set to the
closest supported value.

When SlpLineChars or SlpLineHeight are changed, this property is updated to
the default line spacing for the selected width or height.

The value of this property is initialized to the printer’s default line spacing when
the device is first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

SlpLineWidth Property

Syntax SlpLineWidth: int32 { read-only, access after open-claim-enable }

Remarks Holds the width of a line of SlpLineChars characters, expressed in the unit of
measure given by MapMode.

Setting SlpLineChars may also update this property.

This property is initialized to the printer’s default line width when the device is
first enabled following the open method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

SlpMaxLines Property

Syntax SlpMaxLines: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of lines that can be printed on a form.

When CapSlpFullslip is true, then this property will be zero, indicating an
unlimited maximum slip length. When CapSlpFullslip is false, then this value
will be non-zero.

Changing the SlpLineHeight, SlpLineSpacing, or SlpLineChars properties may
cause this property to change.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

364
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
SlpNearEnd Property

Syntax SlpNearEnd: boolean { read-only, access after open-claim-enable }

Remarks If true, the slip form is near its end. If false, the slip form is not near its end.

The “near end” sensor is also sometimes called the “trailing edge” sensor, referring
to the bottom edge of the slip.

If CapSlpNearEndSensor is false, then this property is always false.

This property is initialized and kept current while the device is enabled.

Note
The “slip empty” sensor should be used primarily to determine whether a form has been
inserted before printing, and can be monitored to determine whether a form is still in place.
This sensor is usually placed one or more print lines above the slip print head.

However, the “slip near end” sensor (when present) should be used to determine when
nearing the end of the slip. This sensor is usually placed one or more print lines below the
slip print head.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also SlpEmpty Property, SlpLinesNearEndToEnd Property.

365 Properties (UML attributes)
SlpPrintSide Property Added in Release 1.5

Syntax SlpPrintSide: int32 { read-only, access after open-claim-enable }

Remarks This property holds the current side of the slip document on which printing will
occur.

If the Slip is not selected, the value of the property is PTR_PS_UNKNOWN.

If the printer has both side print capability, CapSlpBothSidesPrint is true, then
when a slip is inserted, the value stored here will be either PTR_PS_SIDE1 or
PTR_PS_SIDE2. This property value may be changed when the changePrintSide
method is executed.

If a printer does not have both side print capability, CapSlpBothSidesPrint is
false, then when a slip is inserted, the property is always set to PTR_PS_SIDE1.

If a printer has both side print capability, the value of SlpPrintSide property is
PTR_PS_SIDE1 after beginInsertion/endInsertion methods are executed.
However, after beginInsertion/endInsertion methods for MICR processing are
executed, the value of SlpPrintSide property is not limited to PTR_PS_SIDE1.
In this case, SlpPrintSide property indicates the side of the validation printing.

It contains one of the following values:

Value Meaning

PTR_PS_UNKNOWN Slip is not inserted.

PTR_PS_SIDE1 Default Print side. (After slip paper
insertion, printer can print this side
immediately.)

PTR_PS_SIDE2 The other side of the document to print
on. (Reverse side of default.)

This property is initialized and kept current while the device is enabled.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CapSlpBothSidesPrint Property, changePrintSide Method.

366
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
SlpSidewaysMaxChars Property

Syntax SlpSidewaysMaxChars: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of characters that may be printed on each line in
sideways mode.

If CapSlpLeft90 and CapSlpRight90 are both false, then this property is zero.

Changing the properties SlpLineHeight, SlpLineSpacing, and SlpLineChars
may cause this property to change.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also SlpSidewaysMaxLines Property.

SlpSidewaysMaxLines Property

Syntax SlpSidewaysMaxLines: int32 { read-only, access after open-claim-enable }

Remarks Holds the maximum number of lines that may be printed in sideways mode.

If CapSlpLeft90 and CapSlpRight90 are both false, then this property is zero.

Changing the properties SlpLineHeight, SlpLineSpacing, and SlpLineChars
may cause this property to change.

This property is initialized when the device is first enabled following the open
method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also SlpSidewaysMaxChars Property.

367 Methods (UML operations)
Methods (UML operations)
beginInsertion Method

Syntax beginInsertion (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

timeout The number of milliseconds before failing the method

If zero, the method initiates the begin insertion mode, then returns the appropriate
status immediately. If FOREVER (-1), the method initiates the begin insertion
mode, then waits as long as needed until either the form is inserted or an error
occurs.

Remarks Initiates slip processing.

When called, the slip station is made ready to receive a form by opening the form’s
handling “jaws” or activating a form insertion mode. This method is paired with
the endInsertion method for controlling form insertion.

If the printer device cannot be placed into insertion mode, an exception is raised.
Otherwise, form insertion is monitored until either:

• The form is successfully inserted.

• The form is not inserted before timeout milliseconds have elapsed, or an error
is reported by the printer device. In this case, an exception is raised with an
ErrorCode of E_TIMEOUT or another value. The printer device remains in
form insertion mode. This allows an application to perform some user
interaction and reissue the beginInsertion method without altering the form
handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform request while output is in progress.

E_ILLEGAL The slip station does not exist (see the CapSlpPresent
property) or an invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the form being
properly inserted.

See Also endInsertion Method, beginRemoval Method, endRemoval Method.

368
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
beginRemoval Method

Syntax beginRemoval (timeout: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

timeout The number of milliseconds before failing the method

If zero, the method initiates the begin removal mode, then returns the appropriate
status immediately. If FOREVER (-1), the method initiates the begin removal
mode, then waits as long as needed until either the form is removed or an error
occurs.

Remarks Initiates form removal processing.

When called, the printer is made ready to remove a form by opening the form
handling “jaws” or activating a form ejection mode. This method is paired with the
endRemoval method for controlling form removal.

If the printer device cannot be placed into removal or ejection mode, an exception
is raised. Otherwise, form removal is monitored until either:

• The form is successfully removed.

• The form is not removed before timeout milliseconds have elapsed, or an error
is reported by the printer device. In this case, an exception is raised with an
ErrorCode of E_TIMEOUT or another value. The printer device remains in
form removal mode. This allows an application to perform some user
interaction and reissue the beginRemoval method without altering the form
handling mechanism.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform request while output is in progress.

E_ILLEGAL The slip station does not exist (see the CapSlpPresent
property) or an invalid timeout parameter was specified.

E_TIMEOUT The specified time has elapsed without the form being
properly removed.

See Also beginInsertion Method, endInsertion Method, endRemoval Method.

369 Methods (UML operations)
changePrintSide Method Added in Release 1.5

Syntax changePrintSide (side: int32):
void { raises-exception, use after open-claim-enable }

The side parameter indicates the side on which to print. Valid values are:

Value Description

PTR_PS_SIDE1 Indicates that the default print side of the document is
selected. (Default print side is the side where printing
will occur immediately after a document has been
inserted. Therefore, PTR_PS_SIDE1 is selected after
beginInsertion/endInsertion is executed.)

PTR_PS_SIDE2 Indicates that the opposite side of the document from the
one that the printer defaults to is to be selected. (Reverse
side of PTR_PS_SIDE1.)

PTR_PS_OPPOSITE Indicates that the current printing side is switched and
printing will now occur on the opposite side of the slip.
(e.g., if SlpPrintSide was PTR_PS_SIDE1, it is to be
changed to PTR_PS_SIDE2.)

Remarks Selects the side of the document where printing is to occur.

This allows a print operation to occur on both sides of a document. This may be
accomplished by mechanical paper handling of the document or by using multiple
print heads that are positioned to print on each side of the document.

If a document is not inserted, an error is returned.

If side is not SlpPrintSide or side is PTR_PS_OPPOSITE, the side of the
document is changed and the document is fed to TOF. If side is SlpPrintSide,
nothing occurs and method returns.

Executing the method may cause the SlpPrintSide property to change.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot be performed while output is in progress.
(Can only apply if AsyncMode is false.)

E_ILLEGAL One of the following errors occurred:
* The slip station does not exist (see the CapSlpPresent

property)
* the printer does not support both sides printing (see the

CapSlpBothSidesPrint property)
* an invalid side parameter was specified

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:

370
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
The printer cover is open.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)

See Also CapSlpBothSidesPrint Property, CapSlpPresent Property, SlpPrintSide
Property, cutPaper Method.

cutPaper Method

Syntax cutPaper (percentage: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

percentage The percentage of paper to cut.

The constant identifier PTR_CP_FULLCUT or the value 100 causes a full paper
cut. Other values request a partial cut percentage.

Remarks Cuts the receipt paper.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Many printers with paper cut capability can perform both full and partial cuts.
Some offer gradations of partial cuts, such as a perforated cut and an almost-full
cut. Although the exact type of cut will vary by printer capabilities, the following
general guidelines apply:

Value Meaning

100 Full cut.

90 Leave only a small portion of paper for very easy final
separation.

70 Perforate the paper for final separation that is somewhat
more difficult and unlikely to occur by accidental
handling.

50 Partial perforation of the paper.

The Service will select an appropriate type of cut based on the capabilities of its
device and these general guidelines.

An escape sequence embedded in a printNormal or printImmediate method call
may also be used to cause a paper cut.

371 Methods (UML operations)
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress. (Can only
apply if AsyncMode is false.)

E_ILLEGAL An invalid percentage was specified, the receipt station
does not exist (see the CapRecPresent property), or the
receipt printer does not have paper cutting ability (see
the CapRecPapercut property).

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station is out of paper.
(Can only apply if AsyncMode is false.)

See Also “Data Characters and Escape Sequences” on page 316.

372
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
endInsertion Method

Syntax endInsertion ():
void { raises-exception, use after open-claim-enable }

Remarks Ends form insertion processing.

When called, the printer is taken out of form insertion mode. If the slip device has
forms “jaws,” they are closed by this method. If no form is present, an exception
is raised with its ErrorCodeExtended property set to EPTR_SLP_EMPTY.

This method is paired with the beginInsertion method for controlling form
insertion. The application may choose to call this method immediately after a
successful beginInsertion if it wants to use the printer sensors to determine when
a form is positioned within the slip printer. Alternatively, the application may
prompt the user and wait for a key press before calling this method.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform request while output is in progress.

E_ILLEGAL The printer is not in slip insertion mode.

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The device was taken out of insertion mode while the
printer cover was open.

ErrorCodeExtended = EPTR_SLP_EMPTY:
The device was taken out of insertion mode without a
form being inserted.

See Also beginInsertion Method, beginRemoval Method, endRemoval Method.

373 Methods (UML operations)
endRemoval Method

Syntax endRemoval ():
void { raises-exception, use after open-claim-enable }

Remarks Ends form removal processing.

When called, the printer is taken out of form removal or ejection mode. If a form
is present, an exception is raised with its ErrorCodeExtended property set to
EPTR_SLP_FORM.

This method is paired with the beginRemoval method for controlling form
removal. The application may choose to call this method immediately after a
successful beginRemoval if it wants to use the printer sensors to determine when
the form has been removed. Alternatively, the application may prompt the user and
wait for a key press before calling this method.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform request while output is in progress.

E_ILLEGAL The printer is not in slip removal mode.

E_EXTENDED ErrorCodeExtended = EPTR_SLP_FORM:
The device was taken out of removal mode while a form
was still present.

See Also beginInsertion Method, endInsertion Method, beginRemoval Method.

374
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
markFeed Method Added in Release 1.5

Syntax markFeed (type: int32):
void { raises-exception, use after open-claim-enable }

The type parameter indicates the type of mark sensed paper handling. Valid values
are:

Value Description

PTR_MF_TO_TAKEUP Feed the Mark Sensed paper to the paper take-up
position.

PTR_MF_TO_CUTTER Feed the Mark Sensed paper to the auto cutter cutting
position.

PTR_MF_TO_CURRENT_TOF
Feed the Mark Sensed paper to the present paper’s top of
form. (Reverse feed.)

PTR_MF_TO_NEXT_TOF
Feed the Mark Sensed paper to the next paper’s top of
form.

Remarks This method is used to utilize the printer’s mark sensor for receipt paper.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

If type is PTR_MF_TO_TAKEUP, the printer will feed the mark sensed paper so
that the present form is moved so that it can be manually removed by the operator.

If type is PTR_MF_TO_CUTTER, the printer will feed the mark sensed paper so
that the present form is in position to be cut off by the auto cutter. This will usually
be followed by a call to the cutPaper method.

If type is PTR_MF_TO_CURRENT_TOF, the printer will feed the mark sensed
paper (backwards if necessary) so that the print head points to the top of the present
form.

If type is PTR_MF_TO_NEXT_TOF, the printer will feed the mark sensed paper
so that print head points to the top of the next form.

The following diagram provides a pictorial representation of the functions
performed by this method.

375 Methods (UML operations)
1

2

Print Head

Auto Cutter

Inside of the Printer

Outside of the Printer

PTR_MF_TO_CUTTER

1

2

1

2

Print Head

Auto Cutter

Inside of the Printer

Outside of the Printer

PTR_MF_TO_
CURRENT_TOF

1

2

PTR_MF_TO_CURRENT_TOFPTR_MF_TO_TAKEUP

Print Head

Auto Cutter

Inside of the Printer

Outside of the Printer

2

3

PTR_MF_TO_NEXT_TOF

376
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot be performed while output is in progress.
(Can only apply if AsyncMode is false.)

E_ILLEGAL The receipt print station does not support the given mark
sensed paper handling function. (Refer to the
CapRecMarkFeed property)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt paper is empty.
(Can only apply if AsyncMode is false.)

See Also CapRecMarkFeed Property.

377 Methods (UML operations)
printBarCode Method

Syntax printBarCode (station: int32, data: string, symbology: int32, height: int32,
width: int32, alignment: int32, textPosition: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

station The printer station to be used. May be either
PTR_S_RECEIPT or PTR_S_SLIP.

data Character string to be bar coded.

symbology Bar code symbol type to use. See values below.

height Bar code height. Expressed in the unit of measure given
by MapMode.

width Bar code width. Expressed in the unit of measure given
by MapMode.

alignment Placement of the bar code. See values below.

textPosition Placement of the readable character string. See values
below.

The alignment parameter has one of the following values:

Value Meaning

PTR_BC_LEFT Align with the left-most print column.

PTR_BC_CENTER Align in the center of the station.

PTR_BC_RIGHT Align with the right-most print column.

Other Values Distance from the left-most print column to the start of
the bar code. Expressed in the unit of measure given by
MapMode.

The textPosition parameter has one of the following values:

Value Meaning

PTR_BC_TEXT_NONE No text is printed. Only print the bar code.

PTR_BC_TEXT_ABOVE Print the text above the bar code.

PTR_BC_TEXT_BELOW Print the text below the bar code.

378
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
The symbology parameter has one of the following values:

Value Meaning

One Dimensional Symbologies

PTR_BCS_UPCA UPC-A

PTR_BCS_UPCA_S UPC-A with supplemental barcode

PTR_BCS_UPCE UPC-E

PTR_BCS_UPCE_S UPC-E with supplemental barcode

PTR_BCS_UPCD1 UPC-D1

PTR_BCS_UPCD2 UPC-D2

PTR_BCS_UPCD3 UPC-D3

PTR_BCS_UPCD4 UPC-D4

PTR_BCS_UPCD5 UPC-D5

PTR_BCS_EAN8 EAN 8 (= JAN 8)

PTR_BCS_JAN8 JAN 8 (= EAN 8)

PTR_BCS_EAN8_S EAN 8 with supplemental barcode

PTR_BCS_EAN13 EAN 13 (= JAN 13)

PTR_BCS_JAN13 JAN 13 (= EAN 13)

PTR_BCS_EAN13_S EAN 13 with supplemental barcode

PTR_BCS_EAN128 EAN-128

PTR_BCS_TF Standard (or discrete) 2 of 5

PTR_BCS_ITF Interleaved 2 of 5

PTR_BCS_Codabar Codabar

PTR_BCS_Code39 Code 39

PTR_BCS_Code93 Code 93

PTR_BCS_Code128 Code 128

PTR_BCS_OCRA OCR “A”

PTR_BCS_OCRB OCR “B”

Two Dimensional Symbologies

PTR_BCS_PDF417 PDF 417

PTR_BCS_MAXICODE MAXICODE

379 Methods (UML operations)
Special Cases

PTR_BCS_OTHER If a Service defines additional symbologies, they will be
greater or equal to this value.

Remarks Prints a bar code on the specified printer station.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

If RotateSpecial indicates that the bar code is to be rotated, then perform the
rotation. The height, width, and textPosition parameters are applied to the bar code
before the rotation. For example, if PTR_BC_TEXT_BELOW is specified and the
bar code is rotated left, then the text will appear on the paper to the right of the bar
code.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following parameter errors occurred:
* station does not exist
* station does not support bar code printing
* height or width are zero or too big
* symbology is not supported
* alignment is invalid or too big
* textPosition is invalid, or
The RotateSpecial rotation is not supported

E_BUSY Cannot perform while output is in progress.
(Can only apply if AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.

380
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

printBitmap Method

Syntax printBitmap (station: int32, fileName: string, width: int32, alignment: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

station The printer station to be used. May be either
PTR_S_RECEIPT or PTR_S_SLIP.

fileName File name or URL of bitmap file. Various file formats
may be supported, such as bmp (uncompressed format),
gif or jpeg files.

width Printed width of the bitmap to be performed. See values
below.

alignment Placement of the bitmap. See values below.

The width parameter has one of the following values:

Value Meaning

PTR_BM_ASIS Print the bitmap with one bitmap pixel per printer dot.

Other Values Bitmap width expressed in the unit of measure given by
MapMode.

381 Methods (UML operations)
The alignment parameter has one of the following values:

Value Meaning

PTR_BM_LEFT Align with the left-most print column.

PTR_BM_CENTER Align in the center of the station.

PTR_BM_RIGHT Align with the right-most print column.

Other Values Distance from the left-most print column to the start of
the bitmap. Expressed in the unit of measure given by
MapMode.

Remarks Prints a bitmap on the specified printer station.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

The width parameter controls transformation of the bitmap. If width is
PTR_BM_ASIS, then no transformation is performed. The bitmap is printed with
one bitmap pixel per printer dot. Advantages of this option are that it:

• Provides the highest performance bitmap printing.

• Works well for bitmaps tuned for a specific printer’s aspect ratio between
horizontal dots and vertical dots.

If width is non-zero, then the bitmap will be transformed by stretching or
compressing the bitmap such that its width is the specified width and the aspect
ratio is unchanged. Advantages of this option are:

• Sizes a bitmap to fit a variety of printers.

• Maintains the bitmap’s aspect ratio.

Disadvantages are:

• Lowers performance than untransformed data.

• Some lines and images that are “smooth” in the original bitmap may show
some “ratcheting.”

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_BUSY Cannot perform while output is in progress. (Can only
apply if AsyncMode is false.)

E_ILLEGAL One of the following parameter errors occurred:
* station does not exist
* station does not support bitmap printing
* width parameter is invalid or too big
* alignment is invalid or too big

382
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
E_NOEXIST fileName was not found.

E_EXTENDED ErrorCodeExtended = EPTR_TOOBIG:
The bitmap is either too wide to print without
transformation, or it is too big to transform.

ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_BADFORMAT:
The specified file is either not a bitmap file, or it is in an
unsupported format.

ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended =
EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

383 Methods (UML operations)
printImmediate Method

Syntax printImmediate (station: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

station The printer station to be used. May be either
PTR_S_JOURNAL, PTR_S_RECEIPT or
PTR_S_SLIP.

data The characters to be printed. May consist of printable
characters, escape sequences, carriage returns (13
decimal), and line feeds (10 decimal).

Remarks Prints data on the printer station immediately.

This method tries to print its data immediately – that is, as the very next printer
operation. It may be called when asynchronous output is outstanding. This method
is primarily intended for use in exception conditions when asynchronous output is
outstanding, such as within an error event handler.

Special character values within data are:

Value Meaning

Line Feed (10) Print any data in the line buffer, and feed to the next print
line. (A Carriage Return is not required in order to cause
the line to be printed.)

Carriage Return (13) If a Carriage Return immediately precedes a Line Feed,
or if the line buffer is empty, then it is ignored.

Otherwise, the line buffer is printed and the printer does
not feed to the next print line. On some printers, print
without feed may be directly supported. On others, a
print may always feed to the next line, in which case the
Service will print the line buffer and perform a reverse
line feed if supported. If the printer does not support
either of these features, then Carriage Return acts like a
Line Feed.

The validateData method may be used to determine
whether a Carriage Return without Line Feed is
possible, and whether a reverse line feed is required to
support it.

384
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The specified station does not exist. (See the CapJrnPresent,
CapRecPresent, and CapSlpPresent properties.)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
ErrorCodeExtended = EPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_REMOVED:
A journal cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_EMPTY:
A journal cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_HEAD_CLEANING:
A journal cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended =EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)

ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also printNormal Method, printTwoNormal Method.

385 Methods (UML operations)
printNormal Method

Syntax printNormal (station: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

station The printer station to be used. May be either
PTR_S_JOURNAL, PTR_S_RECEIPT or
PTR_S_SLIP.

data The characters to be printed. May consist of printable
characters, escape sequences, carriage returns (13
decimal), and line feeds (10 decimal).

Remarks Prints data on the printer station.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Special character values within data are:

Value Meaning

Line Feed (10) Print any data in the line buffer, and feed to the next print
line. (A Carriage Return is not required in order to cause
the line to be printed.)

Carriage Return (13) If a Carriage Return immediately precedes a Line Feed,
or if the line buffer is empty, then it is ignored.

Otherwise, the line buffer is printed and the printer does
not feed to the next print line. On some printers, print
without feed may be directly supported. On others, a
print may always feed to the next line, in which case the
Service will print the line buffer and perform a reverse
line feed if supported. If the printer does not support
either of these features, then Carriage Return acts like a
Line Feed.

The validateData method may be used to determine
whether a Carriage Return without Line Feed is
possible, and whether a reverse line feed is required to
support it.

386
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The specified station does not exist. (See the CapJrnPresent,
CapRecPresent, and CapSlpPresent properties.)

E_BUSY Cannot perform while output is in progress.(Can only apply if
AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
ErrorCodeExtended = EPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_REMOVED:
A journal cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_EMPTY:
A journal cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_HEAD_CLEANING:
A journal cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended =EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also printImmediate Method, printTwoNormal Method.

387 Methods (UML operations)
printTwoNormal Method

Syntax printTwoNormal (stations: int32, data1: string, data2: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

stations Release 1.2
The printer stations to be used may be:
PTR_S_JOURNAL_RECEIPT, PTR_S_JOURNAL_SLIP, or
PTR_S_RECEIPT_SLIP.
Release 1.3 and later:
Select one of the following:

data1 The characters to be printed on the first station. May consist of
printable characters and escape sequences as listed in the “Print
Line” table under “Data Characters and Escape Sequences” on
page 316. The characters must all fit on one printed line, so that
the printer may attempt to print on both stations simultaneously.

data2 The characters to be printed on the second station. (Restrictions
are the same as for data1.) If this string is the empty string (“”),
then print the same data as data1. On some printers, using this
format may give additional increased print performance.

Remarks Prints two strings on two print stations simultaneously. When supported, this may
give increased print performance.
This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

Release 1.2
Documentation release 1.2 was not sufficiently clear as to the meaning of “first”
and “second” station so Service implementations varied between the following:
• Assign stations based on order within the constants. For example,

PTR_S_JOURNAL_RECEIPT prints Data1 on the journal and Data2 on the
receipt.

• Assign stations based upon physical device characteristics or internal print
order.

Due to this inconsistency, the application should use the new constants if the
Control and Service versions indicate Release 1.3 or later.

Release 1.3 and later
Service for Release 1.3 or later should support both sets of constants. The vendor
should define and document the behavior of the obsolete constants.
The sequence of stations in the constants does not imply the physical printing

stations Parameter
First

Station
Second
Station

PTR_TWO_RECEIPT_JOURNAL Receipt Journal

PTR_TWO_SLIP_JOURNAL Slip Journal

PTR_TWO_SLIP_RECEIPT Slip Receipt

388
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
sequence on the stations. The physical sequence depends on the printer and may
be different based on the bi-directional printing multiple print heads and so on.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The specified stations do not support concurrent printing. (See
the CapConcurrentJrnRec, CapConcurrentJrnSlp, and
CapConcurrentRecSlp properties.)

E_BUSY Cannot perform while output is in progress. (Can only apply if
AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
ErrorCodeExtended = EPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_REMOVED:
A journal cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_EMPTY:
A journal cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_HEAD_CLEANING:
A journal cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended =EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also printNormal Method

389 Methods (UML operations)
rotatePrint Method

Syntax rotatePrint (station: int32, rotation: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

station The printer station to be used. May be
PTR_S_RECEIPT or PTR_S_SLIP.

rotation Direction of rotation. See values below.

Value Meaning

PTR_RP_RIGHT90 Rotate printing 90° to the right (clockwise)

PTR_RP_LEFT90 Rotate printing 90° to the left (counter-clockwise)

PTR_RP_ROTATE180 Rotate printing 180°, that is, print upside-down

PTR_RP_NORMAL End rotated printing.

Remarks Enters or exits rotated print mode.

This method is performed synchronously if AsyncMode is false, and
asynchronously if AsyncMode is true.

If rotation is PTR_RP_ROTATE180, then upside-down print mode is entered.
Subsequent calls to printNormal or printImmediate will print the data upside-
down until rotatePrint is called with rotation set to PTR_RP_NORMAL. Each
print line is rotated by 180°. Lines are printed in the order that they are sent, with
the start of each line justified at the right margin of the printer station. Only print
methods printNormal and printImmediate may be used while in upside-down
print mode.

If rotation is PTR_RP_RIGHT90 or PTR_RP_LEFT90, then sideways print mode
is entered. Subsequent calls to printNormal will buffer the print data (either at the
printer or the Service, depending on the printer capabilities) until rotatePrint is
called with rotation set to PTR_RP_NORMAL. (In this case, printNormal only
buffers the data – it does not initiate printing. Also, the value of the AsyncMode
property does not affect its operation: No OutputID will be assigned to the
request, nor will an OutputCompleteEvent be enqueued.) Each print line is
rotated by 90°. If the lines are not all the same length, then they are justified at the
start of each line. Only printNormal may be used while in sideways print mode.

If rotation is PTR_RP_NORMAL, then rotated print mode is exited. If sideways-
rotated print mode was in effect and some data was buffered by calls to the
printNormal method, then the buffered data is printed. The entire rotated block of
lines are treated as one message.

Changing the rotation mode may also change the station’s line height, line spacing,
line width, and other metrics.

Calling the clearOutput method cancels rotated print mode. Any buffered
sideways rotated print lines are also cleared.

390
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The specified station does not exist (see the CapJrnPresent,
CapRecPresent, and CapSlpPresent properties), or the station
does not support the specified rotation (see the station’s rotation
capability properties).

E_BUSY Cannot perform while output is in progress. (Can only apply if
AsyncMode is false.)

E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended =EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

See Also “Data Characters and Escape Sequences” on page 316.

391 Methods (UML operations)
setBitmap Method

Syntax setBitmap (bitmapNumber: int32, station: int32, fileName: string, width:
int32, alignment: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

bitmapNumber The number to be assigned to this bitmap. Two bitmaps,
numbered 1 and 2, may be set.

station The printer station to be used. May be either
PTR_S_RECEIPT or PTR_S_SLIP.

fileName File name or URL of bitmap file. Various file formats
may be supported, such as bmp, gif or jpeg files. The file
must be in uncompressed format.
If set to an empty string (“”), then the bitmap is unset.

width Printed width of the bitmap to be performed. See
printBitmap for values.

alignment Placement of the bitmap. See printBitmap for values.

Remarks Saves information about a bitmap for later printing.

The bitmap may then be printed by calling the printNormal or printImmediate
method with the print bitmap escape sequence in the print data. The print bitmap
escape sequence will typically be included in a string for printing top and bottom
transaction headers.

A Service may choose to cache the bitmap for later use to provide better
performance. Regardless, the bitmap file and parameters are validated for
correctness by this method.

The application must ensure that the printer station metrics, such as character
width, line height, and line spacing are set for the station before calling this
method. The Service may perform transformations on the bitmap in preparation
for later printing based upon the current values.

The application may set bitmaps numbered 1 and 2 for each of the two valid
stations. If desired, the same bitmap fileName may be set to the same
bitmapNumber for each station, so that the same print bitmap escape sequence may
be used for either station.

392
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL One of the following errors occurred:
* bitmapNumber is invalid
* station does not exist
* station does not support bitmap printing
* width is too big
* alignment is invalid or too big

E_NOEXIST fileName was not found.

E_EXTENDED ErrorCodeExtended = EPTR_TOOBIG:
The bitmap is either too wide to print without
transformation, or it is too big to transform.

ErrorCodeExtended = EPTR_BADFORMAT:
The specified file is either not a bitmap file, or it is in an
unsupported format.

See Also “Data Characters and Escape Sequences” on page 316, printBitmap Method.

setLogo Method

Syntax setLogo (location: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

location The logo to be set. May be PTR_L_TOP or
PTR_L_BOTTOM.

data The characters that produce the logo. May consist of
printable characters, escape sequences, carriage returns
(13 decimal), and line feeds (10 decimal).

Remarks Saves a data string as the top or bottom logo.

A logo may then be printed by calling the printNormal, printTwoNormal, or
printImmediate method with the print top logo or print bottom logo escape
sequence in the print data.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL An invalid location was specified.

See Also “Data Characters and Escape Sequences” on page 316.

393 Methods (UML operations)
transactionPrint Method

Syntax transactionPrint (station: int32, control: int32):
void { raises-exception, use after open-claim-enable }

Parameter Description

station The printer station to be used. May be
PTR_S_JOURNAL, PTR_S_RECEIPT, or
PTR_S_SLIP.

control Transaction control. See values below:

Value Meaning

PTR_TP_TRANSACTION Begin a transaction.

PTR_TP_NORMAL End a transaction by printing the buffered data.

Remarks Enters or exits transaction mode.

If control is PTR_TP_TRANSACTION, then transaction mode is entered.
Subsequent calls to printNormal, cutPaper, rotatePrint, printBarCode, and
printBitmap will buffer the print data (either at the printer or the Service,
depending on the printer capabilities) until transactionPrint is called with the
control parameter set to PTR_TP_NORMAL. (In this case, the print methods only
validate the method parameters and buffer the data – they do not initiate printing.
Also, the value of the AsyncMode property does not affect their operation: No
OutputID will be assigned to the request, nor will an OutputCompleteEvent be
enqueued.)

If control is PTR_TP_NORMAL, then transaction mode is exited. If some data
was buffered by calls to the methods printNormal, cutPaper, rotatePrint,
printBarCode, and printBitmap, then the buffered data is printed. The entire
transaction is treated as one message. This method is performed synchronously if
AsyncMode is false, and asynchronously if AsyncMode is true.

Calling the clearOutput method cancels transaction mode. Any buffered print
lines are also cleared.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL The specified station does not exist (see the CapJrnPresent,
CapRecPresent, and CapSlpPresent properties), or
CapTransaction is false.

E_BUSY Cannot perform while output is in progress. (Can only apply if
AsyncMode is false and control is PTR_TP_NORMAL.)

394
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
E_EXTENDED ErrorCodeExtended = EPTR_COVER_OPEN:
The printer cover is open.
(Can only apply if AsyncMode is false and control is
PTR_TP_NORMAL.)
ErrorCodeExtended = EPTR_JRN_EMPTY:
The journal station was specified but is out of paper.
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_REMOVED:
A journal cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_CARTRIDGE_EMPTY:
A journal cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_JRN_HEAD_CLEANING:
A journal cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_EMPTY:
The receipt station was specified but is out of paper.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended =EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_EMPTY:
The slip station was specified, but a form is not inserted.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.
(Can only apply if AsyncMode is false.)
ErrorCodeExtended = EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.
(Can only apply if AsyncMode is false.)

395 Methods (UML operations)
validateData Method

Syntax validateData (station: int32, data: string):
void { raises-exception, use after open-claim-enable }

Parameter Description

station The printer station to be used. May be either
PTR_S_JOURNAL, PTR_S_RECEIPT or
PTR_S_SLIP.

data The data to be validated. May include printable data and
escape sequences.

Remarks Determines whether a data sequence, possibly including one or more escape
sequences, is valid for the specified station, before calling the printImmediate,
printNormal, or printTwoNormal methods.

This method does not cause any printing, but is used to determine the capabilities
of the station.

Errors A UposException may be thrown when this method is invoked. For further
information, see “Errors” on page 15.

Some possible values of the exception’s ErrorCode property are:

Value Meaning

E_ILLEGAL Some of the data is not precisely supported by the printer
station, but the Service can select valid alternatives.

E_FAILURE Some of the data is not supported. No alternatives can be
selected.

Cases which cause ErrorCode of E_ILLEGAL:

Escape Sequence Condition

Paper cut The percentage ‘#’ is not precisely supported: Service
will select the closest supported value.

Feed and Paper cut The percentage ‘#’ is not precisely supported: Service
will select the closest supported value.

Feed, Paper cut, and Stamp
The percentage ‘#’ is not precisely supported: Service
will select the closest supported value.

Feed units The unit count ‘#’ is not precisely supported: Service
will select the closest supported value.

Feed reverse The line count ‘#’ is too large: Service will select the
maximum supported value.

Underline The thickness ‘#’ is not precisely supported: Service will
select the closest supported value.

Shading The percentage ‘#’ is not precisely supported: Service
will select the closest supported value.

Scale horizontally The scaling factor ‘#’ is not supported: Service will
select the closest supported value.

Scale vertically The scaling factor ‘#’ is not supported: Service will
select the closest supported value.

396
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
Alternate Color The color ‘#’ is not supported: Service will select the
closest supported value.

RGB Color The color ‘#’ is not supported: Service will select the
closest supported value.

Data Condition

data1CRdata2LF (Where CR is a Carriage Return and LF is a Line Feed)
In order to print data data1 and remain on the same line,
the Service will print with a line advance, then perform
a reverse line feed. The data data2 will then overprint
data1.

Cases which will cause ErrorCode of E_FAILURE:

Escape Sequence Condition

(General) The escape sequence format is not valid.
Paper cut Not supported.
Feed and Paper cut Not supported.
Feed, Paper cut, and Stamp

Not supported.
Fire stamp Not supported.
Print bitmap Bitmap printing is not supported, or the bitmap number

‘#’ is out of range.
Feed reverse Not supported.
Font typeface The typeface ‘#’ is not supported.
Bold Not supported.
Underline Not supported.
Italic Not supported.
Alternate color Not supported.
RGB color Not supported.
Reverse video Not supported.
SubScript Not supported.
SuperScript Not supported.
Shading Not supported.
Single high & wide Not supported.
Double wide Not supported.
Double high Not supported.
Double high & wide Not supported.

Data Condition

data1CRdata2LF (Where CR is a Carriage Return and LF is a Line Feed)
Not able to print data and remain on the same line. The
data data1 will print on one line, and the data data2 will
print on the next line.

See Also “Data Characters and Escape Sequences” on page 316.

397 Events (UML interfaces)
Events (UML interfaces)

DirectIOEvent

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }

 Obj: object { read-write }

Description Provides Service information directly to the application. This event provides a
means for a vendor-specific POS Printer Service to provide events to the
application that are not otherwise supported by the Control.

Attributes This event contains the following attributes:

Attributes Type Description

EventNumber int32 Event number whose specific values are assigned by the
Service.

Data int32 Additional numeric data. Specific values vary by the
EventNumber and the Service. This property is settable.

Obj object Additional data whose usage varies by the EventNumber
and Service. This property is settable.

Remarks This event is to be used only for those types of vendor specific functions that are
not otherwise described. Use of this event may restrict the application program
from being used with other vendor’s POS Printer devices which may not have any
knowledge of the Service’s need for this event.

See Also “Events” on page 14, directIO Method.

398
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
ErrorEvent

<< event >> upos::events::ErrorEvent
ErrorCode: int32 { read-only }
ErrorCodeExtended: int32 { read-only }
ErrorLocus: int32 { read-only }
ErrorResponse: int32 { read-write }

Description Notifies the application that a POS Printer error has been detected and that a
suitable response by the application is necessary to process the error condition.

Attributes This event contains the following properties:

Attributes Type Description

ErrorCode int32 Result code causing the error event. See a list of Error
Codes on page 15.

ErrorCodeExtended int32 Extended Error code causing the error event. If
ErrorCode is E_EXTENDED, then see values below.
Otherwise, it may contain a Service-specific value.

ErrorLocus int32 Location of the error, and is set to EL_OUTPUT
indicating that the error occurred while processing
asynchronous output.

ErrorResponse int32 Error response, whose default value may be overridden
by the application (i.e., this property is settable). See
values below.

If ErrorCode is E_EXTENDED, then ErrorCodeExtended has one of the
following values:

Value Meaning

EPTR_COVER_OPEN The printer cover is open.

EPTR_JRN_EMPTY The journal station is out of paper.

EPTR_REC_EMPTY The receipt station is out of paper.

EPTR_SLP_EMPTY A form is not inserted in the slip station.

EPTR_JRN_CARTRIDGE_REMOVED:
A journal cartridge has been removed.

EPTR_JRN_CARTRIDGE_EMPTY:
A journal cartridge is empty.

EPTR_JRN_HEAD_CLEANING:
A journal cartridge head is being cleaned.

EPTR_REC_CARTRIDGE_REMOVED:
A receipt cartridge has been removed.

EPTR_REC_CARTRIDGE_EMPTY:
A receipt cartridge is empty.

EPTR_REC_HEAD_CLEANING:
A receipt cartridge head is being cleaned.

399 Events (UML interfaces)
EPTR_SLP_CARTRIDGE_REMOVED:
A slip cartridge has been removed.

EPTR_SLP_CARTRIDGE_EMPTY:
A slip cartridge is empty.

EPTR_SLP_HEAD_CLEANING:
A slip cartridge head is being cleaned.

The contents of the ErrorResponse property are preset to a default value, based on
the ErrorLocus. The application’s error processing may change ErrorResponse to
one of the following values:

Value Meaning

ER_CLEAR Clear the asynchronous output or buffered output data.
The error state is exited.

ER_RETRY Retry the asynchronous output. The error state is exited.
The default.

Remarks Enqueued when an error is detected and the Service’s State transitions into the
error state. This event is not delivered until DataEventEnabled is true, so that
proper application sequencing occurs.

See Also “Device Output Models” on page 20, “Device States” on page 25

OutputCompleteEvent

<< event >> upos::events::OutputCompleteEvent
OutputID: int32 { read-only }

Description Notifies the application that the queued output request associated with the
OutputID attribute has completed successfully.

Attributes This event contains the following attribute:

Attributes Type Description

OutputID int32 The ID number of the asynchronous output request that
is complete.

Remarks This event is enqueued after the request’s data has been both sent and the Service
has confirmation that is was processed by the device successfully.

See Also “Device Output Models” on page 20.

400
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer
StatusUpdateEvent

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description Notifies the application that a printer has had an operation status change.

Attributes This event contains the following attribute:

Attributes Type Description

Status int32 Indicates the status change, and has one of the
following values:

Value Meaning

PTR_SUE_COVER_OPEN Printer cover is open.

PTR_SUE_COVER_OK Printer cover is closed.

PTR_SUE_JRN_EMPTY No journal paper.

PTR_SUE_JRN_NEAREMPTY Journal paper is low.

PTR_SUE_JRN_PAPEROK Journal paper is ready.

PTR_SUE_REC_EMPTY No receipt paper.

PTR_SUE_REC_NEAREMPTY Receipt paper is low.

PTR_SUE_REC_PAPEROK Receipt paper is ready.

PTR_SUE_SLP_EMPTY No slip form.

PTR_SUE_SLP_NEAREMPTY Almost at the bottom of the slip form.

PTR_SUE_SLP_PAPEROK Slip form is inserted.

PTR_SUE_IDLE All asynchronous output has finished, either
successfully or because output has been
cleared. The printer State is now S_IDLE. The
FlagWhenIdle property must be true for this
event to be delivered, and the property is
automatically reset to false just before the event
is delivered.

Note that Release 1.3 added Power State
Reporting with additional Power reporting
StatusUpdateEvent values. See
“StatusUpdateEvent” on page 56.

401 Events (UML interfaces)
Release 1.5 and later – Cartridge State Reporting

If CartridgeNotify = PTR_CN_ENABLED, StatusUpdateEvents with the
following status parameter values may be fired.

Value Meaning

PTR_SUE_JRN_CARTRIDGE_EMPTY
A journal cartridge needs to be replaced. Cartridge is
empty or not present.

PTR_SUE_JRN_HEAD_CLEANING
A journal cartridge has begun cleaning.

PTR_SUE_JRN_CARTRIDGE_NEAREMPTY
A journal cartridge is near end.

PTR_SUE_JRN_CARTRIDGE_OK
All journal cartridges are ready. It gives no indication of
the amount of media in the cartridge.

PTR_SUE_REC_CARTRIDGE_EMPTY
A receipt cartridge needs to be replaced. Cartridge is
empty or not present.

PTR_SUE_REC_HEAD_CLEANING
A receipt cartridge has begun cleaning.

PTR_SUE_REC_CARTRIDGE_NEAREMPTY
A receipt cartridge is near end.

PTR_SUE_REC_CARTRIDGE_OK
All receipt cartridges are ready. It gives no indication of
the amount of media in the cartridge.

PTR_SUE_SLP_CARTRIDGE_EMPTY
A slip cartridge needs to be replaced. Cartridge is empty
or not present.

PTR_SUE_SLP_HEAD_CLEANING
A slip cartridge has begun cleaning.

PTR_SUE_SLP_CARTRIDGE_NEAREMPTY
A slip cartridge is near end.

PTR_SUE_SLP_CARTRIDGE_OK
All slip cartridges are ready. It gives no indication of the
amount of media in the cartridge.

Remarks Enqueued when a significant status event has occurred.

See Also “Events” on page 14.

402
UnifiedPOS Retail Peripheral Architecture Chapter 17

POS Printer

C H A P T E R 1 8

Remote Order Display

This Chapter defines the Remote Order Display device category.

General Information
The Remote Order Display programmatic name is “RemoteOrderDisplay”.

This chapter is grandfathered in based on the OPOS and JavaPOS Version 1.4
specifications.

This device had minor revisions for Version 1.5, and only the changes are included
in this specification.

404
UnifiedPOS Retail Peripheral Architecture Chapter 18

Remote Order Display
Properties (UML attributes)

CharacterSet Property Updated in Release 1.5

Syntax CharacterSet: int32 { read-write, access after open-claim-enable }

Remarks Holds the character set for displaying characters for the video unit indicated by
CurrentUnitID. When CapSelectCharacterSet is true, this property can be set
to one of the following values:

Value Meaning

Range 101 - 199 Device-specific character sets that do not match a code
page or the ASCII or ANSI character sets.

Range 400 - 990 Code page; matches one of the standard values.

ROD_CS_UNICODE The character set supports UNICODE. The value of this
constant is 997.

ROD_CS_ASCII The ASCII character set, supporting the ASCII
characters 0x20 through 0x7F. The value of this
constant is 998.

ROD_CS_ANSI The ANSI character set. The value of this constant is
999.

This property is initialized to the default video character set used by each video
unit online when the device is first enabled following the open method.

This is updated during the selectCharacterSet method.

Errors A UposException may be thrown when this property is accessed. For further
information, see “Errors” on page 15.

See Also CurrentUnitID Property, CharacterSetList Property, CapSelectCharacterSet
Property, selectCharacterSet method.

C H A P T E R 1 9

Scale

This Chapter defines the Scale device category.

General Information
The Scale programmatic name is “Scale”.

This chapter is grandfathered in based on the OPOS and JavaPOS Version 1.4
specifications.

406
UnifiedPOS Retail Peripheral Architecture Chapter 19

Scale

C H A P T E R 2 0

Scanner (Bar Code Reader)

This Chapter defines the Scanner device category.

General Information
The Scanner programmatic name is “Scanner”.

This chapter is grandfathered in based on the OPOS and JavaPOS Version 1.4
specifications.

408
UnifiedPOS Retail Peripheral Architecture Chapter 20

Scanner (Bar Code Reader)

C H A P T E R 2 1

Signature Capture

This Chapter defines the Signature Capture device category.

General Information
The Signature Capture programmatic name is “SignatureCapture”.

This chapter is grandfathered in based on the OPOS and JavaPOS Version 1.4
specifications.

410
UnifiedPOS Retail Peripheral Architecture Chapter 21

Signature Capture

C H A P T E R 2 2

Tone Indicator

This Chapter defines the Tone Indicator device category.

General Information
The Tone Indicator programmatic name is “ToneIndicator”.

This chapter is grandfathered in based on the OPOS and JavaPOS Version 1.4
specifications.

412
UnifiedPOS Retail Peripheral Architecture Chapter 22

Tone Indicator

A P P E N D I X A

Change History

Release Version 1.4
Version 1.4 is the first release of the UnifiedPOS standard. It derives its release
version number from the corresponding OPOS and JavaPOS standard version
numbers 1.4. In an attempt to prevent confusion, all peripheral device
classifications that are present in the version 1.4 standard of OPOS and JavaPOS
are “grandfathered” into this first release of UnifiedPOS standard.

The Chapters that are shown in this standard shall be used as guidelines for future
peripheral device classifications to be included in subsequent versions of the
standards. Therefore, one can be assured that if they have version 1.4 of the
UnifiedPOS standard it will be the basis for the version 1.4 of the OPOS or
JavaPOS standard. This cross-linking of standard version numbers will be
maintained in the future.

Release Version 1.5
Version 1.5 of this specification contains several new chapters (devices) and
updates to existing chapters that provide clarifications and corrections to Version
1.4. These are detailed below, with links to the corresponding pages and/or
chapters as appropriate.

• Updated the Version and issue date on the front page. See “Version 1.5 July
31, 2000” on pag e1.

• Updated the Table of Contents to reflect additional chapters and headings.
“Table of Contents” on page i

• Updated the “Table of extensions to UML for UnifiedPOS.” on page 6.

• Updated the Package Diagram. See “Package Diagram” on page 7.

• Added another condition that causes the Device to exit the Error state. See
“The Device exits the Error state when one of the following occurs:” on
page 19.

• Updated the Power State Diagram. See “Power State Diagram” on pag e22.

• Updated the Device State Diagram. See “Device State Diagram” on pag e26.

• Updated, throughout the specification, the mutability of the DirectIOEvent
attributes Data and Obj to reflect the fact that they are read-write.

• Updated, throughout the specification, the mutability of the ErrorEvent
attribute ErrorResponse to reflect the fact that it is read-write.

A-2
UnifiedPOS Retail Peripheral Architecture Appendix A

Change History
• Updated the case of the first letter of all Properties, and Event Attributes to
uppercase to make consistent throughout the specification.

• Added the Base Control Class Diagram. See “The following diagram shows
the relationships between the Common classes.” on page 32.

• Updated the Event Interfaces Diagram. See “upos::events interfaces” on
page 51.

• Updated the Bump Bar chapter header to remove the “example” status. See
“Chapter 2 Bump Bar” on page 57.

• Updated the Bump Bar Class Diagram. See “Bump Bar Class Diagram” on
page 62.

• Updated the Bump Bar State Diagram. See “Bump Bar State Diagram” on
page 66.

• Added a new chapter describing the Cash Changer, including 1.5 specific
updates. See “Chapter 3 Cash Changer” on page 83.

• Added a new chapter describing the Cash Drawer, including 1.5 specific
updates. See “Chapter 4 Cash Drawer” on page 115.

• Added a new chapter describing the CAT, including 1.5 specific updates. See
“Chapter 5 CAT - Credit Authorization Terminal” on page 125.

• Added a new chapter describing the MSR. See “Chapter 12 MSR - Magnetic
Stripe Reader” on page 181.

• Updated the MSR chapter to include Track 4 handling for JIS-II type cards.
See various additions within the MSR chapter.

• Updated the MSR chapter to include a typical usage sequence diagram. See
“MSR Usage Diagram” on pag e190.

• Added a new chapter describing the PIN Pad, including 1.5 specific updates.
See “Chapter 13 PIN Pad” on page 207.

• Added a new chapter describing the Point Card Reader Writer. See “Chapter
14 Point Card Reader Writer” on page235.

• Added a new chapter describing the POS Power. See “Chapter 16 POS
Power” on page 283.

• Added a new chapter describing the POS Printer. See “Chapter 17 POS
Printer” on pag e301.

• Updated the POS Printer chapter to include “both sides printing” support,
including a new Property, Method, and sequence diagram. See ““Both sides
printing” sequence Diagram” on page 315. See “CapSlpBothSidesPrint
Property Added in Release 1.5” on pag e338. See “changePrintSide Method
Added in Release 1.5” on page 369.

• Added a new Appendix C describing Hardware References. See “Appendix C
Additional Hardware References” on page C-1.

• Made minor typographical and formatting changes as necessary.

A P P E N D I X B

Additional Software References

UML References

The following additional is a list of additional material that may prove helpful for
the understanding of the Unified Modeling Language which is used for the basis
of peripheral device modeling in this standard. They are listed in alphabetical
order and not according to a ranking on usefulness.

Web Location References

Official On-line UML Documentation at:

http://www.rational.com/uml/resources/documentation/

Object Management Group at:

http://www.omg.org

Reading Material References

1) [Booch98] Booch, G. et al, Unified Modeling Language User Guide, Addisson
Wesley Longman, Inc., 1998, ISBN 0201571684

2) Eriksson, H. and Penker, M., UML Toolkit, John Wiley & Sons, Inc., 1997,
ISBN 0471191612

3) Fowler, M. and Scott, K., UML Distilled: Applying the Standard Object
Modeling Language, Addisson Wesley Longman, Inc., 1997, ISBN 0201325632

4) Harmon, P. and Watson, M., Understanding UML: The Developer’s Guide,
Morgan Kaufmann Pubs., Inc., 1997, ISBN 1558604650

5) Muller, P., Instant UML, Wrox Press Ltd., 1997, ISBN 1861000871

6) Quatrani, T., foreword by Booch, G., Visual Modeling with Rational Rose &
UML, Addison Wesley Longman, Inc., 1997, ISBN 0201310163

7) Rumbaugh, J. et al, The Unified Modeling Language Reference Manual,
Addisson Wesley Longman, Inc., 1998, ISBN 020130998X

8) Si Alhir, S., UML In a Nutshell, O'Reilly & Associates, Inc., 1998, ISBN
1565924487

http://www.rational.com/uml/resources/documentation/
http://www.omg.org

B-2
UnifiedPOS Retail Peripheral Architecture Appendix B

Additional Software References
9) Warmer, J. and Kleppe, A., The Object Constraint Language: Precise
Modeling with UML, Addisson Wesley Longman, Inc., 1998, ISBN 0201379406

A P P E N D I X C

Additional Hardware References

This appendix contains a list of additional material that may prove helpful for the
understanding of the UnifiedPOS hardware environment.

USB PlusPower Connector
Web Location References

Official On-line Documentation for the USB PlusPower connector is available at:

http://www.eia.org

Reading Material References

1) EIA-700BAAD, Detail Specification for Shielded Rectangular Connector(s)
For Universal Serial Bus PlusPower Connector(s) Type “A”, EIA Engineering
Publications Office, 2500 Wilson Boulevard, Arlington, Virginia, 22201.

http://www.eia.org
http://www.eia.com

C-2
UnifiedPOS Retail Peripheral Architecture Appendix C

Additional Hardware References

	Table of Contents
	Introduction and Architecture UnifiedPOS Architecture for Retail
	What Is UnifiedPOS?
	Goals
	Dependencies
	UnifiedPOS Relationship to OPOS and JavaPOS
	Who Should Read This Document

	Architectural Overview
	Architectural Components
	Use of UML
	Data Types

	Device Behavior Models
	Introduction to Properties, Methods, and Events
	Properties (UML Attributes)
	Methods (UML Operations)
	Events (UML Interfaces)

	Device Initialization and Finalization
	Initialization
	Finalization
	Summary

	Device Sharing Model
	Exclusive-Use Devices
	Sharable Devices

	Events
	Errors
	Error Codes
	Extended Error Code

	Device Input Model
	Device Output Models
	Synchronous Output
	Asynchronous Output

	Device Power Reporting Model
	Model
	Power State Diagram
	Power Properties
	Power Reporting Requirements for DeviceEnabled

	Device States
	Device State Diagram

	Version Handling

	Chapter 1 Common Properties, Methods, and Events
	Summary
	General Information
	Properties (UML attributes)
	AutoDisable Property
	CapPowerReporting Property
	CheckHealthText Property
	Claimed Property
	DataCount Property
	DataEventEnabled Property
	DeviceControlDescription Property
	DeviceControlVersion Property
	DeviceEnabled Property
	DeviceServiceDescription Property
	DeviceServiceVersion Property
	FreezeEvents Property
	OutputID Property
	PowerNotify Property
	PowerState Property
	PhysicalDeviceDescription Property
	PhysicalDeviceName Property
	State Property

	Methods (UML operations)
	checkHealth Method
	claim Method
	clearInput Method
	clearOutput Method
	close Method
	directIO Method
	open Method
	release Method

	Events (UML interfaces)
	DataEvent
	DirectIOEvent
	ErrorEvent
	OutputCompleteEvent
	StatusUpdateEvent

	Chapter 2 Bump Bar
	Summary
	General Information
	Bump Bar Class Diagram
	Bump Bar State Diagram

	Properties (UML attributes)
	AsyncMode Property
	AutoToneDuration Property
	AutoToneFrequency Property
	BumpBarDataCount Property
	CapTone Property
	CurrentUnitID Property
	DataCount Property
	ErrorString Property
	ErrorUnits Property
	EventString Property
	EventUnitID Property
	EventUnits Property
	Keys Property
	Timeout Property
	UnitsOnline Property

	Methods (UML operations)
	bumpBarSound Method
	checkHealth Method (Common)
	clearInput Method (Common)
	clearOutput Method (Common)
	setKeyTranslation Method

	Events (UML interfaces)
	DataEvent
	DirectIOEvent
	ErrorEvent
	OutputCompleteEvent
	StatusUpdateEvent

	Chapter 3 Cash Changer
	Summary
	General Information
	Properties (UML attributes)
	CapDeposit Property Added in Release 1.5
	CapDepositDataEvent Property Added in Release 1.5
	CapDiscrepancy Property
	CapEmptySensor Property
	CapFullSensor Property
	CapNearEmptySensor Property
	CapNearFullSensor Property
	CapPauseDeposit Property Added in Release 1.5
	CapRepayDeposit Property Added in Release 1.5
	CurrencyCashList Property
	CurrencyCode Property
	CurrencyCodeList Property
	CurrentExit Property
	DepositAmount Property Added in Release 1.5
	DepositCashList Property Added in Release 1.5
	DepositCodeList Property Added in Release 1.5
	DepositCounts Property Added in Release 1.5
	DepositStatus Property Added in Release 1.5
	DeviceExits Property
	DeviceStatus Property
	ExitCashList Property
	FullStatus Property

	Methods (UML operations)
	beginDeposit Method Added in Release 1.5
	dispenseCash Method
	dispenseChange Method
	endDeposit Method Added in Release 1.5
	fixDeposit Method Added in Release 1.5
	pauseDeposit Method Added in Release 1.5
	readCashCounts Method

	Events (UML interfaces)
	DataEvent Added in Release 1.5
	DirectIOEvent
	StatusUpdateEvent

	Chapter 4 Cash Drawer
	Summary
	General Information
	Capabilities

	Properties (UML attributes)
	CapStatus Property
	CapStatusMultiDrawerDetect Property Added in Release 1.5
	DrawerOpened Property

	Methods (UML operations)
	openDrawer Method
	waitForDrawerClose Method

	Events (UML interfaces)
	DirectIOEvent
	StatusUpdateEvent

	Chapter 5 CAT - Credit Authorization Terminal
	Summary
	General Information
	Description of terms
	Capabilities
	CAT Class Diagram
	Model
	Device Sharing
	CAT State Diagram

	Properties (UML attributes)
	AccountNumber Property
	AdditionalSecurityInformation Property
	ApprovalCode Property
	AsyncMode Property
	CapAdditionalSecurityInformation Property
	CapAuthorizeCompletion Property
	CapAuthorizePreSales Property
	CapAuthorizeRefund Property
	CapAuthorizeVoid Property
	CapAuthorizeVoidPreSales Property
	CapCenterResultCode Property
	CapCheckCard Property
	CapDailyLog Property
	CapInstallments Property
	CapPaymentDetail Property
	CapTaxOthers Property
	CapTransactionNumber Property
	CapTrainingMode Property
	CardCompanyID Property
	CenterResultCode Property
	DailyLog Property
	PaymentCondition Property
	PaymentDetail Property
	PaymentMedia Property Added in Release 1.5
	SequenceNumber Property
	SlipNumber Property
	TrainingMode Property
	TransactionNumber Property
	TransactionType Property

	Methods (UML operations)
	accessDailyLog Method
	authorizeCompletion Method
	authorizePreSales Method
	authorizeRefund Method
	authorizeSales Method
	authorizeVoid Method
	authorizeVoidPreSales Method
	checkCard Method

	Events (UML interfaces)
	DirectIOEvent
	ErrorEvent
	OutputCompleteEvent
	StatusUpdateEvent

	Chapter 6 Coin Dispenser
	General Information

	Chapter 7 Fiscal Printer
	General Information
	Properties (UML attributes)
	CountryCode Property Updated in Release 1.5

	Chapter 8 Hard Totals
	General Information

	Chapter 9 Keylock
	General Information

	Chapter 10 Line Display
	General Information
	Properties (UML attributes)
	CapCharacterSet Property Updated in Release 1.5
	CharacterSet Property Updated in Release 1.5

	Chapter 11 MICR - Magnetic Ink Character Recognition Reader
	General Information

	Chapter 12 MSR - Magnetic Stripe Reader
	Summary
	General Information
	MSR Class Diagram
	MSR State Diagrams
	MSR Usage Diagram

	Properties (UML attributes)
	AccountNumber Property
	CapISO Property
	CapJISOne Property
	CapJISTwo Property
	CapTransmitSentinels Property Added in Release 1.5
	DecodeData Property
	ErrorReportingType Property
	ExpirationDate Property
	FirstName Property
	MiddleInitial Property
	ParseDecodeData Property
	ServiceCode Property
	Suffix Property
	Surname Property
	Title Property
	Track1Data Property
	Track1DiscretionaryData Property
	Track2Data Property
	Track2DiscretionaryData Property
	Track3Data Property
	Track4Data Property Added in Release 1.5
	TracksToRead Property Updated in Release 1.5
	TransmitSentinels Property Added in Release 1.5

	Events (UML interfaces)
	DataEvent
	DirectIOEvent
	ErrorEvent
	StatusUpdateEvent

	Chapter 13 PIN Pad
	Summary
	General Information
	Capabilities
	PIN Pad Class Diagram
	Feature Not Supported
	Note on Terminology
	Model
	Device Sharing
	PIN Pad State Diagram

	Properties (UML attributes)
	AccountNumber Property
	AdditionalSecurityInformation Property
	Amount Property
	AvailableLanguagesList Property
	AvailablePromptsList Property
	CapDisplay Property
	CapKeyboard Property
	CapLanguage Property
	CapMACCalculation Property
	CapTone Property
	EncryptedPIN Property
	MaximumPINLength Property
	MerchantID Property
	MinimumPINLength Property
	PINEntryEnabled Property
	Prompt Property
	PromptLanguage Property
	TerminalID Property
	Track1Data Property
	Track2Data Property
	Track3Data Property
	Track4Data Property Added in Release 1.5
	TransactionType Property

	Methods (UML operations)
	beginEFTTransaction Method
	computeMAC Method
	enablePINEntry Method
	endEFTTransaction Method
	updateKey Method
	verifyMAC Method

	Events (UML interfaces)
	DataEvent
	DirectIOEvent
	ErrorEvent
	StatusUpdateEvent

	Chapter 14 Point Card Reader Writer
	Summary
	General Information
	Capabilities

	Point Card Reader Writer Class Diagram
	Model
	Input Model
	Output Model
	Card Insertion Diagram
	Printing Capability
	Cleaning Capability
	Initialization of Magnetic Stripe Data
	Device Sharing

	Data Characters and Escape Sequences
	Point Card Reader Writer State Diagram
	Properties (UML Attributes)
	CapBold Property
	CapCardEntranceSensor Property
	CapCharacterSet Property
	CapCleanCard Property
	CapClearPrint Property
	CapDhigh Property
	CapDwide Property
	CapDwideDhigh Property
	CapItalic Property
	CapLeft90 Property
	CapPrint Property
	CapPrintMode Property
	CapRight90 Property
	CapRotate180 Property
	CapTracksToRead Property
	CapTracksToWrite Property
	CardState Property
	CharacterSet Property
	CharacterSetList Property
	FontTypefaceList Property
	LineChars Property
	LineCharsList Property
	LineHeight Property
	LineSpacing Property
	LineWidth Property
	MapMode Property
	MaxLine Property
	PrintHeight Property
	ReadState1 Property
	ReadState2 Property
	RecvLength1 Property
	RecvLength2 Property
	SidewaysMaxChars Property
	SidewaysMaxLines Property
	TracksToRead Property
	TracksToWrite Property
	Track1Data Property
	Track2Data Property
	Track3Data Property
	Track4Data Property
	Track5Data Property
	Track6Data Property
	WriteState1 Property
	WriteState2 Property
	Write1Data Property
	Write2Data Property
	Write3Data Property
	Write4Data Property
	Write5Data Property
	Write6Data Property

	Methods (UML operations)
	beginInsertion Method
	beginRemoval Method
	cleanCard Method
	clearPrintWrite Method
	endInsertion Method
	endRemoval Method
	printWrite Method
	rotatePrint Method
	validateData Method

	Events (UML Interfaces)
	DataEvent
	DirectIOEvent
	ErrorEvent
	OutputCompleteEvent
	StatusUpdateEvent

	Chapter 15 POS Keyboard
	General Information

	Chapter 16 POS Power
	Summary
	General Information
	Capabilities
	Device Sharing
	Model
	POSPower Class Diagram
	POSPower State Diagram
	POSPower PowerState Diagram - part 1
	POSPower PowerState Diagram - part 2
	POSPower PowerState Diagram - part 3
	POSPower State chart Diagram for fan and temperature

	Properties (UML attributes)
	CapFanAlarm Property
	CapHeatAlarm Property
	CapQuickCharge Property
	CapShutdownPOS Property
	CapUPSChargeState Property
	EnforcedShutdownDelayTime Property
	PowerFailDelayTime Property
	QuickChargeMode Property
	QuickChargeTime Property
	UPSChargeState Property

	Methods (UML operations)
	shutdownPOS Method

	Events (UML Interfaces)
	DirectIOEvent
	StatusUpdateEvent

	Chapter 17 POS Printer
	Summary
	General Information
	Capabilities
	POS Printer Class Diagram
	POS Printer Class Diagram - Version 1.5 Updates
	Model
	Device Sharing
	POS Printer State Diagram
	“Both sides printing” sequence Diagram
	Data Characters and Escape Sequences

	POS Printer State Diagrams (Low Level)
	Properties (UML attributes)
	AsyncMode Property
	CapCharacterSet Property Updated in Release 1.5
	CapConcurrentJrnRec Property
	CapConcurrentJrnSlp Property
	CapConcurrentRecSlp Property
	CapCoverSensor Property
	CapJrn2Color Property
	CapJrnBold Property
	CapJrnCartridgeSensor Property Added in Release 1.5
	CapJrnColor Property Added in Release 1.5
	CapJrnDhigh Property
	CapJrnDwide Property
	CapJrnDwideDhigh Property
	CapJrnEmptySensor Property
	CapJrnItalic Property
	CapJrnNearEndSensor Property
	CapJrnPresent Property
	CapJrnUnderline Property
	CapRec2Color Property
	CapRecBarCode Property
	CapRecBitmap Property
	CapRecBold Property
	CapRecCartridgeSensor Property Added in Release 1.5
	CapRecColor Property Added in Release 1.5
	CapRecDhigh Property
	CapRecDwide Property
	CapRecDwideDhigh Property
	CapRecEmptySensor Property
	CapRecItalic Property
	CapRecLeft90 Property
	CapRecMarkFeed Property Added in Release 1.5
	CapRecNearEndSensor Property
	CapRecPapercut Property
	CapRecPresent Property
	CapRecRight90 Property
	CapRecRotate180 Property
	CapRecStamp Property
	CapRecUnderline Property
	CapSlp2Color Property
	CapSlpBarCode Property
	CapSlpBitmap Property
	CapSlpBold Property
	CapSlpBothSidesPrint Property Added in Release 1.5
	CapSlpCartridgeSensor Property Added in Release 1.5
	CapSlpColor Property Added in Release 1.5
	CapSlpDhigh Property
	CapSlpDwide Property
	CapSlpDwideDhigh Property
	CapSlpEmptySensor Property
	CapSlpFullslip Property
	CapSlpItalic Property
	CapSlpLeft90 Property
	CapSlpNearEndSensor Property
	CapSlpPresent Property
	CapSlpRight90 Property
	CapSlpRotate180 Property
	CapSlpUnderline Property
	CapTransaction Property
	CartridgeNotify Property Added in Release 1.5
	CharacterSet Property Updated in Release 1.5
	CharacterSetList Property
	CoverOpen Property
	ErrorLevel Property
	ErrorStation Property
	ErrorString Property
	FlagWhenIdle Property
	FontTypefaceList Property
	JrnCartridgeState Property Added in Release 1.5
	JrnCurrentCartridge Property Added in Release 1.5
	JrnEmpty Property
	JrnLetterQuality Property
	JrnLineChars Property
	JrnLineCharsList Property
	JrnLineHeight Property
	JrnLineSpacing Property
	JrnLineWidth Property
	JrnNearEnd Property
	MapMode Property
	RecBarCodeRotationList Property
	RecCartridgeState Property Added in Release 1.5
	RecCurrentCartridge Property Added in Release 1.5
	RecEmpty Property
	RecLetterQuality Property
	RecLineChars Property
	RecLineCharsList Property
	RecLineHeight Property
	RecLineSpacing Property
	RecLinesToPaperCut Property
	RecLineWidth Property
	RecNearEnd Property
	RecSidewaysMaxChars Property
	RecSidewaysMaxLines Property
	RotateSpecial Property
	SlpBarCodeRotationList Property
	SlpCartridgeState Property Added in Release 1.5
	SlpCurrentCartridge Property Added in Release 1.5
	SlpEmpty Property
	SlpLetterQuality Property
	SlpLineChars Property
	SlpLineCharsList Property
	SlpLineHeight Property
	SlpLinesNearEndToEnd Property.
	SlpLineSpacing Property
	SlpLineWidth Property
	SlpMaxLines Property
	SlpNearEnd Property
	SlpPrintSide Property Added in Release 1.5
	SlpSidewaysMaxChars Property
	SlpSidewaysMaxLines Property

	Methods (UML operations)
	beginInsertion Method
	beginRemoval Method
	changePrintSide Method Added in Release 1.5
	cutPaper Method
	endInsertion Method
	endRemoval Method
	markFeed Method Added in Release 1.5
	printBarCode Method
	printBitmap Method
	printImmediate Method
	printNormal Method
	printTwoNormal Method
	rotatePrint Method
	setBitmap Method
	setLogo Method
	transactionPrint Method
	validateData Method

	Events (UML interfaces)
	DirectIOEvent
	ErrorEvent
	OutputCompleteEvent
	StatusUpdateEvent

	Chapter 18 Remote Order Display
	General Information
	Properties (UML attributes)
	CharacterSet Property Updated in Release 1.5

	Chapter 19 Scale
	General Information

	Chapter 20 Scanner (Bar Code Reader)
	General Information

	Chapter 21 Signature Capture
	General Information

	Chapter 22 Tone Indicator
	General Information

	Appendix A Change History
	Release Version 1.4
	Release Version 1.5

	Appendix B Additional Software References
	UML References

	Appendix C Additional Hardware References
	USB PlusPower Connector

